
Standardizing Ontology Workflows Using ROBOT

Rebecca C Tauber1, James P Balhoff2, Eric Douglass3, Christopher J Mungall3, James A Overton1
1Knocean, Toronto, Ontario, Canada

2University of North Carolina, Chapel Hill, North Carolina, USA
3Lawrence Berkeley National Laboratory, Berkeley, California, USA

Abstract— Building and maintaining ontologies can be challeng-

ing due to the need to automate a number of common tasks, such as
running quality control checks, automatic classification using reason-
ers, generating standard reports, extracting application-specific sub-
sets, and managing ontology dependencies. These workflows are in
some aspects analogous to workflows used in software engineering
as part of the normal product lifecycle. However, in contrast to soft-
ware development, there is a lack of easy to use tooling to support the
execution of these workflows for ontology developers.

ROBOT is a tool for working with Open Biomedical Ontologies.
It provides a way to execute standard ontology processing operations
on the command line. These can be chained together, or coordinated
via a separate task execution system such as UNIX Makefiles. These
workflows can also be executed within continuous integration sys-
tems such as Travis, allowing ontologies to be managed in social
coding version control systems such as GitHub, with all the attendant
features such as validation of pull requests. We have also created an
Ontology Starter Kit that can set up a GitHub repository with stand-
ard layout and workflows in place. This makes it simple for an ontol-
ogy development group to configure the needed processing pipelines.

Keywords—ontology development; automation; ontology re-
lease; reasoning; workflows; quality control; import management

I. INTRODUCTION
Ontology engineering (OE) is in many ways analogous to

software engineering (SE), yet tool support for OE lags behind
tools for SE. Graphical interfaces such as Protégé [1] provide a
rich interactive Ontology Development Environment (ODE),
but there is a lack of standardized tools for running ontology
release workflows. Indeed, there is a lack of broad agreement
on standards for what should be included or excluded in a re-
lease, with different projects making different decisions inde-
pendently. The Open Biological Ontologies (OBO) Foundry
[2] was created in part to develop such standards.

Noy, Tudorache, Nyulas, and Musen (2010) documented a
general ontology life cycle with a focus on bio-ontologies [3].
First, requirements for the ontology are gathered. Then, the
ontology is collaboratively developed in Protégé. Once the
requirements have been fulfilled, the ontology is published and
feedback is solicited. Feedback is integrated back into devel-
opment, and the ontology is continuously updated and pub-
lished. At any point after the initial publication, the ontology
may be deployed in other applications.

 While this general workflow has been widely accepted in
the bio-ontology community, the publication process still re-
quires much manual effort and review. Various bio-ontologies,
while using similar tools, have vastly different release process-

es. Additionally, much of the collaborative development re-
quires prior knowledge of Protégé, limiting the number of do-
main experts who are able to work on an ontology.

Our tool, ROBOT (ROBOT is an OBO Tool), provides a
standardized yet configurable way to support the ontology de-
velopment lifecycle. We previously described the basic archi-
tecture of the tool [4], which we summarize here.

ROBOT is written in the Java programming language and
consists of two parts: ‘robot-core’ and ‘robot-command’. ‘ro-
bot-core’ is a library supporting common ontology develop-
ment tasks, which we call "operations". ‘robot-command’ pro-
vides a command-line interface divided into "commands", each
of which makes some use of ‘robot-core’ operations. The
source code is available from the GitHub repository at
https://github.com/ontodev/robot/ and released on Maven Cen-
tral at https://mvnrepository.com/artifact/org.obolibrary.robot .

Any programming language that runs on the Java Virtual
Machine (JVM) can import the ‘robot-core’ library and use the
full set of operations. Many of the core operations use
OWLAPI [5], which is also used by Protégé and other systems
using OWL. Some core operations use Apache Jena [6]. In
both cases, the core operations are designed to be higher-level,
and usually more specialized, than OWLAPI or Jena for the
relevant tasks.

The key advantage of the division between operations and
commands (i.e., between ‘robot-core’ and ‘robot-command’) is
a separation of concerns between working with Java objects,
for the former, and working with the terminal and file system,
for the latter. Operations work with Java objects representing
OWL ontologies, OWL reasoners, OWL classes, etc., while
commands work with command-line option strings, files, and
perform various conversion and validation steps. The result is
cleaner, more focused code on both sides.

II. COMMANDS AND OPERATIONS
ROBOT currently provides 15 operations (in the Java li-

brary) and 19 commands (for the command line). While some
commands are quite specialized, here we provide an overview
of the most common and general commands.

ROBOT is compatible with all OWL ontology formats, in-
cluding RDF/XML, Turtle, Manchester, OBO, and more. To
enable further interoperability, a ‘convert’ command is includ-
ed to change between supported ontology formats. A complete
list of supported formats can be found in the ‘convert’ docu-
mentation (http://robot.obolibrary.org/convert).

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 1

ICBO 2018 August 7-10, 2018 1

A. Reasoning
Reasoning is one of the most fundamental operations in

ROBOT. This has two uses: logical validation of an ontology,
and automatic classification, both covered by the ‘reason’
command. In both cases, an OWL reasoner is used to perform
inference. Users can choose which reasoner to use. Large on-
tologies such as the Gene Ontology typically use ELK [7],
which scales well but supports a smaller OWL profile. Smaller
ontologies with richer axiomatization such as the Relations
Ontology typically use a complete DL reasoner such as Her-
miT [8].

When the ‘reason’ command is invoked on an input ontol-
ogy, ROBOT will initiate a reasoner using the OWLAPI Rea-
soner interface. After that, the resulting inferences are checked
to ensure the ontology is logically coherent: the ontology must
be consistent, and have no unsatisfiable classes (i.e., classes
that cannot be instantiated without introducing an inconsisten-
cy). If the ontology is incoherent then this is reported, and exe-
cution halts. ROBOT also performs additional checks, ensuring
that no two classes are inferred to be equivalent post-reasoning,
as this is usually unintentional.

If the ontology is consistent, then ROBOT will perform au-
tomatic classification. All direct inferred subClassOf axioms
are asserted into the ontology. We are also exploring the possi-
bility of allowing inference of other axiom types, such as do-
main and range axioms.

The ‘reason’ command has additional “helper” commands.
The ‘relax’ operation asserts entailed subClassOf axioms ac-
cording to a simple structural rule: an expression ‘A equiva-
lentTo (R some B) and …’ entails ‘A subClassOf R some B’.
This can be useful as consumers of bio-ontologies often expect
to navigate these expressions, e.g., partonomy in GO and
Uberon. The ‘relax’ command relieves the ontology developer
from the need to assert these in addition to the equivalence
axioms, and as such it is also often included in release work-
flows. Additionally, it means that the SubClassOf axioms can
form a complete graph for traversal of all relationship types in
the ontology, which is a common requirement for ontologies
with part-of relationships, such as GO and Uberon. Finally, the
‘reduce’ operation removes redundant subClassOf axioms, and
can be used after ‘relax’ to remove duplicate axioms that were
asserted in that step.

The ‘materialize’ command uses an Expression Materializ-
ing Reasoner (EMR) to assert inferred expressions of the form
“A subClassOf R some B” (for more information see
https://github.com/owlcollab/expression-materializing-
reasoner). Where the ‘reason’ command asserts inferred named
superclasses, ‘materialize’ asserts anonymous superclasses.
This is not part of the standard release cycle but can be benefi-
cial for creating complete ontology subsets.

B. Working with External Ontologies
The OBO Foundry project aims to coordinate ontologies in

a modular fashion, such that parts of some ontologies can be
used as building blocks for other ontologies. For example, the
ChEBI chemical entities ontology is used to construct OWL

definitions for metabolic processes and activities in the Gene
Ontology [9].

There are a variety of different strategies for leveraging ex-
ternal ontologies, depending on use cases.

Extract

The ‘extract’ command creates a module based on a set of
entities to extract (a “seed”). There are four different extraction
methods (as specified by the ‘--method’ option): MIREOT,
TOP, BOT, and STAR.

The MIREOT extraction method is based on the principles
of the same name: Minimum Information to Reference an Ex-
ternal Ontology Term [10]. For this method, one or more “bot-
tom” entities must be specified. Optionally, one or more “top”
entities can also be specified. The command extracts all the
“bottom” level entities and their dependencies up to the “top”
level from the input ontology. If no “top” entities are provided,
dependencies up to the top-level entity (‘owl:Thing’) will be
included.

The TOP, BOT and STAR methods make use of the
OWLAPI Syntactic Locality Module Extraction (SLME) im-
plementation, which is guaranteed to capture all information
logically relevant to the seed set [11].

Remove and Filter

The ROBOT team is currently developing a pair of com-
plementary commands for fine-grained control over ontology
imports and extraction: ‘remove’ and ‘filter’. The ‘remove’
command will allow users to choose which sets of axioms they
wish to remove from a target ontology. The ‘filter’ command
will offer similar functionality, with the difference being that
only selected axioms are kept, and all other axioms are re-
moved. These two commands work by starting with the seed
set of entities, then applying various selectors to find related
entities, and finally selecting which axiom types to remove or
filter. We expect only a small number of "power users" will use
this feature directly, but these commands will eventually pro-
vide a foundation for other higher-level commands.

C. Querying and Reporting
Ontology workflows typically include query operations

over the ontology, producing reports which may be informative
for both editors and users of the ontology - for example, a table
of all classes plus their textual definitions. Query operations
can also be used for validation checks. The SPARQL query
language provides a universal and declarative way for ontology
maintainers to create ontology reports or validation checks.
ROBOT provides a convenient way to perform queries over
ontologies with the ‘query’ command, or validation checks
using ‘verify’. Additionally, the ‘report’ command provides a
powerful and convenient package of standard OBO queries that
can be used or configured in any ontology workflow, without
requiring the maintainer to be familiar with SPARQL.

Query

ROBOT's ‘query’ command runs SPARQL queries on
loaded ontologies (or other RDF resources). This can be used
by an ontology maintainer to either perform interactive queries,

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 2

ICBO 2018 August 7-10, 2018 2

or more typically to include standard queries into an ontology
workflow.

SELECT queries output a table of results. ASK queries
output a file with a boolean value. CONSTRUCT queries
output an RDF file, which can be further processed by ROBOT
or merged back into the loaded ontology. CONSTRUCTs
provide a convenient way of performing “macro” style
expansion [12]. ROBOT does not currently support SPARQL
UPDATE queries.

Verify

The ‘verify’ command is a variation on SPARQL SELECT,
and is used to ensure that an ontology conforms to a
predetermined set of conditions; for example, ensuring that no
class has multiple textual definitions. Given a SELECT query,
‘verify’ will succeed (i.e., exit with status code 0) if NO results
are returned. It will fail (i.e., exit with a non-zero status code) if
ANY results are return from the query. So given a SPARQL
query that SELECTs for invalid data, the ‘verify’ command
will verify that the ontology (or other resource) does not
contain such invalid data.

Report

The ‘report’ command is an extension of ‘query’ and
‘verify’ that provides a series of configurable quality control
checks for an ontology and returns a spreadsheet or YAML
output of the violations. The spreadsheet is in TSV format and
easy for a user to read, while the YAML output can be easily
parsed with scripts and other programs.

The QC checks include annotation checks, logical checks,
and metadata checks. Annotations are important to facilitate
human comprehension, so the ‘report’ command finds cases
where missing or duplicate annotations could cause issues.
Logical checks look at the structural coherency and
consistency of the ontology. Finally, ‘report’ identifies missing
ontology metadata, as dictated by OBO Foundry
recommendations.

There are three levels of reporting violations: ERROR,
WARN, and INFO. An ERROR-level is the most severe, such
as a missing or duplicate label. These types of violations must
be fixed before publishing an ontology. WARN-level
violations should be fixed as soon as possible, such as inferred
one-to-one class equivalencies, which are typically unintended
within OBO ontologies. The last level, INFO violations, are
recommended fixes for maintaining consistency across OBO
Foundry ontologies, such as beginning a definition with an
uppercase letter and ending with a period.

A default “profile” with report levels for each QC check is
provided by ROBOT, but users are also able to create their
own profiles. In these profiles, they can change the reporting
levels, choose to exclude certain checks, and add their own
checks as SPARQL queries. For example, some ontologies
may categorize a class lacking a textual definition as being an
error, while others may categorize this as a warning. One of
our goals is to converge on a standard profile that is maximally
useful for the set of all ontologies in the OBO library, encour-
aging adoption of common quality control checks.

D. Templated Ontology Development
ROBOT comes with a template-driven ontology term gen-

eration system. Users can still plug in their own system into
their workflow, such as DOS-DP patterns [13].

A huge amount of data is stored in spreadsheets and data-
bases, and tabular formats are well suited to many sorts of data.
ROBOT's ‘template’ command allows users to convert tabular
data into RDF/OWL format. A ROBOT template is simply a
tab-separated values (TSV) or comma-separated values (CSV)
file with some special conventions.

The first row of a template file must contain the column
headers and the second row contains a “template string” for
each column to be converted. Template strings have a special
syntax that is outlined in the ROBOT ‘template’ documenta-
tion (located at http://robot.obolibrary.org/template), where
‘%’ characters are replaced by cell contents to generate both
logical and annotation axioms.

Each subsequent row corresponds to an RDF subject to be
generated. The subject rows require an Internationalized Re-
source Identifier (IRI)1 or Compact URI (CURIE)2 to identify
them, and the cells of the row contain the objects of various
Annotation Properties, Object Properties, and Data Properties.
Term labels (‘rdfs:label’s) can be used instead of IRIs and
CURIEs, increasing readability, as long as they are defined in
the input ontology. Class expressions can be provided in Man-
chester syntax with labels, as used in Protégé.

III. WORKFLOWS
A workflow consists of a set of tasks coordinated by some

workflow system. Ontology workflows consist of tasks such as
executing QC checks, building import modules, reasoning over
ontologies, and generating various ontology release products.
Although ROBOT allows multiple commands to be chained
together, it is not itself a workflow manager. Because ROBOT
commands can be executed on the command line, a number of
different systems can be used. We highlight the use of Unix
Makefiles, although other systems are possible.

A. Makefiles
A Makefile is a set of instructions that is typically used to

compile programs. In ontology development, the Makefile is
used for automated tasks, such as releasing the ontology. A
Makefile consists of a set of rules used to make objects (the
“targets” of the rule). In this case, the objects are usually
ontology modules and files. The “recipes” for the rules are
Unix-style system commands, carried out by the ‘make’
command.

1 An IRI is an extension of a Universal Resource Identifier (URI) to
support more characters. URIs are intended to unambiguously identi-
fy resources, such as ontology classes, by using a namespace (like a
URL) and a resource name within that namespace (like an ID).
2 A CURIE is an abbreviated version of an IRI or URI. A prefix for
the namespace is provided (e.g., http://purl.obolibrary. org/OBI_
becomes ‘OBI’) and the ID is appended to that prefix (e.g.,
OBI:0000070).

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 3

ICBO 2018 August 7-10, 2018 3

ROBOT commands can be used as the “recipes” to make
the “targets”. Fig. 1 shows a standard release workflow using
ROBOT commands.

Fig. 1. The ROBOT release workflow

First, quality control checks are run over the editor
ontology with ‘verify’. These look for equivalent classes,
trailing whitespace in annotations, self-references, cross
reference syntax, and missing labels. The results are saved to a
‘reports/’ directory. (This step will be replaced with the
updated ‘report’ command once the new features are
complete.) If there are any violations, the ‘make’ command
will fail so that these can be fixed before releasing.

Assuming the QC check step has completed successfully
(the process will fail and exit if not), the next step is to create
the import modules. The ROBOT ‘extract’ command runs over
a list of import names, which have corresponding term files
(for the seed set) in the ‘imports/’ directory. This step creates
all the import modules in the same directory.

Finally, the main release products are created: the OWL file
and the OBO file. To create the OWL release, the editor file is
passed through a series of chained ROBOT commands:
‘reason’, ‘relax’, ‘reduce’, and ‘annotate’. If any of these
commands fail, the Make process will terminate with the error
message. For example, if an ontology is incoherent, the ‘rea-
son’ step will fail; if an ontology fails a hard check in ‘report’
then this step will fail.. The ‘annotate’ command adds the
version IRI to the ontology metadata. This OWL file is then
converted to OBO format, at which point all targets are copied
to a dated release directory.

Creating a Makefile to coordinate all these steps can be
challenging. We make this easier for ontology developers by
providing an “Ontology Starter Kit” (available from
https://github.com/INCATools/ontology-starter-kit/). This can
be used to create a GitHub repository following a standard lay-
out, with a standard Makefile following the workflow detailed

above. The resulting GitHub repository will also be configured
to be able to run the workflow via the Travis-CI Continuous
Integration tool. The workflow can also be executed using
Docker via ontology starter kit containers released on Dock-
erhub (https://hub.docker.com/r/obolibrary/). This allows easy
execution of workflows on either the local laptop/desktop
computer of an ontology developer.

IV. CASE STUDY: USE OF ROBOT IN THE
ONTOLOGY FOR BIOMEDICAL INVESTIGATIONS
The Ontology for Biomedical Investigations (OBI) is an

OBO Foundry ontology that aims to describe the processes,
agents, devices, inputs, and outputs of scientific investigations
[14]. When the project began more than a decade ago,
development was done in Protégé, without any automation, and
hosted on SourceForge. Today OBI uses ROBOT to implement
an automated workflow, supported by GitHub Pull Requests
and Travis continuous integration testing.

OBI has always imported a range of terms from other OBO
ontologies, and developers have maintained a number of
separate OWL files to facilitate concurrent development by
different groups of users. When it comes time to make a new
release of OBI, the various OWL files must be merged, tested
and reasoned over.

In the early days of the OBI project. Alan Ruttenberg
developed a series of scripts for quality control and common
operations, but the process of building a merged and reasoned
release file, and testing it, was a manual process that often took
many hours. In 2013 James Overton developed an automated
build tool in Java, using OWLAPI and Apache Ant, to
automate most of the build, test, and release process. This
drastically reduced the number of hours required to make a
release, and allowed for more frequent releases. While this
code was specific to OBI workflows, some of it was used in
early versions of ROBOT.

In 2017 OBI moved from SourceForge to GitHub and the
release workflow was updated to use ROBOT throughout. OBI
currently includes a Makefile that defines a range of tasks for
managing imports, converting templates, merging, reasoning,
testing, and releasing new versions of OBI. The key steps are:

1. Update imports (currently using OntoFox [15])
2. Normalize XML for cleaner version history (‘robot

convert’)
3. Convert template files (TSV) to OWL modules (‘ro-

bot template’)
4. Merge imports and templates with ‘obi-edit.owl’

(‘robot merge’)
5. Use SPARQL CONSTRUCT to update various anno-

tations (‘robot query’)
6. Run an automated test suite (‘robot verify’)
7. Run the HermiT reasoner (‘robot reason’)
8. Update annotations for release (‘robot annotate’)
9. Extract the OBI Core subset (‘robot extract’)
10. Create a list of terms (‘robot query’)

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 4

ICBO 2018 August 7-10, 2018 4

V. CONCLUSION
ROBOT has been developed to streamline ontology release

workflows, while also making it easier for domain experts
(who may not be software developers) to collaborate in the
ontology development process. Standardizing verification
checks and reporting frees the ontology developer from per-
forming routine tasks and allows them to spend more time per-
forming biological knowledge validation on each release. As
more bio-ontologies move to include ROBOT in their pipe-
lines, more features will be added to support the community.
This will also make it easier for the community to move to-
wards standard ontology workflows and quality control checks.

ACKNOWLEDGMENT
We thank David Osumi-Sutherland for requirements and

testing, and Nomi Harris for manuscript edits.

This work and related resources are supported by the
following grants:

• From the Deparatment of Health and Human Services
(NIH) for “Immune Epitope Database and Analysis
Resource Program” (HHSN272201200010C).

• From the National Insitute of Allergy and Infectious
Diseases (NIH) for “Human immune signatures of Dengue
virus and Mycobacterium Tuberculosis exposure in infec-
tion, disease and vaccination” (1-U19-AI-118626-01).

• From the National Human Genome Research Institute
(NIH) for “Services to support the OBO foundry
standards” (R24-HG010032).

REFERENCES
[1] M. Horridge, D. Tsarkov, and T. Redmond, “Supporting early adoption

of OWL 1.1 with Protégé-OWL and FaCT++,” OWLED, 2006.

[2] B. Smith, et al., “The OBO Foundry: Coordinated evolution of
ontologies to support biomedical data integration,” Nature
Biotechnology, vol. 25, pp. 1251-1255, November 2007.

[3] N. Noy, T. Tudorache, C. Nyulas, and M. Musen, “The ontology life
cycle: Integrated tools for editing, publishing, peer review, and evolution
of ontologies,” AMIA Annu. Symp. Proc., pp. 552-556, 2010.

[4] J.A. Overton, H. Dietze, S. Essaid, D. Osumi-Sutherland, C.J. Mungall,
“ROBOT: A command-line tool for ontology development,”
Proceedings of the International Conference on Biomedical Ontology
(ICBO) Lisbon: CEUR Workshop Proceedings, pp. 131-132, 2015.

[5] M. Horridge, S. Bechhofer, and O. Noppens, “Igniting the OWL 1.1
touch paper: The OWL API,” OWLED, 2007.

[6] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K.J.
Wilkinson, “Jena: Implementing the semantic web recommendations,”
WWW Alt., pp. 74-83, 2004.

[7] Kazakov Y., Krotzsch M., and F. Simancik, “The incredible ELK,”
Journal of Automated Reasoning, vol. 53, pp. 1-61, June 2014.

[8] R. Shearer, B. Motik, and I. Horrocks, “HermiT: A highly-efficient
OWL reasoner,” OWLED, 2008.

[9] D.P. Hill, et al., “Dovetailing biology and chemistry: Integrating the
Gene Ontology with the ChEBI chemical ontology,” BMC Genomics,
vol. 14, July 2013.

[10] M. Courtot, F. Gibson, A.L. Lister, J. Malone, D. Schober, R.R.
Brinkman, and A. Ruttenberg, “MIREOT: The minimum information to
reference an external ontology term,” Applied Ontology, vol. 6, pp. 23-
33, 2011.

[11] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler, “Modular
reuse of ontologies: Theory and practice,” Journal of Artificial
Intelligence Research, vol. 31, pp. 273-318, 2008.

[12] C.J. Mungall, A. Ruttenberg, D. Osumi-Sutherland, “Taking shortcuts
with OWL using safe macros,” Nature Publishing Group, 2010.

[13] D. Osumi-Sutherland, M. Courtot, J.P. Balhoff, and C. Mungall, “Dead
simple OWL design patterns,” Journal of Biomedical Semantics, vol. 8,
June 2017.

[14] A. Bandrowski, et al., “The Ontology for Biomedical Investigations,”
PLoS One, vol. 11, April 2016.

[15] Z. Xiang, M. Courtot, R.R. Brinkman, A. Ruttenberg, and Y. He,
“OntoFox: Web-based support for ontology reuse,” BMC Res. Notes,
vol. 3, June 2010.

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 5

ICBO 2018 August 7-10, 2018 5

