
Preferential Discrete Model-based Diagnosis
for Intermittent and Permanent Faults

Valentin Bouziat1 and Xavier Pucel1 and Stéphanie Roussel1 and Louise Travé-Massuyès2
1 ONERA / DTIS, Université de Toulouse, F-31055 Toulouse – France

e-mail: firstname.name@onera.fr
2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

e-mail: louise@laas.fr

Abstract
In this paper we consider the diagnosis of inter-
mittent and permanent faults in discrete event sys-
tems. We present a logic based modeling ap-
proach associated with conditional preferences in
order to produce a single diagnosis at each time
step. Like all incomplete diagnosis approaches,
ours is subject to deadlocks between the system
and its diagnoser. In this paper, we address the
detection of such deadlocks at design time with
the rich semantic model-checker ELECTRUM.

1 Introduction
Using robots in situations where teleoperation is impossible
or difficult requires the robots to have some level of deci-
sional autonomy. In particular, an autonomous robot needs
to detect and respond appropriately to abnormal losses of
performance, due to degradations of the robotic system, or
to external disturbances. This requires an elaborate fault
management strategy, which can be challenging to design,
especially when the mission is complex and the robot is
subject to many faults. We are therefore interested in tech-
niques that facilitate the identification of non-nominal oper-
ation modes, the detection of faults, and the estimation of
the remaining capabilities of the robot.

We propose a modeling formalism constructed so that it
meets three requirements. First, it should incrementally cal-
culate a single diagnosis at each time step. This require-
ment stems from constraints on system performance: one
can not afford to compute all possible diagnoses on a large
system for a long period of time. Moreover, considering the
complete robotic system, the diagnostic module is in our
case associated with a deterministic planner which expects
a single diagnosis as input. Second, we require our for-
malism to take into account both permanent and intermit-
tent faults, in particular to distinguish disturbances (noise,
false contact, etc.), supposedly intermittent, from degrada-
tions (breakdowns, etc.), often permanent. Third, since the
diagnosis is used to make autonomous decisions, we want
to avoid going back and modifying a diagnosis previously
issued. We also forbid from producing a sequence of di-
agnoses that does not correspond to a possible evolution
of the system (for example to remove a permanent fault).
Although we do not require strict correctness (we accept
delays, slight deviations), this requirement cannot be satis-
fied if the diagnoser deviates too much from the real system
state.

In this paper, we describe how such requirements can cre-
ate situations where the robotic system produces an obser-
vation sequence for which the diagnoser has no explanation.
From the point of view of concurrent systems, the physical
system sent a message (an observation) that the diagnoser
did not expect, thus creating a deadlock. In such a situa-
tion, the entire decision process supported by the diagnostic
engine fails. This is why we are interested in detecting dead-
lock scenarios at the design time.

The paper is structured as follows. We start with a presen-
tation of the state of the art in Section 2. We then introduce
our modeling formalism in Section 3, and describe the dead-
lock issue in Section 4. We propose a verification method at
design time based on the model-checker ELECTRUM [1] in
Section 5, and present experimental results on small multi-
robot systems in Section 6. Perspectives are discussed in
Section 7.

2 Related Work
Our work addresses the diagnosis of discrete event systems.
In [2] the authors define a framework for the diagnosis of
systems modeled by finite state machines subject to perma-
nent faults. The authors describe the construction of a di-
agnoser that allows an incremental computation of the di-
agnosis. However, their diagnoser requires memorizing all
the possible state-diagnosis pairs, which severely limits its
scalability. Their definition of diagnosability illustrates the
importance of validating the performance of a diagnoser at
design time.

Our formalism associates propositional logic constraints
with a conditional preference theory from [3]. It is inspired
by the formalism used in [4] to produce incremental diag-
noses. In this related work, the authors just point at the risk
of encountering a deadlock. In [5], the same authors pro-
pose to detect deadlock scenarios between a system and its
diagnoser by an iterative model-checking approach but this
approach is difficult to implement and no associated experi-
mentations are provided.

The problem of deadlocks between a system and its di-
agnoser occurs in [6] where the diagnoser goes back in the
execution of the diagnoser in order to find a consistent ex-
planation. This solution violates our third requirement ex-
plained above. Our goal is to produce reliable diagnoses, or
no diagnosis at all.

A classical way to order diagnoses is to prefer the min-
imal ones, this approach knows several variants compared
in [7]. Other approaches like [8] order faults according to
some criterion, and deduce an order on diagnoses. In all

these approaches, the diagnosis ordering is unconditional,
i.e. observations have no effect on the preference order be-
tween diagnoses. Our model uses conditional preferences
precisely to remove this limitation, and to make it possible
to prefer certain diagnoses based on present and past obser-
vations.

The diagnosis of intermittent faults is discussed in the lit-
erature from different points of view. In [9], the same func-
tion is called multiple times, but while faults manifest them-
selves in an intermittent manner, the underlying diagnosis
is constant from one test to another. In [10], a repair event
is associated with each fault, and the diagnosis task consists
in detecting for each fault which event (fault or repair) hap-
pened last. A diagnoser is built to allow incremental evalua-
tion, which involves the previously mentioned scaling prob-
lems since all diagnoses are kept in memory.

3 Diagnosis model
Our diagnosis model is a tuple (s0 ,∆,Γ), where s0 is the
initial system state, ∆ is the behavioral model of the system
and Γ is the conditional preference model. We assume that
the system evolves with discrete events dynamics and that
all time steps have the same duration.

3.1 Variables
We use a set of propositional variables P to describe the state
of the system. P is partitioned into two subsets O and E,
which respectively represent the elements of the system that
are observed and those to be estimated. At each discrete
time step, given a truth assignment to the variables from O,
our goal is to estimate the value for the variables from E.

Notations For a variable set X, we define an assignment as
a function from X to {>,⊥} that associates to each variable
x from X the boolean value true (>) or false (⊥). We write
x and x the assignments to {x} such that x (x) = > and
x (x) = ⊥. For a set of variables X = {x1, . . ., xn}, if for i ∈
[1, n], fi is an assignment {xi} → {>,⊥}, then f1 f2 . . . fn
denotes the f assignment on X such that ∀xi ∈ X, f(xi) =

fi(xi). For example, a b c is the assignment to {a, b, c}
that assigns true to a and false to b and c.
Definition 1 (Observation). An observation, denoted o, is
an assignment of the variables of O.
Definition 2 (State). A state, denoted s , is an assignment of
the variables of P. S denotes the set of states.

3.2 Behavioral Model
The behavioral model ∆ ⊆ S2 is the transition relation of
the system. In order to refer to the state of the system at the
previous time step, we introduce a bijective function pre
on the set P. For a variable p in P, pre(p) represents the
value of the variable p at the previous time step. Formally,
we define a variable set Ppre = {pre_p | p ∈ P} such that
∀p ∈ P, pre(p) = pre_p. ∆ is represented by a set of
propositional logic formulas ∆p that can relate to both the
variables of P and those of Ppre.

A pair of states (spre , snow) belongs to the transition re-
lation ∆ when the system can be in the state spre at time
t − 1 and in the state snow at time t. To formally link ∆
to ∆p, for any pair of states (spre , snow), we define the as-
signment σspre,snow

on variables from P ∪ Ppre such that
∀p ∈ P, σspre,snow

(p) = snow (p) and σspre,snow
(pre(p)) =

switch light

fwire flight

Figure 1: A simple system composed of a lamp and a switch

spre(p). We consider that a pair of states belongs to the tran-
sition relation ∆ if and only if the corresponding assignment
satisfies the formulas of ∆p.

Definition 3 (Transition). A pair of states (spre , snow) ∈
S2 is a transition, denoted (spre , snow) ∈ ∆, if and only if
σspre,snow

|= ∆p.

In the remaining of this paper, we do not distinguish ∆
and ∆p.

In order to reason about the possible evolutions of the
system state, and the associated observation sequences, we
define consistent state sequences and consistent observation
sequences as follows.

Definition 4 (Consistent state sequence). A state sequence
(s0 , s1 , . . . , sn) ∈ Sn is consistent if and only if ∀i ∈ [1, n],
(si−1, si) ∈ ∆.

Definition 5 (Consistent observation sequence). An obser-
vation sequence (o0, o1, . . . , on) is consistent if and only if
there exist a consistent state sequence (s0, s1, . . . , sn) such
that ∀i ∈ [0, n],∀o ∈ O, si(o) = oi(o).

In the following, when there is no ambiguity, state and
observation sequences are assumed to be consistent.

Given a previous state and an observation of the system,
we define the set of candidates for diagnosis as the set of
states that are compatible with the previous state, the obser-
vation and the behavioral model ∆.

Definition 6 (Diagnosis candidates). The set S∆(spre , o) of
diagnosis candidates for a previous state spre and an obser-
vation o is defined by:

S∆(spre , o) =
{
snow ∈ S |(spre , snow) ∈ ∆ and

∀o ∈ O, snow (o) = o(o)
}

Example 1. The system illustrated in Figure 1 is composed
of a lamp controlled by a switch. This system may be subject
to a permanent fault and an intermittent fault, our goal is to
estimate their presence or absence. The set O is composed
of light which is true when the light is on, false otherwise,
and switch which is true when the switch is closed (current
flows), false otherwise. The set E contains two variables rep-
resenting the two faults that may occur: fwire represents an
intermittent loose contact in the wire and flight a perma-
nent lamp failure.

The two rules of ∆ represent the following behavior: the
lamp glows when the switch is closed and when there is no
fault on the wire nor in the lamp (δ1). If the bulb of the lamp
was broken at the previous state, then it is at the present time
(δ2), i.e. the fault flight is permanent. In the initial state
s0 = light switch flight fwire , the lamp glows and there is
no fault.

∆ =

{
light↔ switch ∧ ¬flight ∧ ¬fwire (δ1)

pre_flight → flight (δ2)

}
From the behavioral model ∆, we can calculate diagno-

sis candidates. For instance, at time step 1, s0 is the pre-
vious system state, let us consider the observation o1 =
light switch . The candidate states set is S∆(s0 , o1) =
{snow, s′now, s′′now} with:

snow = light switch flight fwire

s′now = light switch flight fwire

s′′now = light switch flight fwire

In the state snow, the intermittent fault is present alone; in
s′now, the permanent fault is present alone; both faults are
present in s′′now.

3.3 Single diagnosis choice
For a given previous state and observation, in order to pro-
duce a single diagnosis, we have to choose a single state
from all the candidates of S∆(spre , o). This choice is dic-
tated by the conditional preference model Γ that consists in
an ordered set of conditional preferences.

A conditional preference relates to a variable to be esti-
mated and indicates under which condition we prefer the
diagnoses that assign true of false to this variable to the
other diagnoses. Our modeling formalism makes it easy
for a preference condition to refer to past variables, which
would not be possible with the more usual “next” operator
[11]. A preference is a form of “soft constraint”, it is only
applied when there exists diagnoses with both values for the
variable. A formal definition follows.

Definition 7 (Conditional preference). A conditional pref-
erence γ on a variable e of E, is denoted cond : e ≺ e . The
preference’s condition cond is a propositional formula on
P ∪ Ppre. The variable e is called the preference’s target.

Note that cond : e ≺ e is equivalent to ¬cond : e ≺ e .
For a variable e from E, the conditional preference cond :
e ≺ e expresses a preference for states in which e is true to
those where e is false if and only if cond is satisfied.

Formally, a preference γ = cond : e ≺ e defines
a partial order ≺γ an equivalence relation ≈γ between
pairs of transitions as follows. For all triples spre , s, s

′ ∈
S3, γ strictly prefers the transition (spre , s) to transition
(spre , s

′) (denoted (spre , s) ≺γ (spre , s
′)) if and only if

σspre ,s |= cond ↔ e and σspre ,s′ 2 cond ↔ e. Tran-
sitions (spre , s) and (spre , s

′) are equivalent to γ (denoted
(spre , s) ≈γ (spre , s

′)) if and only if (σspre ,s |= cond ↔
e)⇔ (σspre ,s′ |= cond↔ e).

Example 2. Let us consider the preference γ = ¬light :
flight ≺ flight . This preference indicates that if both flight
and flight are part of some diagnosis candidate, then flight is
preferred if and only if ¬light holds. Formally, we prefer
diagnoses that satisfy ¬light ↔ flight. For the states
snow, s′now and s′′now in Example 1, as ¬light holds, we
prefer the states in which flight holds, i.e. the states s′now
and s′′now. Formally, s′now ≺γ snow, s′′now ≺γ snow and
s′′now ≈γ s′now.

We assume that in Γ, all estimated variables are the target
of a conditional preference. While not always necessary, it

ensures the diagnoser is deterministic. This raises the ques-
tion of the order in which preferences are applied, that we
address now.

Definition 8 (Conditional preference model). A conditional
preference model Γ is a sequence of conditional preferences
(γ1, γ2,..,γn) with γi = condi : ei ≺ ei for i ∈ [1, n] such
that each variable e from E is the target of exactly one pref-
erence.

We require Γ to be an acyclic preference model, which
guarantees its consistence (see [12]). For example, the fol-
lowing two preferences form a cycle: a : b ≺ b and
b : a ≺ a . In the first preference the value of a depends
on that of b, and in the second preference the exact oppo-
site happens. While the literature contains work on cyclic
preference networks [12], in this paper we assume that Γ
is acyclic. This means that the condition of a preference γi
cannot use variables that are the target of the following pref-
erences in the sequence. Formally, ∀i ∈ [1, n] , the scope of
the condition condi is a subset of Ppre∪O∪{ej|1 ≤ j < i}.

From a preference model Γ, it is possible to define a
partial order ≺Γ between pairs of states as follows. Intu-
itively, as in a lexicographic order, we consider preferences
γi in their index order in Γ and we apply at each index
the order relation ≺γi defined above. This order is partial
because it compares only pairs of transitions (spre , snow)
and (spre

′, snow
′) that have the same previous state (i.e.

spre = spre
′) and whose successor states produce the same

observation (i.e. ∀o ∈ Osnow (o) = snow
′(o)).

Formally, ∀spre , s, s ′ ∈ S3, (spre , s) is strictly preferred
to (spre , s

′) by Γ (denoted (spre , s) ≺Γ (spre , s
′)) if and

only if there exists i ∈ [1, n] such that for all j < i,
(spre , s) ≈γj (spre , s

′) and (spre , s) ≺γi (spre , s
′).

Although the ≺Γ order is partial on S2, it is complete on
any set of diagnosis candidates. We use this order relation
to define the preferred diagnosis at each time step.

Proposition 1. Let spre be a state, o an observation, ∆ a
behavioral model and Γ a preference model. If s and s ′ are
two candidate states for spre and o (s, s ′ ∈ S∆(spre , o)2)
such that s 6= s ′ then we have either (spre , s) ≺Γ (spre , s

′)
or (spre , s

′) ≺Γ (spre , s).

Proof By Definition 6, s and s ′ belong to S∆(spre , o)
implies that ∀o ∈ O, s(o) = s ′(o). Therefore, s 6= s ′

means that there is a variable e ∈ E such that s(e) 6= s ′(e).
So, there exists a preference γ ∈ Γ such that s ≈γ s ′

does not hold. Let i be the index of the first preference
of the sequence in this case. Formally, γi is such that
∀j < i, (spre , s) ≈γj (spre , s

′), (spre , s) ≈γi (spre , s
′)

does not hold. This means that (spre , s) ≺γi (spre , s
′) or

(spre , s
′) ≺γi (spre , s). From the order ≺Γ, we then have

(spre , s) ≺Γ (spre , s
′) or (spre , s

′) ≺Γ (spre , s).

3.4 Estimation process
At each step, given the set of candidate states S∆(spre , o)
we select the state preferred by the conditional preference
model Γ.

Definition 9 (Estimated state). The estimated state ŝ =
estim(spre , o) for a previous state spre and an observation
o is the element of S∆(spre , o) preferred by ≺Γ. Formally,
ŝ = estim(spre , o) if and only if:

1. ŝ ∈ S∆(spre , o), and

2. ∀snow ∈ S∆(spre , o) such that snow 6= ŝ, we have
(spre , ŝ) ≺Γ (spre , snow).

From the initial state s0 , we now define the sequence of
estimated states that is produced by the diagnoser for a given
observation sequence.
Definition 10 (Estimated state sequence). A state sequence
(s0, ŝ1 , ŝ2 , ..., ŝk) is the estimated state sequence for the
observation sequence (o0, o1, o2,...,ok) if and only if ∀i ∈
[1, k], ŝi = estim(ŝi−1 , oi).
Example 3. Let us associate the lamp model ∆ from Exam-
ple 1 to the following preferences:

Γ =

(
pre_fwire : fwire ≺ fwire (γ1)

⊥ : flight ≺ flight (γ2)

)
The first preference (γ1) declares that we prefer the value

for fwire that was estimated at the previous time step. This
mechanism makes it possible to bring some stability to the
diagnosis since fwire is an intermittent fault: if ∆ allows
both diagnoses for fwire, we prefer to maintain the diagno-
sis that was chosen at the previous time step.

The preference (γ2) indicates that we always prefer to
assume that flight is absent.

In Example 1, with s0 = light switch flight fwire) as
the previous state and o1 = light switch as the observa-
tion, the set of diagnosis candidates S∆(spre , o) contains
the three states snow = light switch flight fwire , snow ′ =

light switch flight fwire and s′′now = light switch flight fwire .
By applying (γ1) first, as pre_fwire holds in the three

states, we prefer the states in which fwire . In our case,
only snow

′ satisfies this criterion. As there is only one di-
agnosis left, we do not need to apply preference (γ2). The
preferred single state is ŝ1 = estim(s0, o1) = snow

′ =
light switch flight fwire .

4 Deadlock
A deadlock situation occurs when the diagnoser has previ-
ously estimated a state ŝ different from the current system
state s, and receives an observation o in contradiction with
ŝ and ∆. In such a situation the candidates set for ŝ and o is
empty and the diagnoser is unable to return a diagnosis.
Definition 11 (Deadlock). An estimation model (s0,∆,Γ)
is in a deadlock situation for an observation sequence
(o0, o1, o2, . . . , ok) with k > 1 1 if and only if:

1. there exists an estimated state sequence for
(o0, . . . , ok−1), and

2. there exist no estimated state sequence for (o0, . . . , ok)

Example 4. Let (o0, o1, o2, o3) be the observation sequence
produced by the system and along with the associated state
sequence (s0, s1, s2, s3) described in Figure 2.

When observation o1 is received, Γ selects the preferred
state ŝ1 = light switch flight fwire . Then for observation
o2, we are in the situation described in Example 3 and the
preferred state is ŝ2 = light switch flight fwire . Observation
o3 is in contradiction with the previously estimated state. In
fact the estimator has estimated flight in the previous state,
meaning that variable pre_flight is true. Rules of ∆ are not
consistent with such a configuration: (δ1) requires flight to

1There can be no deadlock at ŝ1 because we assume that the
diagnoser is correctly initialized at s0.

be false because the lamp glows while (δ2) requires flight
to be true since the associated fault is permanent.

Therefore, there is an estimated state sequence for
(o0 , o1 , o2): this is the sequence (s0 , ŝ1 , ŝ2). How-
ever, since there is no estimated state sequence for
(o0 , o1 , o2 , o3), the pair system-diagnoser is in a deadlock
situation for this observation sequence.

In the previous example, the deadlock situation could be
eliminated by changing the order or conditions of prefer-
ences. However, as soon as one is interested in more com-
plex systems, it becomes difficult to anticipate the deadlock
situations and even more to solve them. In this paper, we fo-
cus on detecting these deadlocks and leave their resolution
for future work.

5 Deadlock Checking
In this section, we show how to use a model-checker to iden-
tify deadlock scenarios at the design phase of the diagnostic
model.

5.1 Deadlock checker
The verification method we propose is inspired from the
Twin-Plant [13] technique, which makes it possible to ver-
ify the diagnosability of a system by constructing the syn-
chronous product of two finite state machines.

Our method is similar since it involves constructing a
deadlock verifier by synchronizing two state machines. The
first state machine represents the system and is constrained
only by the transition relation ∆. We use it to generate con-
sistent observation sequences. The second state machine is
the diagnoser built from the whole estimation model. It is
also constrained by ∆, but it deterministically selects the
next state by applying Γ preferences. The verifier is the
product of these two state machines synchronized on ob-
servable variables at each time step. Deadlock checking
then consists in checking whether there exists an observa-
tion sequence that leads the verifier to a state in which the
system has a successor state, but the diagnoser has none.

In order to distinguish the states of the two state machines
presented above, i.e. the state of the system and that of the
diagnoser, we introduce two variable sets Psys and Pest that
are direct copies of P. We also use a est_sat variable that
indicates whether the diagnoser has a successor state.
Definition 12 (Verifier variables). The set of the verifier
variables is defined by Pverif = Psys ∪ Pest ∪ {est_sat},
where :
• Psys = {p_sys | p ∈ P} is the set of variables describ-

ing the system state ;
• Pest = {p_est | p ∈ P} is the set of variables describ-

ing the diagnoser state;

Step i oi si ŝi

0 light switch flight fwire flight fwire

1 light switch flight fwire flight fwire

2 light switch flight fwire flight fwire

3 light switch flight fwire /

Figure 2: Deadlock scenario for Example 4. In columns si
and ŝi , we omit variables from O whose values are identical
to the column oi, and we only represent variables from E).

• est_sat indicates whether there is an estimated state
for the diagnoser.

A state of the verifier is an assignment on variables of Pverif.

In order to define the state machine resulting from the
synchronous product, we successively define the initial state
of the verifier (Definition 13) and its transition relation (Def-
inition 14).

Definition 13 (Verifier initial state). The initial state sverif0
of the verifier is such that:

• ∀p ∈ P, sverif0 (p_sys) = s0 (p),

• ∀p ∈ P, sverif0 (p_est) = s0 (p),

• sverif0 (est_sat) = >.

Definition 14 (Verifier transition relation). Let sverifpre and
sverifnow be two verifier states. The pair (sverifpre , sverifnow) is a
verifier transition if and only if:

(1) variables associated with observations take the same
value on system and diagnoser sides,

(2) the system transition described by variables of Psys sat-
isfies ∆,

(3) the variable est_sat indicates whether there exists a
possible estimated state (i.e. if the candidates set is not
empty), and

(4) if est_sat is true, then the diagnoser transition de-
scribed by variables of Pest satisfies ∆ and Γ.

Formally :

∀o ∈ O, sverifpre (sys_o) = sverifpre (est_o) and

∀o ∈ O, sverifnow (sys_o) = sverifnow (est_o)
(1)

∃(spre , snow) ∈ ∆, ∀p ∈ P,

spre(p) = sverifpre (sys_p) and

snow (p) = sverifnow (sys_p)

(2)

est_sat↔∃(spre , snow) ∈ ∆,

∀p ∈ P, spre(p) = sverifpre (est_p) and

∀p ∈ O, snow (p) = sverifnow (est_p)

 (3)

est_sat→

∃(spre , snow) ∈ ∆, ∀p ∈ P,

spre(p) = sverifpre (est_p) and

snow (p) = sverifnow (est_p) and
6 ∃sbest ∈ S,

∀o ∈ O, sbest(o) = snow (o), and
(spre , sbest) ∈ ∆, and
(spre , sbest) ≺Γ (spre , snow)




(4)

Proposition 2. An estimation model (s0,∆,Γ) is subject to
a deadlock if and only if the associated verifier contains a
path in which est_sat is false. The deadlock scenario is
the observation sequence corresponding to the states of the
verifier.

Proof Suppose that the estimation model is subject to a
deadlock. According to Definition 11, there exists an ob-
servation sequence (o0 , o1 , . . . , on) generated by a consis-
tent state sequence (s0 , s1 , . . . , sn), such that there is an

estimated state sequence (ŝ0 , ŝ1 , . . . , ŝn−1) for the partial
sequence (o0 , o1 , . . . , on−1) and that there does not exist
an estimated state sequence (ŝ0 , ŝ1 , . . . , ŝn) for the com-
plete sequence. We then build the verifier’s state sequence
(sverif0 , sverif1 , . . . , sverifn) as follows:

• ∀i ∈ [0, n],∀p ∈ P, sverifi (p_sys) = si(p),

• ∀i ∈ [0, n− 1],∀p ∈ P, sverifi (p_est) = ŝi(p),

• ∀i ∈ [0, n− 1], sverifi (est_sat) = >,

• ∀p ∈ O, sverifn (p_est) = on(p),

• ∀p ∈ E, sverifn (p_est) = >,

• sverifn (est_sat) = ⊥.

We show that for all i ∈ [0, n− 1], (sverifi , sverifi+1) is a tran-
sition of the checker: let i be an integer in [0, n − 1], we
show that the four parts of Definition 14 are satisfied:

• ∀o ∈ O, ∀p ∈ P, si(p) = ŝi(p) and si+1 (p) =
ŝi+1 (p). Equation (1) holds;

• equation (2) holds by construction of the verifier;

• for i < n − 1, sverifi (est_sat) = > and (ŝi , ŝi+1) is
the pair of states in ∆ satisfying equation (3);

• for i = n − 1, the definition of a deadlock implies
that there does not exist a pair of states satisfying ∆:
equation (3) is satisfied;

• for i < n − 1, sverifi (est_sat) = > and (ŝi , ŝi+1) is
the pair of states in ∆ satisfying equation (4);

For the reciprocal, let us assume that the checker has a
path in which est_sat is false. We consider such a path
(sverif0 , sverif1 , . . . , sverifn) in wich sverifn is the only state
in which false is assigned to est_sat. We then build two
states sequences (s0 , s1 , . . . , sn) and (s0 , ŝ1 , . . . , ŝn−1) as
follows:

• ∀i ∈ [0, n],∀p ∈ P, si(p) = sverifi (p_sys),

• ∀i ∈ [0, n− 1],∀p ∈ P, ŝi(p) = sverifi (p_est)

We prove that these state sequences are consistent with ∆.
From Definition 14, est_sat is false (last time step) im-
plies that no state snow allows to satisfy the right part of the
condition (equation 3) for spre = ŝn−1 . This means that
no state meets the Definition 6. There is a deadlock for the
observation sequence generated by (s0 , s1 , . . . , sn).

5.2 Choice of the model-checker
Model-checking is a set of techniques and computer tools
for checking properties on systems. Among the many
model-checkers in the literature, NuSMV [14] and NuXMV
are known for their effectiveness in checking temporal prop-
erties on dynamic systems. They are based on temporal
logic like LTL or CTL. Another family of model checkers is
specialized in checking properties on structurally complex
models, but without temporal dynamics. This is the case
of the Alloy Analyzer model-checker [15] which supports a
fragment of first order logic.

In the case of deadlock verification, we need to express
the temporal dynamics of the system but also the prefer-
ences of the diagnoser, which are not easily expressed in
propositional logic. We therefore chose to use the model-
checker ELECTRUM [1] which is based on the Alloy lan-
guage and integrates temporal dynamics as in NuSMV.

5.3 Quantified form of preference
The concept of preference is part of the verifier definition.
This means that the model-checker language must allow to
express them. To do so, we define a quantified form for
preferences.

Definition 15 (Preference quantified form). Let be Γ =
(γ1, . . . , γn) a preference model in which each preference
has form γi = condi : ei ≺ ei . The quantified form of γi is
the formula ψi defined by:

ψi = (∀ei,∃ei+1, . . . , en, ∆)→ (ei ↔ condi)

The quantified form ψi is composed of two parts. The left
part is only satisfied when for both truth values variable ei,
there is a way to assign the target variables of the following
preferences and still satisfy ∆. It represents the cases when
the preference is actually applied. The right part expresses
the effect of the preference, i.e that ei is assigned to true
if and only if the condition condi is satisfied. Through the
following proposition, we show that Γ preferences and their
quantified form are equivalent from the point of view of the
estimated state for a previous state and an observation.

Proposition 3. For a previous estimated state ŝpre , an
observation o, a candidate ŝ ∈ S∆(ŝpre , o), ŝ =
estim(ŝpre , o) if and only if the assignment σŝpre ,ŝ satisfies
conjunction

∧
i∈[1,n] ψi.

Proof. Let ŝpre be a previous estimated state, o an ob-
servation and ŝ a state in S∆(ŝpre , o). We inductively show
that ŝ is preferred for the preference sequence (γ1, . . . , γk)
if and only if the assignment σŝpre ,ŝ satisfies

∧
i∈[1,k] ψi.

For k = 1, the set of free variables in formula lhs1 =
∀e1,∃e2, . . . en,∆ is the set O, since all the variables in E
are quantified. The formula lhs1 is satisfied by an observa-
tion o if and only if both oe1 and oe1 have an extension in
P ∪ Ppre that satisfies ∆. This means S∆(ŝpre , o) contains
at least two states s and s ′ with s(e1) 6= s ′(e1). Among
these two states, the one that satisfies cond1 ↔ e1 is the
preferred state by preference γ1, and also satisfies ψ1. As
the states preferred by γ1 are exactly the ones for which the
assignment σŝpre ,ŝ satisfies ψ1, then the proposition holds
for k = 1.

Let k > 1 and let us assume that the induction is valid
at index k − 1, i.e. that ŝ is preferred for the prefer-
ence sequence (γ1, . . . , γk−1) if and only if the assignment
σŝpre ,ŝ satisfies

∧
i∈[1,k−1] ψi. Since s and s ′ belong to

S∆(ŝpre , o), since s is a state preferred for (γ1, . . . , γk−1)
and since σŝpre ,s′ satisfies

∧
i∈[1,k−1] ψi, then for all i < k,

s(ei) = s ′(ei).
The set of free variables in formula lhsk =

∀ek,∃ek+1, . . . en,∆ is the set O ∪ {ei | i < k}. An assign-
ment op to these variables satisfies lhsk if and only if op ek
and op ek both have an extension to P ∪ Ppre that satisfies
∆.

If for a given assignment op to O ∪ {ei | i < k} the for-
mula lhsk does not hold, then for all s and s ′ in S∆(ŝpre , o),
s(ek) = s ′(ek). Thus, the preference γk is not applied and
the preferred states for (γ1, . . . , γk−1) are the also preferred
for (γ1, . . . , γk). In this case, ψk = > and the states s ′

such that σŝpre ,s′ satisfy
∧
i∈[1,k−1] ψi are the same ones for

which σŝpre ,s′ satisfy
∧
i∈[1,k] ψi and the induction is valid.

If for a given assignment op to O∪{ei | i < k} the formula
lhsk holds, then S∆(ŝpre , o) contains at least two states s

pred delta[fwire,light,flight,
switch,preF_flight : Bool] {

(isTrue[preF_flight] => isTrue[flight])
and
(isTrue[light] <=> (isTrue[switch] and

!isTrue[flight] and
!isTrue[fwire]))

}
var one sig RealSystem {

var fwire : Bool,
var preF_fwire : Bool,
var light : Bool,
var flight : Bool,
var switch : Bool,
var preF_flight : Bool,

}
fact always_delta_RealSystem {

always {
delta[RealSystem.fwire,
RealSystem.preF_fwire,
RealSystem.light,
RealSystem.flight,
RealSystem.switch,
RealSystem.preF_flight]}

}
fact synch_obs {

always {
Estimator.light = RealSystem.light
Estimator.switch = RealSystem.switch}

}

Figure 3: The observed system and observation synchro-
nization in ELECTRUM.

and s ′ such that for all i < k, s(ei) = s ′(ei) and s(ek) 6=
s ′(ek). Between these two states, the one in which condk ↔
ek is true is the preferred state by preference γk. As the
states preferred by γk are exactly the ones for which the
assignment σŝpre ,ŝ satisfies ψk, thus the induction is valid at
index k.

5.4 Model Encoding with ELECTRUM
In this section, we illustrate how the verifier defined in Def-
inition 13 and 14 is encoded in ELECTRUM. We illustrate
the encoding of the system described in Examples 1 and 3.

To model the system’s state machine, we declare a predi-
cate corresponding exactly to the model ∆ then we declare
a constraint (a fact in ELECTRUM) that specifies that the
system respects the predicate at all time steps (always in
ELECTRUM), as illustrated in Figure 3. A similar constraint
is declared for the diagnoser’s state machine. Finally, we
synchronize the variables from O of the observed system
with those of the second state machine representing our es-
timator, as expressed in condition (1) of Definition 14.

To represent the temporal aspect of our formalism, we use
the operator ’ from ELECTRUM which describes a variable
at the next time step. Figure 4 reproduces the intention of
the bijective function pre (p_pre value at next state is equal
to p value at current state).

ELECTRUM supports the use of relational algebra opera-
tors. It is possible for each preference to write a predicate
telling us if a preference γi is applicable, that is, if the two
valuations for variable ei (operator all), and at least one
possible valuation for variables ej, i < j ≤ n (operator
some) are consistent with ∆ an the observation. This corre-
sponds to the left part of the quantified form of a preference.
Figure 5 illustrates the definition of predicates that imple-
ment these conditions with ELECTRUM operators. The rest

fact next_Estimator {
always {
Estimator.preF_flight’ =

Estimator.flight
Estimator.preF_fwire’ =

Estimator.fwire }
}

Figure 4: Temporal dynamics in ELECTRUM.

pred pref_fwire_possible{
all fwire : Bool |some flight : Bool |
delta[fwire,
Estimator.preF_fwire,
Estimator.light,
flight,
Estimator.switch,
Estimator.preF_flight]

}
pred pref_fwire_applied{

isTrue[Estimator.fwire] <=>
isTrue[Estimator.preF_fwire]

}
pred pref_flight_possible{

all flight : Bool |
delta[Estimator.fwire,
Estimator.preF_fwire,
Estimator.light,
flight,
Estimator.switch,
Estimator.preF_flight]

}
pred pref_flight_applied{

isTrue[Estimator.flight] <=>
isTrue[False]

}
fact prefs {

always {
pref_flight_possible implies

pref_flight_applied
pref_fwire_possible implies

pref_fwire_applied
}

}

Figure 5: Implementing preferences in ELECTRUM

of the preferences are described by a fact.
The order in which preferences are applied in Γ, is com-

pletely induced by the quantification overlays in the quanti-
fied forms of preferences (see Definitions 8 and 15).

6 Experimental results
We experimented our approach on the model of a multi-
robot mission of customizable size and complexity.

In this mission, one or more robots move on a rectangular
grid of variable size, each robot moves towards its destina-
tion. The destination can change during the mission accord-
ing to unspecified dynamics.

Behavioral constraints are declared in ∆ for each robot.
robots should move unless they are at their destination.
Moreover, robots may be subject to permanent and / or in-
termittent faults. An intermittent fault slows down or im-
mobilizes the robot for a few moments which is modelled
by the fact that a robot takes several time steps to cross a
cell. A permanent fault immobilizes the robot permanently.
We also estimate the state of the terrain. A robot crosses a
normal cell in one time step, but we introduce difficult cells

(the robot takes several time steps to go through the cell)
and dangerous cells (robot stays forever on the cell).

We observe at every moment the position of robots on
the grid and their destination. We estimate the presence of
intermittent and permanent faults on each robot, a variable
indicating if it can move, as well as the dangerousness of
each grid cell. We implement two estimation strategies, one
subject to deadlock, the other not (for example always pre-
ferring the absence of a permanent fault).

Models are written in Scala language and are automati-
cally translated into ELECTRUM. ELECTRUM proceeds to
the verification through different solvers. For our experi-
ments, we set ELECTRUM to use the Sat4j solver [16]. Ver-
ifications were performed on a 3.5GHz Intel Core i5-7600
quad-core processor. Figure 6 shows the results of our ex-
periments for different mission parameters.

The first conclusion is that verification is faster for mod-
els that are subject to deadlock scenarios than for those that
do not encounter such scenarios. This difference is directly
related to the fact that when the model-checker finds a dead-
lock scenario in the model, the search ends immediately and
it returns a counterexample corresponding to the sequence
of observations. On the contrary, to prove that a model
contains no deadlock scenarios, ELECTRUM explores many
more possible executions paths for the verifier.

We can then see that the verification is very fast for the
first models, but as we enrich P, ∆ and Γ, the number of
variables generated for Sat4j and the time required for verifi-
cation increases exponentially. For examples of larger sizes,
it is interesting to note that Sat4j did not have enough mem-
ory to process them.

Deadlock detection as proposed in the paper is carried
out in the design phase. Hence, high calculation times are
not necessarily unacceptable and do not call into question
the approach we propose. Let us notice that the results we
present here are preliminary results and we are currently
working on different ways to improve them. Specifically,
we aim to integrate ELECTRUM more closely to avoid the
creation of boolean variables where ELECTRUM could han-
dle enumerated variables.

7 Conclusion and future work
We have developed a generic method to validate the proper
behavior of a diagnoser at design stage. In particular, we
have showed that it is possible to anticipate deadlock situa-
tions.

In this paper, we do not introduce any mechanism to iden-
tify the causes and modify the estimation model in order to
eliminate deadlock scenarios, but this remains a goal for fu-
ture work. In particular, there are several ways to treat a
deadlock scenario. One can ignore it, as in the deadlocking
path the system should stop autonomous operation and wait
for operator intervention. One can alter the system’s be-
haviour or instrumentation, which is costly and sometimes
impossible. Finally, one can revise the fault management
strategy, by changing the preference ordering, or simply di-
agnosing other elements of the system, such as whether we
trust a component instead of its real health status.

In addition, we plan to reuse the automation of model-
checking allowing us to verify the existence of deadlock sce-
narios for our diagnosers to check other properties related to
diagnosis such as diagnosability.

ID nb of robots grid size ‖P‖ ‖∆‖ ‖Γ‖ CNF vars CNF clauses deadlock no deadlock
1 1 1 x 2 13 17 7 1083 1586 0,1s 0,8s
2 1 2 x 2 21 27 11 3400 3925 0,5s 4,8s
3 1 2 x 3 29 37 15 13757 10593 7,3s 52,9s
4 2 2 x 2 34 50 14 12631 13561 6,7s 60,5s
5 2 2 x 3 46 68 18 65 030 47 669 144,6s 1001,4s

Figure 6: ELECTRUM model checking. Columns ‖P‖, ‖∆‖ and ‖Γ‖ indicate respectively the number of variables of P, the
number of rules of ∆ and the number of preferences in Γ. Columns 7 and 8 indicate respectively the number of variables and
clauses sent to solver Sat4j by ELECTRUM. The last two columns indicate the verification time for a version of the model
subject to a deadlock scenario and another version for which such a scenario does not exist.

Finally, progress on model-checker performance is
needed to apply it to multi-robot missions involving large
models. QBF solvers [17] are potential tools for finding
deadlock scenarios of bounded length, as can express the
quantified form of our conditional preferences. It is thus
possible to express the presence of a deadlocking path of
bounded length as a QBF satisfiability problem.

References
[1] Nuno Macedo, Julien Brunel, David Chemouil, Alcino

Cunha, and Denis Kuperberg. Lightweight specifica-
tion and analysis of dynamic systems with rich con-
figurations. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, pages 373–383,
New York, NY, USA, 2016.

[2] Meera Sampath, Raja Sengupta, Stéphane Lafortune,
Kasim Sinnamohideen, and Demosthenis Teneketzis.
Diagnosability of discrete-event systems. IEEE Trans-
actions on automatic control, 40(9):1555–1575, 1995.

[3] Craig Boutilier, Ronen I Brafman, Carmel Domshlak,
Holger H Hoos, and David Poole. Preference-based
constrained optimization with cp-nets. Computational
Intelligence, 20(2):137–157, 2004.

[4] Cedric Pralet, Xavier Pucel, and Stéphanie Roussel.
Diagnosis of intermittent faults with conditional pref-
erences. In Proceedings of the 27th International
Workshop on Principles of Diagnosis (DX’16), 2016.

[5] Xavier Pucel and Stéphanie Roussel. Intermittent fault
diagnosis as discrete signal estimation: Trackability
analysis. In Proceedings of the 28th International
Workshop on Principles of Diagnosis (DX’17), 2017.

[6] James Kurien and P Pandurang Nayak. Back to the fu-
ture for consistency-based trajectory tracking. In Pro-
ceedings of the Seventeenth National Conference on
Artificial Intelligence, pages 370–377, 2000.

[7] Marie-Odile Cordier, Philippe Dague, François Lévy,
Jacky Montmain, Marcel Staroswiecki, and Louise
Travé-Massuyès. Conflicts versus analytical redun-
dancy relations: a comparative analysis of the model
based diagnosis approach from the artificial intelli-
gence and automatic control perspectives. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics), 34(5):2163–2177, 2004.

[8] Alexander Felfernig and Monika Schubert. Fastdiag:
A diagnosis algorithm for inconsistent constraint sets.
In Proceedings of the 21st International Workshop on

the Principles of Diagnosis (DX 2010), Portland, OR,
USA, pages 31–38, 2010.

[9] Johan De Kleer. Diagnosing multiple persistent and
intermittent faults. In Proceedings of the 21st interna-
tional jont conference on Artifical intelligence, pages
733–738. Morgan Kaufmann Publishers Inc., 2009.

[10] Olivier Contant, Stéphane Lafortune, and Demosthe-
nis Teneketzis. Diagnosis of intermittent faults. Dis-
crete Event Dynamic Systems, 14(2):171–202, 2004.

[11] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A.
Peled. Model Checking. MIT Press, Cambridge, MA,
USA, 1999.

[12] Craig Boutilier, Ronen I Brafman, Carmel Domsh-
lak, Holger H Hoos, and David Poole. Cp-nets: A
tool for representing and reasoning with conditional
ceteris paribus preference statements. J. Artif. Intell.
Res.(JAIR), 21:135–191, 2004.

[13] Alessandro Cimatti, Charles Pecheur, and Roberto
Cavada. Formal verification of diagnosability via sym-
bolic model checking. In Proceedings of the 18th in-
ternational joint conference on Artificial intelligence,
pages 363–369. Morgan Kaufmann Publishers Inc.,
2003.

[14] Alessandro Cimatti, Edmund Clarke, Fausto
Giunchiglia, and Marco Roveri. Nusmv: a new
symbolic model checker. International Journal on
Software Tools for Technology Transfer, 2(4):410–
425, Mar 2000.

[15] Daniel Jackson. Software Abstractions: Logic, Lan-
guage, and Analysis. The MIT Press, 2006.

[16] Daniel Le Berre and Anne Parrain. The sat4j library,
release 2.2, system description. Journal on Satisfia-
bility, Boolean Modeling and Computation, 7:59–64,
2010.

[17] Massimo Narizzano, Luca Pulina, and Armando Tac-
chella. The qbfeval web portal. In Logics in Artificial
Intelligence, pages 494–497. Springer Berlin Heidel-
berg, 2006.

