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ABSTRACT
We introduce a new privacy task focused on images that users share
online. The task benchmarks image transformation algorithms that
are capable of blocking the ability of automatic classifiers to infer
sensitive information in images. At the same time, the image trans-
formations should maintain the original value of the image to the
user who is sharing it, either by leaving it not obviously changed, or
by enhancing it to increase its visual appeal. This year, the focus is
on a set of 60 scene categories, selected from the Places365-Standard
dataset, that can be considered privacy-sensitive.

1 INTRODUCTION
The objective of the MediaEval Pixel Privacy task is to promote
the innovation of protective technologies that make it safer to
share social multimedia online. Participants are provided with a
set of images and asked to develop protective transformations that
prevent the automatic detection of privacy-sensitive information
contained in these images. In 2018, we use a subset of the Places365-
Standard dataset associated with privacy-sensitive scene categories.
The transformation algorithms may either leave the images not
obviously changed (i.e., maintain the value of the image to the
user who is sharing it) or else enhance their original appeal (i.e.,
increase the value of the image to the user who is sharing it). We
especially encourage the development of transformation algorithms
that enhance images, since we feel that users will be motivated to
use them: it is easier to get excited about dressing up images than
about taking precautionary measures against intangible risks.

The Pixel Privacy task can be seen as an evolution of the Media-
Eval Visual Privacy task [1, 11] and DroneProtect task [2], which
focused on protecting information in surveillance video from people
watching the video. There are four key differences:

• We are interested in social images that users share online.
• We focus on image transformations that protect privacy-

sensitive information against automatic inference.
• Consistent with this focus, we do not necessarily expect,

nor do we require, that sensitive information is hidden
from people who look at the images. (Our primary focus is
protection against computer vision.)

• Our goal is irreversible protection (although results may
also be relevant for reversible protection).

The motivation for the Pixel Privacy task is the growing concern
about the information implicit in the user data that is shared online,
and in particular, in the data accumulated by large social networks.
Trust in social network platforms is necessary, but not enough.
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Events of recent years have made us realize how easily social net-
work data can be misappropriated (e.g., [12]) or put to a use that is
acceptable from the perspective of the social network company, but
not from the perspective of users (e.g., [13]). Additionally, online
data can be mined in order to search for victims, i.e., a so-called
cybercasing attack [9]. A cybercasing attack is carried out by a ma-
licious party who automatically searches through a large amount
of social media in order to identify victims. For example, a criminal
looking to identify houses to rob can make use of computer vision
technology to rank images according to the probability that the
user who shared them is currently traveling, and thus not at home.
It has become clear that, in addition to trusting social networks, we
need local technologies that provide users with more control over
the information that can be inferred about them on the basis of the
multimedia data that they share.

Researchers interested in tackling the Pixel Privacy task should
apply their creativity to imagine which sorts of image enhance-
ments users will find appealing. However, they should also dig
deeply into the related work. In area of multimedia privacy, rel-
evant work has been carried out on social images (e.g., [5]) and
security video (e.g., [3, 6]). Beyond work on privacy, work on ad-
versarial machine learning (e.g., [14, 15]) is also relevant.

2 TASK DEFINITION AND DATA
The larger goal of the Pixel Privacy task is to address the challenge
of online multimedia privacy by creating user-controlled technolo-
gies (i.e., transformations that can be locally applied before sharing).
Users must find the technologies easy and even fun to use. At the
same time, the technologies must lower the risk of users suffering
privacy violations due to the inference ability of computer vision
algorithms that have been trained on large quantities of data. Po-
tential violations include a range of different threats: being singled
out as a victim (e.g., rich, not at home) for a harmful attack (e.g.,
break-in, blackmail) and being assigned by a commercial algorithm
to a category (e.g., frequents slums, attends church) for the pur-
poses of targeting advertising. The specific formulation of the Pixel
Privacy task addresses a highly simplified version of the overall
problem of online multimedia privacy. The goal is to provide a
foundation upon which solutions addressing progressively more
realistic versions of the problem may be developed in the future.

The focus of the MediaEval 2018 Pixel Privacy task is on privacy-
sensitive information that is related to scene categories. A scene
category can be understood to be the identity of the setting in
which a photo was taken. The task data is a subset of the Places365-
Standard dataset [18]. The task provides a list of 60 privacy-sensitive
categories chosen from the original 365 scene categories. It defines a
validation set (MEPP18val) and a test set (MEPP18test) each contain-
ing 3000 images (50 from each of the 60 classes). Task participants
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use the validation set to develop their protection transformations.
Then, they receive the test set, and are asked to apply their trans-
formations to the these images, and submit the protected test set
images for evaluation.

Although most protection transformations will be algorithms
that are applied automatically by a computer, we also encourage
participants (especially those specialized in art or photography) to
develop manual protection techniques that are applied by hand.
The purpose of manual techniques is to leverage creativity and
explore unexpected new ways in which the visual appeal of images
can be enhanced. Participants applying manual enhancement do
not need to enhance 50 images for 60 categories. Instead, we have
defined a special test set MEPP18test_manual, which is a subset of
MEPP18test containing one image per category. Also, in case the
user studies turn out to be too time-consuming, we will also focus
the user study evaluation on MEPP18test_manual.

We inspect the scene categories and identify 60 scene categories
that could be considered privacy-sensitive. Each class is related to
each least one of ten privacy criteria: Places in the home, Places
far away from the home (typical vacation places), Places typical
for children, Places related to religion, Places related to people’s
health, Places related to alcohol consumption, Places in which
people do not typically wear street clothes, Places related to people’s
living conditions/income, Places related to security, Places related
to military. These privacy criteria are intended to represent aspects
of privacy in images that are interesting for future work. The list
provides a basis that can be refined or extended in the future.

3 EVALUATION
The submitted test set images will be evaluated with respect to
protection and appeal. Performance of transformations with respect
to protection is evaluated by measuring the degree to which the
protected test set images block inference of a computer vision
algorithm, referred to as the attack algorithm. The attack algorithm
that we use is a ResNet50 [10] classifier trained on the training
set of the Places365-Standard dataset [18]. The Places365-Standard
dataset contains 1,803,460 training images and 365 scene categories.
The number of images per category varies from 3,068 to 5,000. The
attack algorithm is trained to detect all 365 categories.

We provide here some notes on the difference between the train-
ing data of the attack algorithm and theMEPP18val andMEPP18test
datasets. MEPP18val and MEPP18test are derived from the valida-
tion set (and not the training set) of the Places365-Standard dataset,
meaning that the attack algorithm is trained on data mutually exclu-
sive from the Pixel Privacy validation and test sets. Note also that
the Places365-Standard dataset was created by collecting images
online, and for this reason, we do not expect any of the images in
a given category to be different views of the same scene. We also
assume the data does not include other forms of near duplicates.

Performance of transformations with respect to appeal will be
carried out with an automatic aesthetics classification algorithm,
and also user study. The automatic algorithm is NIMA [17] trained
on the AVA [16] dataset. The user study will have human eval-
uators inspect a selection of the images and give a rating to the
acceptability of the change and also a short explanation for their
rating.

Top-1 acc. Top-5 acc.

Original images 59.60% 88.70%
Protected images 36.77% 64.07%
Protection gain (abs.) 22.83% 24.63%

Table 1: Top-1 and top-5 scene category predication accu-
racy on MEPP18val before and after protection by applying
enhancement with CartoonGAN. The absolute difference is
the protection gain.

army_base (1.000)
hospital_room (0.000)
runway (0.000)
physics_laboratory (0.000)
landing_deck (0.000)

bedroom (0.229)
hotel_room (0.185)
bedchamber (0.185)
television_room (0.158)
living_room (0.045)

temple asia (0.589)
pagoda (0.287)
tower (0.023)
mausoleum (0.015)
palace (0.012)

shoe_shop (0.381)
clothing_store (0.080)
toyshop (0.055)
dressing_room (0.045)
closet (0.039)

beauty_salon (0.357)
hospital_room (0.183)
operating_room (0.076)
hotel_room (0.054)
youth_hostel (0.047)

nursery (0.235)
childs_room (0.204)
art_studio (0.074)
fabric_store (0.064)
playroom (0.041)

Figure 1: The predictions for three original images (top row)
fromMEPP18val and their enhanced versions (bottom row).
For each image, the top-5 prediction labels and the corre-
sponding confidences are given, where ground-truth labels
are marked in green and the wrong top-1 prediction in red.

4 SIMPLE BASELINE
Here, we provide a simple baseline approach to enhancement by
using a style transfer technique called CartoonGAN [4], based on a
Generative Adversarial Network (GAN). We note that cartooning
approaches to privacy in surveillance video have been previously
used in the MediaEval Visual Privacy task [7, 8]. Table 1 shows
the top-1 and top-5 predication accuracy before and after the en-
hancement. Figure 1 shows some image examples from three dif-
ferent categories (i.e., army base, bedroom and temple asia) from
MEPP18val and their enhanced versions, along with the predicted
results before and after the enhancement. In these examples, the
image is correctly classified into a privacy-sensitive category before
enhancement, but once the image is enhanced, the classifier can no
longer predict the correct category. Inspection of these examples
provides an impression of the potential user appeal of this form of
privacy protection.
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