
A Protégé Plug-In for Test-Driven
Ontology Development

Konstantin Schekotihin, Patrick Rodler, Wolfgang Schmid
University of Klagenfurt

Universitätsstr. 65-67
Klagenfurt, Austria

Email: firtstname.lastname@aau.at

Matthew Horridge, Tania Tudorache
Stanford University

1265 Welch Rd
Stanford, California, USA

Email: lastname@stanford.edu

Abstract—Ontology development is a hard and often error-
prone process, which requires ontology authors to correctly
express their domain knowledge in a formal language. One way
to ensure the quality of the resulting ontology is to use test
cases, similarly to the best practices in software development. For
ontology development, test cases can be specified as statements
describing expected and/or unwanted logical consequences of an
ontology. However, verifying the test cases and identifying the
ontology parts that cause their violation is a complex task, which
requires appropriate tool support.

In this demo, we present OntoDebug—a plug-in for the Protégé
editor—that supports test-driven ontology development. OntoDe-
bug can automatically verify whether the ontology satisfies all
defined test cases. If any test case is violated, the plug-in assists
the user in debugging and repairing the ontology in an interactive
way. The plug-in asks a series of questions about the ontology to
pin point the faulty axioms. Once a fault is repaired, all answers
that the author provided in the interactive debugging session,
may be converted into test cases, thus preserving the additional
knowledge, which can be used in future testing of the ontology.

I. TEST-DRIVEN ONTOLOGY DEVELOPMENT

Semantic applications, especially in biomedicine, depend
on high-quality ontologies. Prior studies in psychology found
that it is generally hard for humans to formulate correct
logical descriptions [1]. More recent studies indicate that this
observation holds also in the context of ontology development,
and that available ontology editing tools lack appropriate
support for quality assurance [2], [3].

Test-driven ontology development is a paradigm that has
its roots in the best-practices of software development. The
main idea is to enable ontology authors to specify test cases
to ensure the correctness of the ontology with respect to
the intended meaning. Each test case is represented as an
ontology axiom, and describes some required or unwanted
logical consequence of the ontology.

Rector et al. [4] identified several unintended consequences
in a study of SNOMED CT, for example, “feet are a part
of pelvis”, or “diabetes is a disease of the abdomen”. Such
unintended consequences, rooted in faulty modeling, can be
prevented by using a test-driven development approach. For
the first example (“feet are a part of pelvis”), a developer may
add test cases ensuring that different body regions are disjoint

This work was partially supported by the Carinthian Science Fund (contract
KWF-3520/26767/38701).

and, thus, find a modeling error: “The dorsalis pedis artery is a
part of the abdomen and pelvis.” The verification of test cases
as well as the localization and repair of axioms causing their
violation is very difficult without appropriate tool support.

II. THE ONTODEBUG PROTÉGÉ PLUG-IN

To address this tooling gap, we developed the OntoDebug
Protégé plug-in.1 It supports the test-driven development of
ontologies, and can be installed from the standard plug-ins
repository directly in the editor. The user interface of the plug-
in is shown in Fig. 1. The functionality of OntoDebug can be
summarized as follows:

a) Test-driven Development: Ontology authors define
test cases in the Original Test Cases window (Fig. 1, view
5). The window has two sections: (1) Entailed Test Cases, in
which users define expected inferred axioms of the intended
ontology; and (2) Non Entailed Test Cases, in which users
specify axioms that must never be inferred. For the specifi-
cation of test cases it can be helpful to browse the ontology,
which can be done in the Possibly Faulty Axioms window
(Fig. 1, view 3).

By default, all ontology axioms are viewed as potential
sources of fault. However, the ontology author can move an
axiom from the Possibly Faulty Axioms to the Correct Axioms
(Fig. 1, view 6), if the axiom is assumed or known to be
correct, and the plug-in should never consider it as faulty.

The Start/Restart button triggers the verification of all test
cases. If any test case is violated, the plug-in starts a debugging
session automatically.

b) Debugging of Ontologies: OntoDebug implements
several ontology debugging algorithms [5], [6], [7], [8], which
enable efficient localization of faulty axioms responsible for
test case failures. The result of running the debugging al-
gorithm is shown in the Possible Ontology Repairs window
(Fig. 1, view 4). An ontology repair from the displayed repair
list is a set of axioms that should be changed in order to
make all test cases hold. The debugging algorithms use the DL
reasoner extensively—for example, to check the consistency of
an ontology, or to compute the list of inferred axioms. As the
performance of reasoners may vary for different ontologies,

1See http://isbi.aau.at/ontodebug for the source code and documentation.

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 1

ICBO 2018 August 7-10, 2018 1



we implemented reasoner-independent debugging techniques
that can use any reasoner available in Protégé, such as Pellet
[9] or Hermit [10].

c) Interactive Debugging: The defined test cases are
often insufficient to localize the faulty axioms in the ontology.
In such a case, the debugger might return several alternative
repairs. OntoDebug will help the ontology author find the
optimal repair by asking the user a series of questions in
an interactive debugging session [11], [12]. The questions are
generated automatically and ask the user whether some axioms
are logical consequences of the intended ontology or not. For
example, in Fig. 1 view 1, the plug-in asks the ontology author
if “KoalaWithPhD is a Koala”, and if “KoalaWithPhD is a
Person”. The user responds affirmatively to the first question,
and negatively to the second. The plug-in will then add the
user’s answers to the list of Acquired Test Cases (Fig. 1, view
2), and it will refine the set of repairs by removing those that
violate the newly acquired answers. The interactive process
continues until the developer finds a satisfactory repair.

Fig. 1. Interactive ontology debugging session in OntoDebug

d) Ontology Repair: After identifying the right repair
(i.e., the faulty axioms), the ontology author can do a dry run
of various modifications of these axioms on a copy of the
ontology. OntoDebug automatically tests the altered axiom(s)
against the specified test cases, and reports if, which and why
problems persist (Fig. 2). Once all test cases hold and the
ontology author is satisfied with the performed amendments,
the changes can be applied to the original ontology.

e) Versatile Parametrization and Customization: The
performance of testing and diagnosis algorithms depends on
multiple factors, such as the reasoning complexity of the
developed ontology, the number of faulty axioms, and so on.
OntoDebug allows the ontology author to control the working
of the testing and debugging algorithms by customizing a
detailed set of parameters in a Preferences window. If the

Fig. 2. Repair interface of the OntoDebug plug-in

proper parameters are selected, the performance improvements
can be significant.

III. CONCLUSIONS

In this demo, we will showcase the OntoDebug plug-in
with several use cases. We will demonstrate the different
capabilities of the tool, and walk the audience through a
complete debug and repair session.

REFERENCES

[1] P. N. Johnson-Laird, “Deductive reasoning,” Annu Rev Psychol, vol. 50,
pp. 109–135, 1999.

[2] M. Vigo, S. Bail, C. Jay, and R. Stevens, “Overcoming the pitfalls of
ontology authoring: Strategies and implications for tool design,” Int. J.
Hum.-Comput. Stud., vol. 72, no. 12, pp. 835–845, 2014.

[3] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch,
R. Stevens, H. Wang, and C. Wroe, “OWL Pizzas: Practical Experience
of Teaching OWL-DL: Common Errors & Common Patterns,” in
EKAW, pp. 63–81, 2004.

[4] A. Rector, S. Brandt, and T. Schneider, “Getting the foot out of the
pelvis: modeling problems affecting use of SNOMED CT hierarchies
in practical applications,” JAMIA, vol. 18, no. 4, pp. 432–440, 2011.

[5] M. Horridge, B. Parsia, and U. Sattler, “Laconic and Precise
Justifications in OWL,” in ISWC, pp. 323–338, 2008.

[6] K. M. Shchekotykhin, G. Friedrich, P. Rodler, and P. Fleiss, “Sequential
diagnosis of high cardinality faults in knowledge-bases by direct
diagnosis generation,” in ECAI, pp. 813–818, 2014.

[7] K. M. Shchekotykhin, D. Jannach, and T. Schmitz, “Mergexplain:
Fast computation of multiple conflicts for diagnosis,” in IJCAI, pp.
3221–3228, 2015.

[8] P. Rodler, W. Schmid, and K. Schekotihin, “Inexpensive cost-optimized
measurement proposal for sequential model-based diagnosis,” in DX
Workshop, pp. 200–218, 2018.

[9] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” J. Web Sem., vol. 5, pp. 51–53, 2007.

[10] B. Motik, R. Shearer, and I. Horrocks, “Hypertableau Reasoning for
Description Logics,” JAIR, vol. 36, pp. 165–228, 2009.

[11] K. M. Shchekotykhin, G. Friedrich, P. Fleiss, and P. Rodler,
“Interactive ontology debugging: Two query strategies for efficient fault
localization,” J. Web Sem., vol. 12, pp. 88–103, 2012.

[12] P. Rodler, “Interactive Debugging of Knowledge Bases,” Ph.D.
thesis, Alpen-Adria Universität Klagenfurt, 2015. [Online]. Available:
http://arxiv.org/pdf/1605.05950v1.pdf

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 2

ICBO 2018 August 7-10, 2018 2


