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Abstract— Building and maintaining ontologies can be challeng-

ing due to the need to automate a number of common tasks, such as 
running quality control checks, automatic classification using reason-
ers, generating standard reports, extracting application-specific sub-
sets, and managing ontology dependencies. These workflows are in 
some aspects analogous to workflows used in software engineering 
as part of the normal product lifecycle. However, in contrast to soft-
ware development, there is a lack of easy to use tooling to support the 
execution of these workflows for ontology developers. 

ROBOT is a tool for working with Open Biomedical Ontologies. 
It provides a way to execute standard ontology processing operations 
on the command line. These can be chained together, or coordinated 
via a separate task execution system such as UNIX Makefiles. These 
workflows can also be executed within continuous integration sys-
tems such as Travis, allowing ontologies to be managed in social 
coding version control systems such as GitHub, with all the attendant 
features such as validation of pull requests. We have also created an 
Ontology Starter Kit that can set up a GitHub repository with stand-
ard layout and workflows in place. This makes it simple for an ontol-
ogy development group to configure the needed processing pipelines. 
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I. INTRODUCTION 
Ontology engineering (OE) is in many ways analogous to 

software engineering (SE), yet tool support for OE lags behind 
tools for SE. Graphical interfaces such as Protégé [1] provide a 
rich interactive Ontology Development Environment (ODE), 
but there is a lack of standardized tools for running ontology 
release workflows. Indeed, there is a lack of broad agreement 
on standards for what should be included or excluded in a re-
lease, with different projects making different decisions inde-
pendently. The Open Biological Ontologies (OBO) Foundry 
[2] was created in part to develop such standards. 

Noy, Tudorache, Nyulas, and Musen (2010) documented a 
general ontology life cycle with a focus on bio-ontologies [3]. 
First, requirements for the ontology are gathered. Then, the 
ontology is collaboratively developed in Protégé. Once the 
requirements have been fulfilled, the ontology is published and 
feedback is solicited. Feedback is integrated back into devel-
opment, and the ontology is continuously updated and pub-
lished. At any point after the initial publication, the ontology 
may be deployed in other applications. 

 While this general workflow has been widely accepted in 
the bio-ontology community, the publication process still re-
quires much manual effort and review. Various bio-ontologies, 
while using similar tools, have vastly different release process-

es. Additionally, much of the collaborative development re-
quires prior knowledge of Protégé, limiting the number of do-
main experts who are able to work on an ontology.  

Our tool, ROBOT (ROBOT is an OBO Tool), provides a 
standardized yet configurable way to support the ontology de-
velopment lifecycle. We previously described the basic archi-
tecture of the tool [4], which we summarize here. 

ROBOT is written in the Java programming language and 
consists of two parts: ‘robot-core’ and ‘robot-command’. ‘ro-
bot-core’ is a library supporting common ontology develop-
ment tasks, which we call "operations". ‘robot-command’ pro-
vides a command-line interface divided into "commands", each 
of which makes some use of ‘robot-core’ operations. The 
source code is available from the GitHub repository at 
https://github.com/ontodev/robot/  and released on Maven Cen-
tral at https://mvnrepository.com/artifact/org.obolibrary.robot .  

Any programming language that runs on the Java Virtual 
Machine (JVM) can import the ‘robot-core’ library and use the 
full set of operations. Many of the core operations use 
OWLAPI [5], which is also used by Protégé and other systems 
using OWL. Some core operations use Apache Jena [6]. In 
both cases, the core operations are designed to be higher-level, 
and usually more specialized, than OWLAPI or Jena for the 
relevant tasks. 

The key advantage of the division between operations and 
commands (i.e., between ‘robot-core’ and ‘robot-command’) is 
a separation of concerns between working with Java objects, 
for the former, and working with the terminal and file system, 
for the latter. Operations work with Java objects representing 
OWL ontologies, OWL reasoners, OWL classes, etc., while 
commands work with command-line option strings, files, and 
perform various conversion and validation steps. The result is 
cleaner, more focused code on both sides. 

II. COMMANDS AND OPERATIONS 
ROBOT currently provides 15 operations (in the Java li-

brary) and 19 commands (for the command line). While some 
commands are quite specialized, here we provide an overview 
of the most common and general commands. 

ROBOT is compatible with all OWL ontology formats, in-
cluding RDF/XML, Turtle, Manchester, OBO, and more. To 
enable further interoperability, a ‘convert’ command is includ-
ed to change between supported ontology formats. A complete 
list of supported formats can be found in the ‘convert’ docu-
mentation (http://robot.obolibrary.org/convert). 
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A. Reasoning 
Reasoning is one of the most fundamental operations in 

ROBOT. This has two uses: logical validation of an ontology, 
and automatic classification, both covered by the ‘reason’ 
command. In both cases, an OWL reasoner is used to perform 
inference. Users can choose which reasoner to use. Large on-
tologies such as the Gene Ontology typically use ELK [7], 
which scales well but supports a smaller OWL profile. Smaller 
ontologies with richer axiomatization such as the Relations 
Ontology typically use a complete DL reasoner such as Her-
miT [8]. 

When the ‘reason’ command is invoked on an input ontol-
ogy, ROBOT will initiate a reasoner using the OWLAPI Rea-
soner interface. After that, the resulting inferences are checked 
to ensure the ontology is logically coherent: the ontology must 
be consistent, and have no unsatisfiable classes (i.e., classes 
that cannot be instantiated without introducing an inconsisten-
cy). If the ontology is incoherent then this is reported, and exe-
cution halts. ROBOT also performs additional checks, ensuring 
that no two classes are inferred to be equivalent post-reasoning, 
as this is usually unintentional. 

If the ontology is consistent, then ROBOT will perform au-
tomatic classification. All direct inferred subClassOf axioms 
are asserted into the ontology. We are also exploring the possi-
bility of allowing inference of other axiom types, such as do-
main and range axioms. 

The ‘reason’ command has additional “helper” commands. 
The ‘relax’ operation asserts entailed subClassOf axioms ac-
cording to a simple structural rule: an expression ‘A equiva-
lentTo (R some B) and …’ entails ‘A subClassOf R some B’. 
This can be useful as consumers of bio-ontologies often expect 
to navigate these expressions, e.g., partonomy in GO and 
Uberon. The ‘relax’ command relieves the ontology developer 
from the need to assert these in addition to the equivalence 
axioms, and as such it is also often included in release work-
flows. Additionally, it means that the SubClassOf axioms can 
form a complete graph for traversal of all relationship types in 
the ontology, which is a common requirement for ontologies 
with part-of relationships, such as GO and Uberon. Finally, the 
‘reduce’ operation removes redundant subClassOf axioms, and 
can be used after ‘relax’ to remove duplicate axioms that were 
asserted in that step. 

The ‘materialize’ command uses an Expression Materializ-
ing Reasoner (EMR) to assert inferred expressions of the form 
“A subClassOf R some B” (for more information see 
https://github.com/owlcollab/expression-materializing-
reasoner). Where the ‘reason’ command asserts inferred named 
superclasses, ‘materialize’ asserts anonymous superclasses. 
This is not part of the standard release cycle but can be benefi-
cial for creating complete ontology subsets. 

B. Working with External Ontologies 
The OBO Foundry project aims to coordinate ontologies in 

a modular fashion, such that parts of some ontologies can be 
used as building blocks for other ontologies. For example, the 
ChEBI chemical entities ontology is used to construct OWL 

definitions for metabolic processes and activities in the Gene 
Ontology [9]. 

There are a variety of different strategies for leveraging ex-
ternal ontologies, depending on use cases. 

Extract 

The ‘extract’ command creates a module based on a set of 
entities to extract (a “seed”). There are four different extraction 
methods (as specified by the ‘--method’ option): MIREOT, 
TOP, BOT, and STAR. 

The MIREOT extraction method is based on the principles 
of the same name: Minimum Information to Reference an Ex-
ternal Ontology Term [10]. For this method, one or more “bot-
tom” entities must be specified. Optionally, one or more “top” 
entities can also be specified. The command extracts all the 
“bottom” level entities and their dependencies up to the “top” 
level from the input ontology. If no “top” entities are provided, 
dependencies up to the top-level entity (‘owl:Thing’) will be 
included. 

The TOP, BOT and STAR methods make use of the 
OWLAPI Syntactic Locality Module Extraction (SLME) im-
plementation, which is guaranteed to capture all information 
logically relevant to the seed set [11]. 

Remove and Filter 

The ROBOT team is currently developing a pair of com-
plementary commands for fine-grained control over ontology 
imports and extraction: ‘remove’ and ‘filter’. The ‘remove’ 
command will allow users to choose which sets of axioms they 
wish to remove from a target ontology. The ‘filter’ command 
will offer similar functionality, with the difference being that 
only selected axioms are kept, and all other axioms are re-
moved. These two commands work by starting with the seed 
set of entities, then applying various selectors to find related 
entities, and finally selecting which axiom types to remove or 
filter. We expect only a small number of "power users" will use 
this feature directly, but these commands will eventually pro-
vide a foundation for other higher-level commands. 

C. Querying and Reporting 
Ontology workflows typically include query operations 

over the ontology, producing reports which may be informative 
for both editors and users of the ontology - for example, a table 
of all classes plus their textual definitions. Query operations 
can also be used for validation checks. The SPARQL query 
language provides a universal and declarative way for ontology 
maintainers to create ontology reports or validation checks. 
ROBOT provides a convenient way to perform queries over 
ontologies with the ‘query’ command, or validation checks 
using ‘verify’. Additionally, the ‘report’ command provides a 
powerful and convenient package of standard OBO queries that 
can be used or configured in any ontology workflow, without 
requiring the maintainer to be familiar with SPARQL. 

Query 

ROBOT's ‘query’ command runs SPARQL queries on 
loaded ontologies (or other RDF resources). This can be used 
by an ontology maintainer to either perform interactive queries, 
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or more typically to include standard queries into an ontology 
workflow.  

SELECT queries output a table of results. ASK queries 
output a file with a boolean value. CONSTRUCT queries 
output an RDF file, which can be further processed by ROBOT 
or merged back into the loaded ontology. CONSTRUCTs 
provide a convenient way of performing “macro” style 
expansion [12]. ROBOT does not currently support SPARQL 
UPDATE queries. 

Verify 

The ‘verify’ command is a variation on SPARQL SELECT, 
and is used to ensure that an ontology conforms to a 
predetermined set of conditions; for example, ensuring that no 
class has multiple textual definitions. Given a SELECT query, 
‘verify’ will succeed (i.e., exit with status code 0) if NO results 
are returned. It will fail (i.e., exit with a non-zero status code) if 
ANY results are return from the query. So given a SPARQL 
query that SELECTs for invalid data, the ‘verify’ command 
will verify that the ontology (or other resource) does not 
contain such invalid data. 

Report 

The ‘report’ command is an extension of ‘query’ and 
‘verify’ that provides a series of configurable quality control 
checks for an ontology and returns a spreadsheet or YAML 
output of the violations. The spreadsheet is in TSV format and 
easy for a user to read, while the YAML output can be easily 
parsed with scripts and other programs. 

The QC checks include annotation checks, logical checks, 
and metadata checks. Annotations are important to facilitate 
human comprehension, so the ‘report’ command finds cases 
where missing or duplicate annotations could cause issues. 
Logical checks look at the structural coherency and 
consistency of the ontology. Finally, ‘report’ identifies missing 
ontology metadata, as dictated by OBO Foundry 
recommendations. 

There are three levels of reporting violations: ERROR, 
WARN, and INFO. An ERROR-level is the most severe, such 
as a missing or duplicate label. These types of violations must 
be fixed before publishing an ontology. WARN-level 
violations should be fixed as soon as possible, such as inferred 
one-to-one class equivalencies, which are typically unintended 
within OBO ontologies. The last level, INFO violations, are 
recommended fixes for maintaining consistency across OBO 
Foundry ontologies, such as beginning a definition with an 
uppercase letter and ending with a period. 

A default “profile” with report levels for each QC check is 
provided by ROBOT, but users are also able to create their 
own profiles. In these profiles, they can change the reporting 
levels, choose to exclude certain checks, and add their own 
checks as SPARQL queries. For example, some ontologies 
may categorize a class lacking a textual definition as being an 
error, while others may categorize this as a warning. One of 
our goals is to converge on a standard profile that is maximally 
useful for the set of all ontologies in the OBO library, encour-
aging adoption of common quality control checks. 

D. Templated Ontology Development 
ROBOT comes with a template-driven ontology term gen-

eration system. Users can still plug in their own system into 
their workflow, such as DOS-DP patterns [13]. 

A huge amount of data is stored in spreadsheets and data-
bases, and tabular formats are well suited to many sorts of data. 
ROBOT's ‘template’ command allows users to convert tabular 
data into RDF/OWL format. A ROBOT template is simply a 
tab-separated values (TSV) or comma-separated values (CSV) 
file with some special conventions.  

The first row of a template file must contain the column 
headers and the second row contains a “template string” for 
each column to be converted. Template strings have a special 
syntax that is outlined in the ROBOT ‘template’ documenta-
tion (located at http://robot.obolibrary.org/template), where 
‘%’ characters are replaced by cell contents to generate both 
logical and annotation axioms.  

Each subsequent row corresponds to an RDF subject to be 
generated. The subject rows require an Internationalized Re-
source Identifier (IRI)1  or Compact URI (CURIE)2 to identify 
them, and the cells of the row contain the objects of various 
Annotation Properties, Object Properties, and Data Properties. 
Term labels (‘rdfs:label’s) can be used instead of IRIs and 
CURIEs, increasing readability, as long as they are defined in 
the input ontology. Class expressions can be provided in Man-
chester syntax with labels, as used in Protégé. 

III. WORKFLOWS 
A workflow consists of a set of tasks coordinated by some 

workflow system. Ontology workflows consist of tasks such as 
executing QC checks, building import modules, reasoning over 
ontologies, and generating various ontology release products. 
Although ROBOT allows multiple commands to be chained 
together, it is not itself a workflow manager. Because ROBOT 
commands can be executed on the command line, a number of 
different systems can be used. We highlight the use of Unix 
Makefiles, although other systems are possible. 

A. Makefiles 
A Makefile is a set of instructions that is typically used to 

compile programs. In ontology development, the Makefile is 
used for automated tasks, such as releasing the ontology. A 
Makefile consists of a set of rules used to make objects (the 
“targets” of the rule). In this case, the objects are usually 
ontology modules and files. The “recipes” for the rules are 
Unix-style system commands, carried out by the ‘make’ 
command. 

                                                
1 An IRI is an extension of a Universal Resource Identifier (URI) to 
support more characters. URIs are intended to unambiguously identi-
fy resources, such as ontology classes, by using a namespace (like a 
URL) and a resource name within that namespace (like an ID). 
2 A CURIE is an abbreviated version of an IRI or URI. A prefix for 
the namespace is provided (e.g., http://purl.obolibrary. org/OBI_ 
becomes ‘OBI’) and the ID is appended to that prefix (e.g., 
OBI:0000070). 
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ROBOT commands can be used as the “recipes” to make 
the “targets”. Fig. 1 shows a standard release workflow using 
ROBOT commands. 

 
 
Fig. 1. The ROBOT release workflow 

First, quality control checks are run over the editor 
ontology with ‘verify’. These look for equivalent classes, 
trailing whitespace in annotations, self-references, cross 
reference syntax, and missing labels. The results are saved to a 
‘reports/’ directory. (This step will be replaced with the 
updated ‘report’ command once the new features are 
complete.) If there are any violations, the ‘make’ command 
will fail so that these can be fixed before releasing. 

Assuming the QC check step has completed successfully 
(the process will fail and exit if not), the next step is to create 
the import modules. The ROBOT ‘extract’ command runs over 
a list of import names, which have corresponding term files 
(for the seed set) in the ‘imports/’ directory. This step creates 
all the import modules in the same directory. 

Finally, the main release products are created: the OWL file 
and the OBO file. To create the OWL release, the editor file is 
passed through a series of chained ROBOT commands: 
‘reason’, ‘relax’, ‘reduce’, and ‘annotate’. If any of these 
commands fail, the Make process will terminate with the error 
message. For example, if an ontology is incoherent, the ‘rea-
son’ step will fail; if an ontology fails a hard check in ‘report’ 
then this step will fail.. The ‘annotate’ command adds the 
version IRI to the ontology metadata. This OWL file is then 
converted to OBO format, at which point all targets are copied 
to a dated release directory.  

Creating a Makefile to coordinate all these steps can be 
challenging. We make this easier for ontology developers by 
providing an “Ontology Starter Kit” (available from 
https://github.com/INCATools/ontology-starter-kit/). This can 
be used to create a GitHub repository following a standard lay-
out, with a standard Makefile following the workflow detailed 

above. The resulting GitHub repository will also be configured 
to be able to run the workflow via the Travis-CI Continuous 
Integration tool. The workflow can also be executed using 
Docker via ontology starter kit containers released on Dock-
erhub (https://hub.docker.com/r/obolibrary/). This allows easy 
execution of workflows on either the local laptop/desktop 
computer of an ontology developer. 

IV. CASE STUDY: USE OF ROBOT IN THE 
ONTOLOGY FOR BIOMEDICAL INVESTIGATIONS 
The Ontology for Biomedical Investigations (OBI) is an 

OBO Foundry ontology that aims to describe the processes, 
agents, devices, inputs, and outputs of scientific investigations 
[14]. When the project began more than a decade ago, 
development was done in Protégé, without any automation, and 
hosted on SourceForge. Today OBI uses ROBOT to implement 
an automated workflow, supported by GitHub Pull Requests 
and Travis continuous integration testing. 

OBI has always imported a range of terms from other OBO 
ontologies, and developers have maintained a number of 
separate OWL files to facilitate concurrent development by 
different groups of users. When it comes time to make a new 
release of OBI, the various OWL files must be merged, tested 
and reasoned over. 

In the early days of the OBI project. Alan Ruttenberg 
developed a series of scripts for quality control and common 
operations, but the process of building a merged and reasoned 
release file, and testing it, was a manual process that often took 
many hours. In 2013 James Overton developed an automated 
build tool in Java, using OWLAPI and Apache Ant, to 
automate most of the build, test, and release process. This 
drastically reduced the number of hours required to make a 
release, and allowed for more frequent releases. While this 
code was specific to OBI workflows, some of it was used in 
early versions of ROBOT. 

In 2017 OBI moved from SourceForge to GitHub and the 
release workflow was updated to use ROBOT throughout. OBI 
currently includes a Makefile that defines a range of tasks for 
managing imports, converting templates, merging, reasoning, 
testing, and releasing new versions of OBI. The key steps are: 

1. Update imports (currently using OntoFox [15]) 
2. Normalize XML for cleaner version history (‘robot 

convert’) 
3. Convert template files (TSV) to OWL modules (‘ro-

bot template’) 
4. Merge imports and templates with ‘obi-edit.owl’ 

(‘robot merge’) 
5. Use SPARQL CONSTRUCT to update various anno-

tations (‘robot query’) 
6. Run an automated test suite (‘robot verify’) 
7. Run the HermiT reasoner (‘robot reason’) 
8. Update annotations for release (‘robot annotate’) 
9. Extract the OBI Core subset (‘robot extract’) 
10. Create a list of terms (‘robot query’) 
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V. CONCLUSION 
ROBOT has been developed to streamline ontology release 

workflows, while also making it easier for domain experts 
(who may not be software developers) to collaborate in the 
ontology development process. Standardizing verification 
checks and reporting frees the ontology developer from per-
forming routine tasks and allows them to spend more time per-
forming biological knowledge validation on each release. As 
more bio-ontologies move to include ROBOT in their pipe-
lines, more features will be added to support the community. 
This will also make it easier for the community to move to-
wards standard ontology workflows and quality control checks. 
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