
A Neurobiologically Inspired Plan Towards
Cognitive Machines

Jeffrey L. Krichmar[0000−0003−0739−2468]

Department of Cognitive Sciences, Department of Computer Science, University of
California, Irvine, Irvine, CA 92697-5100 USA

Abstract. Despite incredible recent progress in artificial intelligence,
current systems fall short of what we would consider to be intelligent,
thinking machines. This paper presents a neurobiologically inspired path
towards creating cognitive machines. It suggests that incorporating as-
pects found in biological organisms, such as flexible learning, efficient
processing, embodiment, value systems, and predictive coding could lead
to systems that are truly cognitive.
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1 Introduction

In this paper, I describe a pathway towards designing and constructing intelli-
gent, cognitive machines. It stems from the goals of neurorobotics [18], where
1) deploying embodied agents could lead to a holistic understanding of how the
nervous system gives rise to cognitive behavior, and 2) following the brain’s ar-
chitecture and dynamics may lead to truly cognitive machines. I feel the latter
goal is necessary for artificial intelligence since the brain can serve as a working
model for intelligence, cognition, and possibly consciousness.

In a recent article, Jeff Hawkins stated that intelligent systems must in-
corporate these aspects of the brain [10]: 1) Learning by rewiring, 2) Sparse
representations, and 3) Embodiment. I would add 4) Value and 5) Prediction to
this list. Furthermore, he stated that future thinking machines can ignore many
aspects of biology, but not these. Taking the point of view of a neuroroboticist,
I will expand on each of these aspects in the remainder of the paper.

2 Aspects of the Brain for Designing Future Machines

2.1 Learning By Rewiring

Brains exhibit some remarkable learning properties that have not been replicated
by artificial intelligence or machine learning to date. Organisms learn quickly,
sometimes with only one presentation of a new stimulus or situation. It’s not
just a human ability, rats can learn new contexts in a single experience [30].
Compare this to a deep learning system or neuroevolutionary algorithm that
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takes thousands of iterations to learn a task. It could be argued that humans
build up years of experience and that one-shot learning leverages this experience.
However, Hawkins makes the point that learning is incremental. We can learn
something new without retraining the entire brain or forgetting what we learned
before. This is an open issue in artificial systems, in which catastrophic forgetting
or catastrophic interference are active areas of research [29, 14]. Furthermore,
most artificial systems are trained to some criterion and then learning is frozen
for deployment. In contrast, biological organisms learn throughout their lifetime,
while maintaining old memories.

In the brain, rapid learning by the hippocampal formation and its interaction
with the neocortex are key to learning and memory [13, 19]. In our own work,
we showed that a biologically plausible neural network model, with interactions
between the hippocampus and the medial prefrontal cortex, was able to learn
and consolidate memory schemas over time, as well as quickly assimilate new
information if it was consistent with a prior schema [12]. The neural network was
also able to learn multiple schemas without catastrophic forgetting. In robotic
studies, we showed that the interactions between a simulated hippocampus and
neocortex during goal directed behavior could lead to the formation of episodic
memories [17, 7]. These simulation and neurorobot experiments suggest that the
brain’s architecture has evolved a means to support lifelong learning in a way
that is different from current artificial approaches.

2.2 Sparse Representation

Biological organisms are under tight metabolic constraints, and the brain utilizes
a number of means to reduce energy expenditure, while maximizing performance.
One way to conserve energy is to reduce the amount of neural activity and neu-
rons necessary to represent information. Indeed, sparse coding and dimension-
ality reduction is a common coding strategy across multiple brain regions. In
our own simulations, we have shown that dimensionality reduction and sparse
coding is an efficient coding strategy that is prevalent throughout the brain [3].

Many sensory and cortical representations in the brain can be recovered
by applying dimensionality reduction and sparsity constraints to their inputs.
For example, a sparse, parts-based representation of visual motion emerged,
which showed a remarkable resemblance to receptive fields observed cortical area
MSTd, by applying a dimensionality reduction technique known as Non-negative
Matrix Factorization (NMF) to MSTd’s inputs [2]. When we applied NMF to
neurophysiological recordings of the retrosplenial cortex during a rodent navi-
gation task [36], we were able to replicate neural activity during the experiment
and predict the rat’s behavior. In both cases, stimuli were represented by only
a small number of neurons (population sparsity), and any given neuron was ac-
tivated by only a small number of stimuli (lifetime sparsity). These simulations
suggest the brain has evolved ways to represent information efficiently without
loss of information.
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2.3 Embodiment

Brains do not work in isolation; they are closely coupled with the body acting in
its environment. The brain is embodied and the body is embedded in the envi-
ronment. In fact, there is compelling evidence that the Body Shapes the Way We
Think [23], rather than the brain telling the body how to act. Biological organ-
isms perform morphological computation, that is, certain functions performed by
the body alleviate costly brain processing. For example, bipedal locomotion is a
difficult control problem that we carry out with ease and without even thinking.
Passive walker robots, by exploiting gravity and friction, demonstrate natural
walking gaits that have simple control policies and utilize orders of magnitude
less energy than conventional walking robots [4, 5].

In our own neurorobotics work, where we construct large complex neural
networks to control behavior, embodiment is still a strong driving force. For
example, the timing of whisker activations allowed our robot to construct spa-
tiotemporal representations of textures [27]. In our soccer playing Segway robot,
a simple plastic tubing, which resembled a Hula hoop, alleviated our detailed
visual cortex model from constructing trajectories, by trapping the ball to its
body [8]. In general, there is always some aspect of the interaction between the
neural network (brain), the robot (body) and the environment that leads to
unexpected results and more intelligent behavior.

2.4 Value

Organisms adapt their behavior through value systems that signal contextual
information, trigger learning, and select actions. Neuromodulatory systems act
as value systems by signalling rewards, costs, surprises and other important event
to the rest of the brain [15, 1]. The neuromodulatory systems are subcortical
regions in the brain that have a strong influence on a number of brain areas
thought to be involved in cognition. These neuromodulatory regions send their
signals through different neurotransmitters; Dopamine signals reward, saliency,
novelty, and invigoration. Serotonin signals harm aversion, anxious states, and
withdrawal. Norepinephrine maintains a vigilance signal and tracks unexpected
uncertainty. Acetylcholine is critical for memory consolidation, attention, and
tracking expected uncertainty.

In robotics, neuromodulatory value systems can control behavior by chang-
ing the agents cognitive state. For example, in a robotic version of the open field
test, a robot mimicked rodent behavior by staying near walls or near a nest when
it was anxious about an unfamiliar environment [16]. However, once it sensed the
environment was safe, curiosity took over and the robot explored novel objects
in the middle of the environment. Simulated acetylcholine and norepinephrine
allowed the robot to respond quickly to novel events and habituate to uninfor-
mative events. Increasing serotonin levels in the model led to risk averse behavior
(i.e., staying near the walls or nest), whereas increasing dopamine levels led to
invigorated curious behavior (i.e., examining objects in the middle of the envi-
ronment).
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2.5 Prediction

Prediction is crucial for fitness in a complex world. The main functions of the
brain are predicting and planning for the future, and adaptation when the result
does not meet expectations. The central nervous system is rather slow to respond,
too slow and cumbersome to keep up with environmental change. The body or
peripheral nervous system can handle much of the rapid sensing and motor
actions necessary via morphological computation. However, a predictive engine
leads to planning, imagery and quite possibly consciousness.

Prediction requires the construction and maintenance of an internal model.
The brain maintains internal models for a wide range of behaviors; from motor
control to language processing [28, 11]. There is evidence for neural correlates of
model-based reinforcement learning in the prefrontal cortex, where an internal
model is maintained to predict the value of future decisions [9]. In the rodent
hippocampus, neural traces have been observed while mentally evaluating differ-
ent paths before taking action [24, 26]. Prediction and inference are fundamental
computations in cortical systems [25]. These predictive models in the brain al-
low the organism to plan for the future and are advantageous when deliberation
before action is possible. In robotics, these strategies have inspired robot con-
trollers that develop internal models to predict movement of objects and of other
robots [21, 20].

Prediction can lead to deliberation, mental simulation and mental imagery,
all important aspects of cognition. It is compatible with the ability to create a
scene in one’s mind, which has been called the ’remembered present’ or primary
consciousness [6]. Moreover, prediction is important for having a theory of mind;
the ability to understand and predict the intentions of others [22]. This awareness
of one’s self and others would be a critical component for any conscious machine.

3 Conclusion

Artificial systems have made great progress in recent times, but currently fall
short of what we would call cognitive or conscious machines. Using the brain as
an existence proof, it is argued here that aspects of neural computation could
bridge this gap. Specifically, 1) Learning, 2) Efficient information processing, 3)
Embodiment, 4) Value signaling, and 5) Predictive coding are aspects of the
brain that should be included in future systems. Biological organisms are the
ultimate learning machines. They learn quickly, incrementally, and over a life-
time. Much is now known about different neurobiological learning rules and the
roles different brain regions play in encoding and recalling diverse memories.
Biology is under tight energy constraints and the brain is amazingly power effi-
cient. This leads to efficient information processing in the form of sparse, reduced
representations of environmental features and actions. Not only will this lead to
power efficient cognitive machines, it will also lead toward rapid decision mak-
ing. Brains do not work in isolation. Much of what is considered cognitive is a
close coupling between brain, body, and environment. Such a coupling requires
multimodal sensorimotor integration and morphological computation. Future
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cognitive machines need to take this into account. Taken together, these aspects
of the brain may provide a design pathway for future cognitive machines that
may have some degree of what we would call consciousness.
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