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Abstract. A novel framework for symbol grounding in artificial agents
is presented, which relies on the key idea that concepts “emerge” im-
plicitly at the perceptual level as clusters of points with similar features
forming homogeneous regions in multiple perceptual Conceptual Spaces
(pCS). Such spaces describe percepts such as color, texture, shape, and
position that in turn are the properties of the objects populating the
agent’s environment. Objects are represented in a suitable object Con-
ceptual Space where all their features are composed together again using
clustering in pCSs. Symbols will be learned from such a tensor space. A
detailed description of both the framework and its theoretical founda-
tions are reported and discussed in this work.
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1 Motivation and Theoretical Background

Symbol grounding [9] is a fundamental research topic in both Cognitive Systems
and Artificial Consciousness.In recent years, such a topic received great attention
in the field of Human Robot Interaction (HRI) and Social Robotics, due to the
development of a huge number of robotic architectures aimed at collaborating
with humans [10]. Indeed, artificial agents engaged in highly interactive tasks do
need a grounded i.e. “internal” representation of their percepts, despite of their
embodiment, and the field of application [2,3]. Eventually, we can state that
the only way an artificial agent can have a private and subjective experience
of the world that is a quale, it is through a set of quantitative measurements
from its sensors even if there is a heated debate in philosophy and cognitive
sciences about the properties and even the existence of qualia. Moving from the
previous considerations, we present here a novel framework for symbol ground-
ing based on the theory of Conceptual Spaces [5] where clustering is used as
the main perceptual process to devise homogeneous regions w.r.t. different sets
of low level visual features like color, texture, shape, and position in the envi-
ronment. Such regions are mapped as prototypical points in multiple perceptual
Conceptual Spaces (pCS) describing each property with the same set of features.
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Again, clustering in pCSs devises concepts as dense sets of points: cluster centers
can be devised as the concept prototype, while the convex hull of each cluster
represents the boundary of each concept. Objects in the environment are rep-
resented as tensors in a higher level object Conceptual Space (oCS) where the
Kronecker product is used to represent the relation between an object and its
visual features as well as the way in which such features are related with each
other when forming the object’s percept. Our framework is inherently motivated
by the need of building a robot that is able to interact seamlessly with humans
when performing a collaborative task. One of the core elements of conscious-
ness is language so it is crucial to provide an artificial agent with the ability
of grounding both the lexicon and the meaning related to the objects in the
environment.
Many theories address language as one of the main traits of consciousness. In
turn, language has to be grounded to the phenomenal experience to provide a
meaning to words. In the Higher Order Syntactic Thought (HOST) theory of
consciousness [14], the conscious thoughts (in linguistic form) about thoughts
on the world take place only if “first order” linguistic processing manipulates
grounded symbols. This way, one feels that he/she is reflecting upon something
in the world. Luc Steels [15] supports the idea that consciousness is strictly re-
lated to language: language re-entrance is a semiotic circle where the speaker
is also the hearer when he listens to a “inner voice”. Steels proposes a symbol
grounding procedure [16] based on playing “language games” where two embod-
ied artificial agents (i.e. two robots) generate the symbols for the topics they are
talking about. Conceptual spaces are a widely accepted formalism to represent
conscious qualia, and grounding them to the perception [4]. Nevertheless, while
a CS describes well sensory perceptions like color or shape, claiming that the ex-
perience of a bird can be modeled using a “birds CS” defined as a subspace in Rn

where many heterogeneous but interrelated perceptions are simply juxtaposed,
is a controversial position. Augello et al. [1] claim that subjective experiences
of the world (i.e. qualia) are inherently non linear, so they can not be suitably
represented in linear vector spaces as CS are. In this work we support the posi-
tion that complex perceptions composed by different sensory features have to be
expressed “composing” the corresponding CSs, and we model symbol grounding
as a learning process taking place in a tensor space generated by the Kronecker
product of the feature vector spaces.

2 The Proposed Framework

The steps of the proposed symbol grounding procedure are reported and detailed
in the following.

Perception : extraction of multiple low level features from the visual input,
and clustering of emergent homogeneous regions.

Mapping in pCS : cluster centers for each region are mapped as points in
multiple CSs where the dimensions are the same as in the features.

Building the object tensor in oCS : the vectors representing the object’s
properties in every pCS are composed in a single tensor through the Kro-
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necker product; multi-part objects are the mean of the tensors representing
each part.

Learning symbols : a learning machine is used in this respect to bind tensors
to their symbolic representation in a structured knowledge base where the
relations between objects and their perceptual properties are made explicit.

Perception While grounding symbols to perception, an artificial agent may
behave either in an instructed or in an exploratory way; in the first case a human
points at a ROI, while referring to a symbolic description, and the agent performs
symbol grounding explicitly as part of its interactive task. On the other hand, the
agent may focus its attention to something new, thus trying to provide a meaning
for such a percept. Often in this case, the agent already knows the symbols for
a part of the perception (as an example “a red thing”). In both cases, the agent
does not perform explicit pattern recognition processes, and we can think of its
perception in a Gestalt perspective where pre-attentive grouping of low level
features occurs, while visual attention intervenes just to constrain the search
region in the visual array. We modeled such processes by extracting different
low level features like color, shape, texture, and position from the visual input,
and clustering them using density based approaches [13] because in general such
features are vectors in low dimensional spaces where the notion of distance is
well defined. Several clusters emerge in each feature space, and each pixel can
be labeled w.r.t. the cluster it belongs to; the image will be then segmented in
regions whose pixels exhibit the same set of labels. Gaussian or fuzzy smoothing
can be used to avoid little holes and removing outliers.

pCS Perceptual CSs are defined as a set of CSs where each perceptual prop-
erty is defined by a series of dimensions that are the same features we extracted
from the visual input; with this choice we want to address all the considera-
tions made by Gardenfors about the best choice of the “quality dimensions” in
a CS to describe sensory input. Features that are strictly linked to psychology
of perception will be used, so color may be described using a perceptive color
space such as La∗b∗, the principal curvatures (k1, k2) can beused to describe
shape locally, while a suitable texture description could be obtained using Ma-
lik’s textons [11]. Each region is mapped onto the set of pCSs as the center of the
corresponding cluster where its pixels fall in; in this way clustering maintains
its effectiveness to determine similar points in a pCS. Such points can now be
regarded as both examples and counterexamples of some property value. Gar-
denfors partitions a CS using the Voronoi tessellation to create convex regions
representing concepts, starting from some prototypes. New incoming examples
and counterexamples modify the boundaries of such a tessellation; the Region
Connection Calculus (RCC) endowed with a suitable definition of the “crisp
relation” is used for reasoning about CSs [7]. In our framework, concepts are
simply clusters in a pCS: reasoning using clusters is a more flexible approach
than building a new Voronoi tessellation each time a new example is added in
the CS. A concept has its prototype in the cluster’s center, while it is bounded
by the cluster’s convex hull. Just a single new example falling away from the
boundaries of the already known clusters is sufficient to generate a new one,
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while similar examples will fall close to each other, and the corresponding con-
vex hull will change accordingly. We do not need particular reasoning primitives
apart from the notion of a sample falling inside or outside a cluster, while the
closeness of new examples to other clusters allows for describing their meaning
in terms of previous knowledge i.e. “orange is like a bright yellow-red”.

oCS Perceiving an object as the composition of its properties can not be mod-
eled using a simple vector representation of all such properties joint together;
a first objection is the “curse of dimensionality” in such a vector space, as the
notion of distance looses significance as the size of such a space increases. As
a consequence the main theoretical foundation of CS doesn’t hold that is we
can no more devise concepts as convex sets in the CS because we can’t measure
distances properly. Moreover, perceptual features influence each other: a color
is perceived as darker or brighter as its surface orientation tilts towards to or
away from the light source due to its curvature, and the same holds for the rela-
tion between texture and color. We want to address all the previous issues using
tensors for representing objects in the environment. If we assume for the sake
of simplicity that a generic object is described through a color c ∈ C, a shape
s ∈ S, and a texture t ∈ T , the object itself will be represented as:

O = c⊗ s⊗ t

where C, S, and T are the pCS for colour, shape, and texture respectively, while
⊗ represents the Kronecker product in its usual definition. Given that Mh,k

refers to the space of the matrices of order (h, k), and v ∈ Mm,1, w ∈ Mn,1,
their Kronecker product v ⊗ w ∈ Mm,n is a matrix whose rows are in the form
vi · wT , i ∈ 1, . . . , n. The previous definition can be extended along multiple
products. As it is well known, tensor spaces defined in this way have a vector
space structure so an inner product along with an induced norm can be defined,
and it is possible to think about an object Conceptual Space where the convexity
requirement already holds. The ⊗ product expresses a way in which properties
“modulate” each other. From a computational point of view, even if we will
possibly compute distances in the oCS to judge similarity between a couple of
objects, we do not need to perform any explicit clustering procedure in such a
space because it is encoded by the learning procedure that actually binds symbols
to objects. The Kronecker product is a way to express the mutual influence of the
perceptual properties in forming the subjective experience of the object. Tensors
account also for objects defined by a subset of properties i.e. the symbol “ball”
will correspond to tensors where the shape dimension is in some sense prevalent,
because all such tensors will have their s vectors falling near the same prototype
in the shape pCS corresponding to the symbol “round”. Eventually, also single
properties may have their tensor representation in the oCS thus allowing for
the same process being used to learn both property and object symbols. In real
cases, an object falling into the ROI investigated by the agent will be segmented
in multiple regions i.e. a cup will result in two tensors accounting for both the
convex and the concave side of the cup itself, while they will have the same color
and texture. In such cases, the tensor resulting from the mean between the parts
will be taken into consideration.
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Learning symbols in a Structured KB As the artificial agent can be either
instructed to learn symbols or it can discovery new objects in the environment,
both supervised and unsupervised learning should take place to bind symbols
with their tensor representation. There are two main learning schemes in our
view that best suit to implement such step in the grounding procedure: Support
Vector Machines (SVM) using RBF kernel, and Convolutional Neural Networks
(CNN) [8]. SVM are very good classifiers also with several classes; new classi-
fiers can be instantiated when new clusters emerge in the pCSs so that current
classifier ensemble starts rejecting examples as outliers in the oCS. Moreover,
RBF kernels proved to be very good for learning categories described as a pro-
totype vector along with a bounded region in the feature space [16]. On the
other hand, CNN are learning machines devoted to tensors; they are trained
only in a supervised way, but the output layer can be arranged to accommo-
date for learning a limited number of unknown classes. An OWL ontology will
be used to store the symbolic knowledge of the agent; here the relation be-
tween the objects and their perceptual features will be represented explicitly.
It is worth noting that the agent learns frames whose structure is of the form
Object : 〈hascolour, hasshape, hastexture〉. Such structures have been widely
investigated in Computational Linguistics to enable verbalization trough the use
of Construction Grammars (CxG). Construction poles are a well suited struc-
ture to host the bind between symbols as the meaning of a “surface form” made
by a numerical embedding representing perception. Some of the authors already
proposed an OWL axiomatization process [12] for producing constructions in
the Steels’ Fluid Construction Grammar (FCG) [17]. The similarity (i.e. close-
ness) between the embeddings can be used suitably to guide the unify-and-merge
procedure, which selects constructions in the FCG production step.

3 Conclusions and Future Works

We are currently developing our framework on an Aldebaran Pepper robotic
platform using the Python programming language and ROS. Here we report
some final considerations about our proposal. Clustering in CSs is an effective
technique for manipulating concepts: apart from binding symbols, the geometric
relations between clusters in the pCS allow for learning also imprecise expres-
sions like “a sort of” or “similar to”. Also spatial language can be accounted for,
when using a pCS for expressing position. In a HRI scenario, there is no spon-
taneous lexicon formation. Symbols are already in the mind of the instructor,
while new symbols can acquire their meaning through similarity with the prop-
erties of other symbols. Our learning through interaction scheme is compliant
to the notion of “Meeting of Minds” proposed by Gardenfors [6]: our framework
allows the agent to reach a fixpoint with the instructor in a scenario where the
attention is pointed at something new; the instructor will name the new object,
but in general its features will fall into known properties, and the agent will
form a tensor representation of the object that is partially similar to something
already known. In turn, the meaning will be grounded to known objects with
some degree of uncertainty i.e. “an egg is a sort of white/brown smooth ball”.
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Tensors are a suitable representation for objects in a CS that maintains its al-
gebraic properties, and expresses the influence between quality dimensions i.e.
colour, shape, and texture considered as a whole, while avoiding the construc-
tion of a high dimensional feature space by means of the mere Cartesian product.
Future work will be aimed at deepening the theoretical aspects related to tensor
representation of objects, properties, and relations emerging from the pCSs.
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