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Abstract— The Penn TURBO (Transforming and Unifying 

Research with Biomedical Ontologies) project aims to accelerate 
finding and connecting key information from clinical records for 
research through semantic associations to the processes that 
generated the clinical data. Major challenges to using clinical data 
for research are integrating data from different sources which 
may contain multiple references to the same entity (e.g., person, 
health care encounter) and incomplete or conflicting information 
(e.g., gender, BMI). There is also the need to track the provenance 
of information used when making decisions on what is the actual 
phenotype of a person. We take a realism-based ontology 
approach to address these problems through transformation and 
instantiation of clinical data with an OBO-Foundry based 
application ontology in a semantic graph database. We have 
developed an application stack and used it on an 11,237 whole 
exome sequencing patient cohort capturing key demographics, 
diagnosis codes, and prescribed medications. The anticipated 
payoff is to be able to make use of inferencing provided by the 
semantics to classify and search for instances of people and 
specimens with desired characteristics. 

Keywords—realism-based ontology; OBO Foundry; referent 
tracking; clinical data; diagnosis codes; prescriptions 

I. INTRODUCTION 
The goal of the TURBO project is to transform and unify 

research data with biomedical ontologies. Typically data are 
obtained in tabular form often from relational databases. The 
column headers and row values are often idiosyncratic and even 
when based on a standard may be malformed, incomplete, and 
contradictory. Dependencies and deep relations between the 
headers (data variables) and values are rarely explicit. 
Transforming the data into a semantic graph instantiating a 
realism-based ontology allows us to state what is known about 
people and what has happened to them, what information is 
available about them, and what conclusions can be drawn based 
on that information. Clinical data often comes from multiple 
sources (e.g., EPIC, REDCap). Instantiation of data from 
different sources in the same realism-based ontology [1] allows 
us to unify the data. Part of the unification comes through 

referent tracking [2], associating information for the same 
person, quality, or event with a unique identifier for that referent 
regardless of where and when the information was obtained.  

The Open Biomedical Ontologies Foundry [3] provides 
through its library of ontologies the ability to create a biomedical 
ontology that is realism-based. We created the TURBO 
ontology as an application ontology based on these ontologies 
drawing from the Ontology for Biomedical Investigations (OBI) 
[4] and the Ontology for Biobanking (OBIB) [5] in particular. 
By application ontology, we mean that we are primarily reusing 
terms (classes, instances, and relations) from existing ontologies 
and creating terms only as needed to move the project forward. 
Terms that potentially have broader usage are submitted to 
existing ontologies.  

An application stack called Drivetrain was developed to 
perform part of the transformation, the unification, referent 
tracking, and generating conclusions as RDF statements about 
people and their qualities. Currently the Karma tool [6] is used 
to transform tabular data into initial RDF triples for Drivetrain 
to use.  Ontology modeling is also used to capture provenance 
of data and conclusions drawn based on the data. After running 
the Drivetrain stack, the reasoning capabilities of the semantic 
graph database can be used to classify and aid search for 
instances of people and specimens with desired characteristics. 
For example, people can be identified who have been prescribed 
a particular class of drugs (‘statins’). We intend to create 
phenotypic profiles in the form of equivalence axioms that will 
be used to infer which people or specimens match those profiles.   

II. METHODS 

A. Technologies used in TURBO  
Ontotext GraphDB (version 8.4.1) [7] is the semantic graph 

database used. Scala (version 2.11) [8] is used for 
programmatic interaction with the database, leveraging the 
RDF4J (version 2.2.2) library [9]. UUIDs are generated using 
the randomUUID() method found in the java.util.UUID 
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package [10]. LIBSVM was used through the svm() function 
from R e1071 [11].  

 
The TURBO ontology was generated following the 

approach described in [12]. Terms were selected from OBIB 
using Ontodog [13] and additional terms were imported using 
the OntoFox tool [14]. New terms were added using Protégé 
[15]. 

B. TURBO content 
Data on a whole exome sequencing cohort of 11,237 

participants (‘biobank consenters’) have been used to populate 
a GraphDB database. The data include information on gender 
identity, date of birth, and body mass index (BMI, calculated 
from height and weight) collected during 14,450 biobank 
encounters and 98,585 health care encounters. In addition, 
181,420 diagnosis codes and 136,249 medications were 
obtained during health care encounters. The data was obtained 
from relational tables provided by the Penn Medicine Biobank 
from two sources, a data warehouse and REDCap.   

 

In addition to RDF triples generated from the data, 
individual ontologies and terminologies were also loaded into 
the GraphDB database. The ontologies included the TURBO 
application ontology, RDF representations of ICD9 and ICD10 
codes obtained from the NCBO Bioportal [16], all portions of 
the Drug Ontology [17] except NDC annotation, the “lite” 
component of ChEBI [18], and the Monarch Disease Ontology 
(MonDO) [19].  

C. Generation of RDF triples to load into the TURBO 
GraphDB database. 
The Karma application (version 2.1) was used to generate 

RDF triples from the tabular data for loading into the GraphDB 
database. Karma models were based on the TURBO ontology. 

D. TURBO code and documentation 
The code base for the Drivetrain component is available at 

GitHub including documentation of the full TURBO stack and 
description of ontology modeling. 
https://pennturbo.github.io/Turbo-Documentation/  

 
 

 
Figure 1. A graph depicting instantiated parts of the TURBO ontology including ‘biobank consenter’. Nodes are classes whose 

size reflects usage in the instantiation of the WES cohort data. Edges are object properties (including the green ‘subclass of’ but with 
the exception of the pink edge) whose width also indicates usage. The one exception is a pink annotation property indicating that a 
‘retired placeholder for biobank consenter’ was ‘replaced with’ ‘biobank consenter’ as a result of the referent tracking process.  
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III. RESULTS 
A technology stack has been developed for the TURBO 

project that implements a pipeline to transform tabular data into 
semantic triples, stored in a Resource Description Framework 
(RDF) triple store, using terms from the TURBO Ontology 
(https://raw.githubusercontent.com/PennTURBO/Turbo-
Ontology/master/ontologies/turbo_merged.owl). The TURBO 
ontology at time of writing consists of 727 terms (415 classes, 
41 individuals, 271 properties). These are primarily drawn from 
25 ontologies with 161 new terms created for TURBO (69 
classes, 19 individuals, 73 properties). URIs and all labels of 
terms instantiated in the current TURBO semantic repository are 
listed at the bottom of: https://pennturbo.github.io/Turbo-
Documentation/turbo-ontology.html (along with a discussion 
and an example of an instantiated triple higher on the page). 
Terms in the TURBO ontology are focused on patients and their 
qualities along with information collected on them, ‘health care 
encounter’s (http://purl.obolibrary.org/obo/OGMS_0000097) 
and their outputs (diagnoses, measurements), and biobank 
encounters and their outputs. The new terms mainly cover 
shortcut relations utilized in the Karma mapping and for 
managing UUIDs during referent tracking. At the Penn 
Medicine Biobank, data are collected when participants are 
consented at which time they have not yet donated a specimen 
but have been assigned an ID. To capture this case, a ‘biobank 
consenter’ term has been generated defined as a participant in a 
biobank consenting process (Figure1). Incorporating the essence 
of this term is in progress with ICO [20] and OBIB developers.  

The Karma tool was used to map relational data to ontology 
terms saved with an extended version of the R2RML language. 
The mappings were then used to publish the data as RDF triples. 
The initial RDF triples make use of shortcut relation properties 
to simplify the manual mapping. The essence of TURBO 
shortcut relations is to allow a minimal number of classes to be 
instantiated – frequently just one. For example, an input table 
nominally about health care encounters may include height, 
weight and body mass index (BMI) values. Those data items are 
not values of the encounters, but rather values of properties 
borne by the people who participated in the encounters. The 
shortcut relation “shortcut health care encounter to BMI” 
eliminates the need to instantiate a class that represents the 
encounter participants and instead says that there is some path 
from the encounter to the BMI value. The Drivetrain application 
(described next) contains all of the logic necessary to expand the 
shortcut into a semantically complete description of reality. 

The Drivetrain application was built to load and process the 
RDF triples with the following steps: 

A. Shortcut RDF Triples and TURBO ontology loaded to an 
Ontotext GraphDB repository 
During the data import step, the input data are written to an 

isolated section of the graph. The triples are not expected to have 
globally unique identifiers and so must be sectioned off from all 
other data in the triple store. 

B. EXPAND Queries create fully ontologized model from 
shortcut triples 

 The shortcut expansion phase takes all triples in the input 
data that use shortcut relations and expands them to fully 
ontologized forms. A single shortcut triple will likely expand to 
multiple ontologized triples. In addition to expanding the triples, 
the Internationalized Resource Identifiers (IRIs) in the imported 
data are made unique using Universally Unique Identifiers 
(UUIDs). After this phase is complete, the data in the isolated 
import graph have globally unique identifiers and are fully 
ontologized, though they may not yet be ready to be 
incorporated into the rest of the triple store. 

 Data integrity rules are applied to all triples in the isolated 
import graph to assure that the data meet the minimum level of 
integrity required by the Drivetrain application. Several 
conditions must be met to pass, including checks that all classes 
and properties present in the incoming data must also be present 
in the TURBO ontology, all denoted registries must be 
represented in the ontology, and all dates must be parseable, 
reasonable, and be typed as dates. If all integrity checks have 
passed, then the data are ready to be connected to the rest of the 
graph. 

C. Scala-based REFERENT TRACKER combines duplicate 
entities 
During the Referent Tracking phase, all instantiated IRI-

bearing terms that singularly and uniquely refer to a single thing 
in reality are replaced with a single Instance Unique Identifier 
(IUI), which is implemented by Drivetrain as an IRI that 
specifically contains a Universally Unique Identifier value 
(UUID).  After this phase is complete, the RDF data are 
normalized such that all entities in reality can be identified by a 
single unique identifier that is independent yet connected to the 
source relational data (Figure 2).  

  

 
Figure 2. Prototypical referent tracking. Blue nodes are literals. 
Edges are annotation properties providing provenance for 
referent tracking. 

Since our data comes from many sources, it is possible that 
the same ‘biobank consenter’ may appear in multiple data 
sources, each of which may contain different or contradicting 

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 3

ICBO 2018 August 7-10, 2018 3



information. It is the goal of the Referent Tracker to apply 
custom rules in order to determine when two consenters must be 
combined into one. Likewise, the same encounter may also 
appear in multiple data sources. A simple rule is that the 
identifier and identifier source (central registry ID symbol and 
registry) associated with the entity are the same. 

D. Scala-based ENTITY LINKER links Health care and 
Biobank Encounters to Biobank Consenters 
Entity Linking is a generic term used here to mean the 

process of attaching consenters to their encounters based on 
data provided by a relational Join table. This process is 
necessary because consenters and their encounters may be 
received in separate files. Drivetrain can make matches by 
comparing the literal values of encounter symbols and 
consenter symbols, and the values of the respective registries. 

E. Scala-based CONCLUSIONATOR creates inferences 
about Dates of Birth, Biological Sex, and BMI 
During the conclusionating phase, rules are applied to the 

data to generate statements about a person or event. Currently 
this is done to resolve potentially conflicting data to single 
conclusions, which can be used for querying purposes. The 
potentially conflicting data derived from the sources remain in 
the graph and can be queried. In the future, it will be used to 
combine data of different types (e.g., diagnosis code, 
medication, lab test result) to make a single statement (e.g., a 
person is diabetic). To facilitate easy querying, the conclusions, 
which are RDF triples, are placed in a separate named graph. 
After this phase is complete, there will be a named graph of 
conclusions, which contains simplified non-conflicting 
statements. Conclusionating is applied to generate statements 
about the consenter’s biological sex, date of birth, and BMI at 
the date of each biobank encounter. The rules used for drawing 
conclusions are currently very simple, but the system is 
envisioned to handle more complex rules and be able to draw 
on a library of different rules in the future. 

One way to calculate BMI is by performing a computation 
over a person’s height and weight, which can be measured 
during a health care encounter or recorded on a case report form 
during study recruitment during a biobank encounter (when a 
person becomes a ‘biobank consenter’). It is useful to know the 
BMI of biobank consenters at their date of recruitment. 

It is not guaranteed that the source data required to calculate 
BMI at date of biobank encounter will be both available and of 
sufficient quality. It may be that height and weight 
measurements were recorded at the health care encounter, the 
biobank encounter, neither, or both. Further, the data may have 
been recorded improperly, which would result in a calculated 
BMI that is outside the acceptable range. 

The following rules are currently applied to account for 
these situations: 
For each date of recruitment for each person: 
• If there are in-range height and weight measurements 

recorded in the health care encounter on the date of 
recruitment, compute the BMI and conclude that it is the 
person’s BMI at the given date of recruitment. 

• If the BMI cannot be computed from the health care 
encounter, but there are valid height and weight 
measurements records on the case report form filled out as 
part of the study recruitment process, compute the BMI 
from the case report form data and conclude that it is the 
person’s BMI at the given date of recruitment. 

• If neither the health care encounter nor the study 
recruitment encounter yield a BMI conclusion, then record 
that BMI for this given date of recruitment is inconclusive. 

F. Diagnosis Data is mapped by cross-referencing 
ICD9/ICD10 hierarchies and MonDO ontologies 
Diagnosis codes come to TURBO in the form of ICD9 and 

ICD10 codes [21]. In order to enable searches broader than a 
single code value, we load RDF versions of ICD9 and ICD10 
downloaded from the NCBO Bioportal, which provide 
subClassOf relations. We also load MonDO, an aggregation of 
disease ontologies including the Human Disease Ontology 
[22]), which includes database cross references for ICD codes. 
We use these cross references to create mentions between 
diagnosis codes and diseases, thereby enabling disease-based 
searches. 

G. Medication Order Name Data are mapped to ontologies 
using Solr indexed text search and a Support Vector 
Machine (SVM) 
Medication orders are provided primarily as free text, often 

including dosage and route of administration information.  
Associating these orders to terms in ChEBI (Chemical Entities 
of Biological Interest) would enable searches based on the 
parent classes of active ingredients and their roles. To 
accomplish this, the orders are computationally mapped to 
terms from the Drug Ontology (DRON) which provides cross-
references to ChEBI. About 30% of the distinct medications 
prescribed to our WES cohort also came with RxNorm 
identifiers [23] that could be directly associated to DRON and 
ChEBI via direct cross references. The RxNorm associations 
were then used as a training set for machine learning (LIBSVM) 
using results from the string matching output from Apache Solr 
[24]. For the WES cohort, we were able to map 86.1% of 
distinct medications (sensitivity = 0.98; specificity = 0.95) 
covering 88% of the total medications prescribed (excluding 
non-drug prescriptions).  

H. Performance 
  The complete Drivetrain stack was run on a linux application 
server with 8 GB RAM and 2 processors and a GraphDB 
database server with 64 GB RAM and 4 processors.  

  The run from loading of graph through medication mapping 
(steps described in sections A through G above) took 82 
minutes for the WES cohort data and supportive ontologies. It 
resulted in 25,521,235 triples. About 3.6 million triples were 
initially loaded and then expanded to about 12 million triples. 
Additional triples resulted from referent tracking, 
conclusionating, and adding diagnosis and medication terms 
and associations. 

 Searches for diagnosis classes take approximately a second. 
For example, a search for all participants in a health care 
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encounter which resulted in a diagnosis that mentions 
‘myocardial infarction’ will return those assigned a ICD10 code 
of I21.3 (acute myocardial infarction).  

 Searches for medications also take on the order of seconds. 
A search for all participant prescribed a ‘statin’ returned all 
appropriate statins and no inappropriate ones based on drug 
name matches and their active ingredients with one important 
exception. Crestor contains rosuvastatin but is not identified as 
a statin. That is because rosuvastatin while present in both 
DRON and ChEBI have different IRIs. We are able to address 
this issue locally by using equivalence statements between the 
two (we are also following up with DRON to resolve this issue). 

IV. DISCUSSION 
The TURBO project is currently in active development as a 

demonstration project for the Penn Institute for Biomedical 
Informatics. We have a stable application stack, Drivetrain, that 
combined with the Karma tool, enabled us to transform, load, 
referent track, and make conclusions related to a real dataset of 
interest, a WES cohort of 11,237 participants. Unlike traditional 
data warehousing, the TURBO system performs integration 
through rules applied during referent tracking and 
conclusionating. The processes used to determine when entities 
are the same (people, encounters) in referent tracking or make 
statements about a person (e.g., BMI) in conclusionating are 
modeled in the ontology and stored in the graph for provenance. 
Thus, Drivetrain provides an ontology-supported knowledge 
layer along with the loaded data.  

User stories, common requests by researchers searching 
clinical data, are driving TURBO development. Competency 
questions based on these user stories are then used to evaluate 
the system. Examples include identification of people of 
specified age, biological sex, and BMI. These are possible as is 
finding those who have been prescribed a particular class of 
drugs and assigned a diagnosis code linked to a particular class 
of disease. We are currently working on adding genotype data 
resulting from exome sequencing. Future additions will include 
laboratory tests.  

Scalability of the system remains to be determined. We plan 
to expand both the number of participants and type of data 
instantiated in the semantic graph database. At 25 million triples, 
our current graph database has room to grow. We run Drivetrain 
with reasoning off but can then load into a graph database with 
RDFS+ or OWL-Horst reasoning turned on. For the current 
datasets this takes less than an hour. We are also exploring 
loading shortcut triples generated by alternative methods to 
Karma that are less manual. 

Our efforts at medication mapping have used standard tools 
with good success but we would like to improve coverage as 
much as possible. Some prescriptions are not medications at all 
(e.g., wheelchairs, saline solutions, etc.) and we can generate 
lists to recognize these. We will explore use of other 
terminologies (e.g., NDFRT [25]) that may provide routes 
through active ingredients and equivalence matches to entries in 
ChEBI. Once we have a ChEBI IRI linked to a prescription it 
then can be searched based on the structure or role of the active 
ingredient. 

The TURBO project represents a new direction in applying 
ontologies to clinical data. Most efforts do not explicitly involve 
realism-based ontologies or if they do use them it is in the form 
of associations and not instantiations. However, there are related 
projects instantiating OBO and realism-based ontologies. These 
include ones by William Duncan (Roswell Park) [26], by 
Amanda Hicks and William Hogan (U. Florida) [27], and by 
Bjoern Peters (LaJolla Institute for Immunology) [28] although 
they don’t do referent tracking or conclusionating as in TURBO. 
This growing number of independent efforts raise the exciting 
potential of linking such systems together.  

Ultimately, we intend for the TURBO project to provide a 
Phenotype Storefront that users can query to find participants 
and specimens of interest. The current plan is to just return the 
number of hits as results and require IRB approval for accessing 
identifiable data. We also want to learn from searches made by 
investigators in order to generate defined classes of participants 
and specimens. For example, equivalence axioms for someone 
who has had a particular disease course could include an 
appropriate diagnosis code but also a relevant prescription and 
laboratory test result. Inferencing applications of this nature will 
bring to bear the power of ontologies to provide what can’t be 
done by traditional relational systems. 
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