
Transductive Parameter Transfer, Bags of Dense Trajectories
and MILES for No-Audio Multimodal Speech Detection

Laura Cabrera-Quiros1,2, Ekin Gedik1, Hayley Hung1
1Delft University of Technology, Netherlands

2Instituto Tecnológico de Costa Rica, Costa Rica.
{l.c.cabreraquiros,e.gedik,h.hung}@tudelft.nl

ABSTRACT
This paper presents the algorithms that task organisers deployed
for the automatic Human Behaviour Analysis (HBA) task of the
MediaEval 2018. HBA task aims to investigate alternate modalities
of video and body-worn acceleration for the detection of speaking
status. For unimodal estimation from acceleration, a transfer learn-
ing approach, Transductive Parameter Transfer (TPT), which is
shown to perform satisfactorily in a similar setting[4] is employed.
For the estimation from the video modality, bags of Dense Trajec-
tories were used in a multiple instance learning approach (MILES)
[2]. Finally, late fusion is used for combining the outputs from both
modalities. The multi-modal approach resulted in a mean AUC
of 0.658, outperforming the performance of both single modality
approaches.

1 INTRODUCTION
The Human Behaviour Analysis (HBA) task of MediaEval 2018 fo-
cuses on non-audio speaking status detection in crowded mingling
events [1]. Such events are interesting since they are concentrated
moments for people to interact freely, resulting in unstructured
and varied social behaviour. Since speaking turns are shown to be
vital units of social behaviour [9], their automatic detection makes
detailed analysis of social behaviour possible.

Traditionally, audio is used for the detection of speech. However,
the dense nature of large gatherings introduces restrictions such as
background noise, making the use of audio challenging. In order to
overcome this challenge, the HBA task investigates the alternative
modalities of wearable acceleration and video for the detection of
speaking status. The main idea behind this approach is backed by
prior work in social science where speakers were shown to move
(e.g. gesture) during speech [5].

The task requires participants to provide solutions for unimodal
estimations, both for acceleration and video, and a multimodal
estimation. For more details about the task, please refer to [1].

For acceleration, we employed the transfer learning method
called Transductive Parameter Transfer (TPT) which was shown
to perform satisfactorily in a similar setting [4]. Speaker estima-
tion from video is carried out by extracting bags of dense trajec-
tories and using MILES (a multiple instance learning method) for
classification. This approach from video allow us to overcome the
cross-contamination of subjects standing close together due to their
respective overlapping bounding boxes. Finally, the multimodal es-
timation is done by combining the outputs of these two unimodal
classification approaches using late fusion. In the following section,
we will explain these approaches in detail.
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2 METHODOLOGY
2.1 Estimation from acceleration: TPT
Even though speakers are known to act differently fromnon-speakers
[5], their behaviours vary greatly, making automatic estimation
from acceleration a challenging task. In order to account for this
variance, we employed a transfer learning model called TPT which
can provide personalised models. It computes the parameters of
the optimal classifier for a target dataset X t given a set of source
datasets with their own corresponding optimal classifiers. The clas-
sifier for the target data is computed without using any label in-
formation for the target dataset. The method was first proposed
for facial expression detection [7]. A specialised version tuned for
speaking status detection from acceleration was presented in [4].

Let N source datasets with label information and the unlabelled
target dataset be defined as Ds
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nt
j=1, the following steps are taken for computing the optimal

parameters (wt , ct ) forX t (wherew and c correspond to regression
coefficients and the intercept, respectively):
(1) {θi = (wi , ci )}

N
i=1 is computed using L2 penalized logistic re-

gression,
(2) Training set τ = {X s

i ,θi }
N
i=1 is created,

(3) The kernel matrix K that defines the distances between dis-
tributions where Ki j = κ (X s

i ,X
s
j ) is computed with an Earth

Mover’s distance kernel [6].
(4) Given K and τ , f̂ (.), the mapping between marginal distribu-

tions of the datasets and their optimal parameters, is computed
with Kernel Ridge Regression.

(5) (wt , ct ) = f̂ (X t )is computed using the mapping obtained in
the former step.

For a more detailed explanation of each step, readers can refer
to [4]. We used statistical and spectral features extracted from 3s
windows with 1.5s overlap for each axis of the raw acceleration
signal, absolute values of the acceleration signal and the magnitude
of the acceleration. As the statistical features, mean and variance
values are calculated. The power spectral density computed using 8
bins with logarithmic spacing forms our spectral feature set. Each
axis of the acceleration is standardised to have zero mean and
unit variance. The probability outputs are then upsampled to 1s
windows.
2.2 Estimation from video: Bags of dense

trajectories and MILES
The video for this problem is inherently noisy, as we can have more
than one person in the video for our person of interest (eg. people
talking close together). Thus, we propose to use bags of dense
trajectories to overcome the cross-contamination in the video.
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First, we extract the dense trajectories for all the participants
using the method proposed by Wang et.al. [10]. Then, these trajec-
tories are clustered into bags using a sliding window of 3sec with
an overlap of 1.5sec. Thus, all the trajectories that overlap at least
an 80% with the window are part of the bag for this window.

This clustering into bags results in a set Bs of bags (positive
and negative) for subject s , where s = {1, ..., S } and S is the total
number of subjects. A bag from this set is then Bsj , where j =

{1...,N s }, and N s is the total number of bags possible for subject s .
Moreover, we cluster also in space the trajectories within a bag using
k-means clustering. We do so to account for spatial similarities and
for computational efficiency. This way, the trajectories for each bag
are clustered into the k most representative prototypes for the bag.

Note that each bag Bsj will consist of good trajectories (corre-
sponding to the subject s) and bad or noise trajectories (other sub-
jects or shadows and other background artifacts). Thus, we need
to treat the samples in a bag differently, instead of each trajectory
independently. This is the main motivation for using a Multiple
Instance Learning (MIL) approach for classification on video.

As our MIL approach we use Multiple Instance Learning via
Embedded Instance Selection (MILES)[2]. Overall, MILES classifies
a bag by considering both contributing information (e.g. trajectories
of subject s in our case) and opposing information (e.g. trajectories
from other subjects or background). It does so by creating a concept
in an embedded space and comparing all instances to this concept.

Let us define B = {B1,B2, ...,BS }, as the set of bags for all par-
ticipants in the training set. Ba is then a bag of this set B, where
a = {1...,A} and A is the sum of the total number of bags for all S
subjects. xja is then an instance (prototype trajectory) from this bag.
For a given bag Ba the measure of similarity between this bag and
all other instances (disregarding their bag) is calculated by

s (xk ,Ba ) = max
b

exp *
,
−
||xab − xk | |2

σ 2
+
-

(1)

where xk is the set of instances in the training and xab is a given
instance b within bag Ba . Thus, bag Ba is embedded into a space
of similarities defined as

m(Ba ) = [s (x1,Ba ), s (x2,Ba ), ..., s (xna ,Ba )]T (2)
where na is the total number of instances in the training set.

This results in the matrix representation of all training bags in the
embedded space (IFc ) : m(B) = [m(B1), ...,m(BA )].

On this representation a (sparse) linear classifier is then trained.
The classification of new bags is done by:

y = sign(
∑
k ∈I

w∗ks (x
k ,Bnew ) + b∗) (3)

where I is the subset of instances with non-zero weights (I = {k :
|w∗k | > 0}). Note that instances with contributing information will
have positive weightsw∗k , while those with opposing information
will have negative weights. We used the MILES implementation in
PRTools [3]. For more details, please refer to [2].

2.3 Multimodal estimation: Late fusion
After computing 1 second estimations from acceleration and video
modalities with aforementioned methods, we combine the predic-
tions of both methods using mean fusion [8]. If the video of the
current subject is missing, we directly use the output of the TPT.

Accel Video Fusion
Mean AUC±Std 0.656 ± 0.074 0.549 ± 0.079 0.658 ± 0.073

Table 1: Performances of each modality and their (late) fu-
sion.

3 RESULTS
Table 1 presents the performances for each task. Similarly, we
present the performance obtained for each participant in Figure 1.
For unimodal estimations, mean AUC scores of 0.656 and 0.549 with
standard deviations of 0.074 and 0.079 are obtained for acceleration
and video. As it can be seen from the Figure 1, performance per
participant is highly varied. This further supports the claim that the
movement patterns of speakers are highly varied, making detection
harder for some than others.

Figure 1: Performances per participant (p. independent)

Relatively low performance of the video modality is probably
caused by the missing video data for some participants. These
missing intervals are included in the performance evaluation drop-
ping the overall performance for that participant. Cases where
acceleration modality are outperformed by video further show the
multimodal nature of the problem.

Moreover, the data present from the video can be noisy due to
occlusions between the participants. Our MIL approach for video
could tackle this problem up to a certain degree, but some cases are
too crowded to be tackled from the video alone.

Finally, we can see that even with a basic fusion technique like
mean fusion, a multimodal approach provided better performance
than the single modalities. Even though the overall performance
difference is marginal, mean fusion guaranteed similar or higher
performance scores than bothmodalities.We argue that with amore
sophisticated fusion approach, it should be possible to exploit the
multimodal nature of the problem even more. A possible direction
of research is addressing the occlusion segments during video in a
smart fusion manner.

4 CONCLUSION
In this paper, we presented our approach for no-audio speech detec-
tion. The promising performances showed the possibility of tackling
such a challenging task. Highest performance scores obtained by
the multimodal fusion further supported the multimodal nature of
the problem. However, there is still a huge room for improvement.
We believe with the help of many, it will be possible to finally solve
this challenging problem.



Transductive Parameter Transfer and Dense Trajectories for No-Audio Multimodal Speech DetectionMediaEval’18, 29-31 October 2018, France

ACKNOWLEDGMENTS
This task is partially supported by the Instituto Tecnológico de
Costa Rica and the Netherlands Organization for Scientific Research
(NWO) under project number 639.022.606.

REFERENCES
[1] L. Cabrera-Quiros, E. Gedik, and H. Hung. 2018. No-Audio Multimodal

Speech Detection in Crowded Social Settings task at MediaEval 2018.
MediaEval (2018).

[2] Y. Chen, J. Bi, and J.Z. Wang. 2006. MILES: Multiple-Instance Learning
via Embedded Instance Selection. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI) (2006).

[3] P. Duin, R.P.W. Juszcak, P. Paclik, E. Pekalska, D. de Ridder, and D.M.J.
Tax. 2017. PRTools, A Matlab Toolbox for Pattern Recognition. (March
2017). version 5.3.

[4] Ekin Gedik and Hayley Hung. 2017. Personalised models for speech
detection from bodymovements using transductive parameter transfer.
Personal and Ubiquitous Computing 21, 4 (2017), 723–737.

[5] David McNeill. 2000. Language and gesture. Vol. 2. Cambridge Univer-
sity Press.

[6] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. 2000. The earth
mover’s distance as a metric for image retrieval. International journal
of computer vision 40, 2 (2000), 99–121.

[7] Enver Sangineto, Gloria Zen, Elisa Ricci, and Nicu Sebe. 2014. We
are not all equal: Personalizing models for facial expression analy-
sis with transductive parameter transfer. In Proceedings of the ACM
international conference on multimedia. ACM, 357–366.

[8] David MJ Tax, Martijn Van Breukelen, Robert PW Duin, and Josef
Kittler. 2000. Combining multiple classifiers by averaging or by multi-
plying? Pattern recognition 33, 9 (2000), 1475–1485.

[9] Alessandro Vinciarelli, Maja Pantic, Dirk Heylen, Catherine Pelachaud,
Isabella Poggi, Francesca D’Errico, andMarc Schroeder. 2012. Bridging
the gap between social animal and unsocial machine: A survey of social
signal processing. IEEE Transactions on Affective Computing 3, 1 (2012),
69–87.

[10] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. 2013. Dense Trajectories
and Motion Boundary Descriptors for Action Recognition. Intern.
Journal of Computer Vision (2013).


	Abstract
	1 Introduction
	2 Methodology
	2.1 Estimation from acceleration: TPT
	2.2 Estimation from video: Bags of dense trajectories and MILES
	2.3 Multimodal estimation: Late fusion

	3 Results
	4 Conclusion
	References

