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Abstract

Anomaly detection is the task of detecting data
which differs from the normal behaviour of a sys-
tem in a given context. In order to approach
this problem, data-driven models can be learned
to predict current or future observations. Often-
times, anomalous behaviour depends on the in-
ternal dynamics of the system and looks normal
in a static context. To address this problem, the
model should also operate depending on state.
Long Short-Term Memory (LSTM) neural net-
works have been shown to be particularly useful
to learn time sequences with varying length of
temporal dependencies and are therefore an in-
teresting general purpose approach to learn the
behaviour of arbitrarily complex Cyber-Physical
Systems.

In order to perform anomaly detection, we slightly
modify the standard norm 2 error to incorporate
an estimate of model uncertainty. We analyse the
approach on artificial and real data.

1 Introduction

The diagnosis of time-dependent systems has always been a
focus of research in domains such as industrial applications,
robotics, medical diagnosis and many more [1, 2]. Typical
applications of diagnosis involve the detection of anoma-
lous system behaviour, system degradation or sub-optimal
conditions concerning system health, energy consumption
or product quality.

Traditionally, manual models or simulations based on the
system description and its physics have been created by ex-
perts of their domain. However, the ever-increasing com-
plexity of distributed multi-component Cyber-Physical Sys-
tems (CPS) have made these manual efforts increasingly dif-
ficult. Automated data-driven machine learning applications
fill in the need of model creation to describe the system be-
haviour [3]. Because in many such systems a safe and reli-
able functioning of its components is a vital requirement, it
is important to detect anomalous or faulty system behaviour
in real time and as early as possible.

In general, a data sample can be considered anoma-
lous if its generating distribution is significantly different
from the normal behaviour. Usually, such anomalies are
not observed abundantly on real systems because it is too
expensive and sometimes even dangerous to record such

data. Furthermore, even if one is able to record (and la-
bel!) anomalous data properly, it would still not be suffi-
ciently exhaustive for a classification task, because anoma-
lies are fundamentally diverse. Instead, one typically as-
sumes a (sub)set of recorded data to not contain any anoma-
lies, thereby labelling all training data as normal, called
one-class-classification [4]. The training data is then used
to learn a model of the normal behaviour. When doing in-
ference, new data is compared to the expectation and then
classified, see [5] for a recent review of common such meth-
ods.

Many commonly used techniques do not naturally make
use of the time ordering and are therefore unable to detect
certain kind of temporal anomalies which depend on the sys-
tems internal state. Methods that try to adapt commonly
used approaches into the time domain, such as sliding win-
dows usually only model fixed time temporal dependencies,
while methods analysing spectral properties such as FFT
rely on proper periodic lengths.

Long Short-Term Memory [6] (LSTM) networks are a
natural candidate to fill in this gap because they keep a mem-
ory of its past input history and are theoretically able to learn
arbitrary lengths of temporal patterns. These internal, long-
term memory states can be shaped by the learning algorithm
to be useful in order to make present and future predictions
for anomaly detection. LSTM have been used for exactly
this purpose, see e.g. [7, 8, 9].

However, for the purpose of anomaly detection, it is not
sufficient to compare a model’s predictions to the actual val-
ues. In order to assess how much to trust the model, an esti-
mate of uncertainty is necessary.

The authors of [10] approach this problem by fitting a
multivariate normal distribution, [11, 12] use variational in-
ference while [13] use a Monte Carlo dropout scheme to
handle model uncertainty.

In this paper we go a more direct route by learning ex-
plicit uncertainty predictions. We make the following con-
tributions:

e Modify and motivate the standard loss function to in-
corporate estimates of noise inherent to the data. The
problem of anomaly detection can only be tackled if
anomaly scores can be directly related to probabilities
of events given some assumptions.

e Demonstrate the advantages of modelling internal state
dynamics in order to properly monitor dynamic sys-
tems.

e Analyse the learned state representation of LSTM in



CPS data with respect to anomalous data.

The Paper is structured as follows: In Section 2, we start
off by describing the general features of CPS that are impor-
tant to the problem. We then derive a modified loss function
which enables a model to predict the noise along with the
data. After a brief description of the LSTM model, we de-
scribe the anomaly detection approach by incorporating the
prediction uncertainty into the anomaly classification task.
In Section 3, we analyse the approach with a simple artificial
level control system and a real-world power consumption
time series data set. Discussion and some general remarks
are given in Section 4. We conclude in Section 5.

2 Method

2.1 Problem Description
We define a CPS according to the following statements:

e A CPS is an isolated, dynamic system which interacts
with its environment via signal inputs x; € X C R?
and outputs y, € YV C R, where ¢ denotes time, p and
q in- and output dimensions repectively. Amongst oth-
ers, a CPS can be comprised of mechanical, electrical
or biological parts.

e Although the underlying system is continuous, all sys-
tem in- and output is given in discrete time steps.

e At any given point in time, the CPS has an internal
state s; € S C R™. A state is the minimal description
needed to theoretically be able to predict the outputs y;
as well as the next state, if only the current input x; is
given in addition.

e The system inputs x can indicate discrete or contin-
uous events triggering a state change. These can be
external or internal influences which have an environ-
mental, cybernetic (e.g. actor signals), human or even
random origin.

e The system outputs y are observations taken on the
system that depend both on its internal state and its in-
put. In general, such observations could be given by
some arbitrary non-linear function f(s, x).

e The observation vector y is subject to noise and can
therefore only be determined up to some leftover co-
variance, V; € R7*4

In order to monitor the system behaviour, the vector of
measured observables y; has to be learned for each step in
time ¢. It can then be compared to the actual value and in-
formation about the system health, such as degradation and
anomalous or untypical behaviour, can be inferred. Because
V} is not known a priori and its knowledge is important to
the anomaly classification task, its determination is part of
the learning process.

If complete information of a deterministic CPS is avail-
able in the x and s variables, it is possible to find a mapping
[ (st—1,%¢) — (y+, Vi). However, the internal state of the
system is not actually measured, but only the vector of ob-
servations y. Therefore, the s; variable has to be modelled
along with the data by inference of the system behaviour
in time as well as the inter-dependencies of the x; and y;
variables, see Figure 1.
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Figure 1: Sketch of the work flow. The system in- and out-
put is used to learn a model of expected outputs y. When do-
ing inference, the prediction is compared to the actual output
in order to detect anomalies.

2.2 Loss Function

A simple feed-forward neural net can approximate any func-
tion [14] and is therefore a good candidate to find the desired
mapping f, if all information were given along with x and
the system had no internal state. If this is not the case, a
state can be modelled within a neural network by feeding
information about past input through time, which is exactly
what a recurrent architecture does. LSTM’s are particularly
equipped for this task, because a gating mechanism allows
gradients to flow back in time up to arbitrary lengths, en-
abling the learning of diverse temporal dependencies. We
would like to remind the reader, that if those temporal pat-
terns are well known (and maybe not too long) it is not nec-
essary to learn such states. In cases such as these we could
just group the input up to the desired point back in time and
analyse the aggregate, e.g. with a simple neural network.
The strength of learning internal state representations lies in
no prior knowledge given about possible temporal depen-
dencies.
The problem is now to find a mapping of the form:

fi(se—1,%¢) = (st, 56, Va).

Assumption 1. [t is possible to model these states. This
means that all relevant information for the prediction of out-
puts y, can be inferred from the dynamic behaviour.

It is then possible to predict y; up to some leftover sta-
tistical uncertainty. If this were not the case, missing infor-
mation could only be compensated for with additional in- or
output variables or by adding more data. If the assumption
can not be met, there will be a number of unknown inter-
nal states that are not modelled properly. System behaviour
that depends on these hidden states can then not properly be
accounted for.

We denote the model prediction with y:(s¢—1,x:/0), 0
being the model parameter.

Assumption 2. The leftover covariance of model-to-actual
difference 3 — y: is Gaussian.

This is motivated by the idea of including as much in-
formation as possible in the system state and the ability to
propagate this information into the model outputs, which
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Figure 2: LSTM architecture.

leaves maximum entropy in the prediction difference. Note
that the normal distribution maximises the entropy for a real
valued random variable with specified mean and variance.
The whole process can be understood similar to a multivari-
ate Gaussian random variable in a Gaussian process with
mean §; and white noise, meaning: cov(y, y¢ ) = 0w Vi

y: is then distributed normally with mean y; and some
covariance matrix Vi(s;—1,x¢|6):

Po(yelse—1,%) = (2m) 2 [V 2 x

1 ) _ A (D
exp 3 (Yt - Yt)T Vi ! (Yt - Yt)

Assumption 3. All elements of yi € y; are conditionally
independent from each other given x; and s;_1.

In a physical system, this corresponds to the fact, that two
sensors might take measurements within the same environ-
ment and therefore are (possibly maximally) correlated, but
given the complete internal state of the system, the remain-
ing noise on each sensor is independent from each other.
(They are two different sensors.)

V4 is therefore diagonal and pg(y:|s:—1, X+) factorises to
the following expression:
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where o} are the diagonal elements of V; and can be sum-
marised in the vector o;.

Maximising the likelihood function (2) is equivalent to
minimising the negative log likelihood loss function:
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2.3 Long-Short Term Memory Network

We will employ a vanilla LSTM [6] network to find f and
model all of the ¥; and o (as its short-term memory state) as
well as the hidden state s; (as its long-term memory states)
and use supervised learning with input x; on the targets y,
with stochastic gradient descent to train the weights of the
parametric function.
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Figure 3: Two periodic, artificial signals learned jointly with
an LSTM network. The signal y (red) is sampled with dif-
ferent noise levels in different domains, first gaussian and
second uniform. The LSTM is able to learn both mean §
(blue) as well as standard deviation o (shaded 1-0). The in-
put x is always zero except once at the start of each period
(0, 30, ..) where input equals one.

Writing 0 = exp(7:) guarantees o > 0 and provides
numerical stability in the learning process. The network ar-
chitecture consists of several (1-5) fully recurrent, stacked
LSTM layers with a subsequent fully connected tanh acti-
vation neural network with 2q output channels, one for each
yi and 7%, see Figure 2. Gradients are truncated in time af-
ter tmax Steps, typically between 5 and 50. Optimised is the
sum over L, containing all terms from the current time ¢ to
t — tmax Steps into the past. The training can be realised in a
mini-batch process by going through the data sequences in
parallel.

The models used for this work are implemented within
the TENSORFLOW [15] machine learning framework.

In the learning stage the neural network will optimise its
parameters in order to model the domain dependent func-
tions ¥ and o as accurate as possible, see Figure 3. Put
differently, the neural net learns the domain mean, taking
for each known state the average over the known observa-
tions falling into that category. The method is therefore self
regularising as long as enough data exists for each domain
to determine sensible mean and standard deviation values.
While this can be said for any sufficiently simple model, the
strength of this approach lies in the learning and grouping of
temporal patterns into states which are forced to be treated
unified within the model.

2.4 Anomaly Detection and System degradation

One advantage of modelling the noise along with the system
output can be understood in the first signal of the Figure 3.
Without learning noisy patterns, one would be far less sensi-
tive to deviations of order 1 in the regimes with little to zero
noise, because the same signal exhibits a noise level of the
same order of magnitude in another regime. By modelling
the noise, anomaly detection can be performed for every ob-
served signal independently of different system behaviour
(through time).

To discriminate between normal and anomalous data, we
can calculate the normalised residuals r; = (§: — y+¢)/0+
which should be distributed normally:

:N(rt;071)7 (4)
Figure 4 shows the graph of the residuals from Figure 3

p(re]Se—1,2¢)



Figure 4: Residuals (§ — y)/o for the two examplary pe-
riodic functions shown in Figure 3. The first signal’s noise
is sampled from a gaussian with different variance at dif-
ferent domains in the cycle while the second signal is sam-
pled uniformly. On the right, the residual distribution is his-
togrammed and compared to a normal distribution.

as well as a histogram of its distribution. The histogram of
the first signal (noise with 2 modal variance) resembles a
normal distribution and shows that the LSTM correctly ap-
proximates the different noise levels depending on the cur-
rent progress in the period. The second signal has a uniform
noise, which cannot be modelled perfectly. Strictly speak-
ing, the Assumption 2 is not fullfilled in this case. How-
ever, the variance can still be learned. As is clear for the
purpose of anomaly detection, the only important issue is
that residual outliers should be similarly sparse in the tails
of the distribution. Most problematic cases would be data-
distributions with very long/flat tails which could result in
false positive classifications because the learned variance is
a bad measure for the decision boundary.

When should samples be considered as anomalous? Gen-
erally, it is possible to combine several samples and/or fea-
tures and then analyse the aggregate statistics. A simple
method is to threshold the normal distribution given the test
point 7,. Such a threshold can either be learned (as is often
done in the literature [5]) on the training or held out data to
include a specified percentile of the training data (e.g. 95-
100%) or calculated to include a specified percentile of the
expected distribution.

If a percentile is calculated from the normal distribu-
tion (e.g. r = 3 corresponds to a 1 — 2.7 x 102 quan-
tile), this is the expected frequency of points to be classi-
fied as anomalous (False positive rate). Of course, anoma-
lous points themselves are not expected to be distributed
normally and thus should exceed the threshold value much
more frequently.

The strength of this approach is that it is not necessary to
learn the threshold with held out data, possibly containing
known anomalies. Instead, it is not necessary at all to have
ever measured an anomaly, which is how it should be. Ap-
proximate statements about the expected frequency of false
positives can be made and thresholds can be chosen accord-
ing to ones preferences given the size of the test data and
desired sensitivity.

In order to monitor system change over time, again the
residual statistics can be used. In a typical degradation sce-
nario at least one of the observables usually exhibits more
and more anomalous behaviour.

3 Experiments

In this section, we test the approach on one artificial level
control system and the power demand data set.

3.1 Water Tank System

The water tank system is a simple and common control sys-
tem, see Figure 5. Water is constantly flowing out of a reser-
voir according to the root square law which relates the out-
put flow goy¢ to the water level h: gout = av/h. As soon as a
certain lower threshold is reached, a valve is opened which
allows the tank to be refilled, all the while it is constantly
being drained from the bottom. Once the level reaches an
upper threshold, the valve is closed again.
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Figure 5: (left) Sketch of the water tank control system.
(right) The typical cyclic pattern of g, in time. Some noise
is sampled from a Gaussian distribution with variance pro-
portional to the absolute value.
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This system has an internal state (the water level) which
we assume to be not measured directly as well as a clear de-
pendency of current measurements from the past history. A
certain output flux gy, at any time will result in a larger or
smaller flux in the future depending if the valve was opened
or closed. The LSTM input is a binary signal about the
valve’s state (open/closed), while the output flux is to be
predicted.

Figure 6 shows the learned representation of the long term
memory state of the simplest LSTM architecture (with only
one layer and one internal state) together with the actual wa-
ter level. In this case, a monotonic behaviour suggest that
a meaningful representation of the systems “true" internal
state has been achieved. The water level itself, which can be
considered as an ideal state representation, was not part of
the learning process, but only the process outflow goy;.

We test the learned model against a time sequence con-
taining a period of anomalous behaviour. To generate the
anomalies, at one point a system blockage is introduced
which reduces the output flux by 25%. This kind of anoma-
lous behaviour is not detectable with state-independent
methods which do not model time in any way, as long as
the flux is still large enough to be in the typical regime.
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Figure 6: Scatterplot of the learned Long-Term memory
state of the water tank system, given the actual water level
of the system.



Figure 7 shows the model prediction compared to the ac-
tual output flux. The blockage can be detected as soon as
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Figure 7: (Top) Output flux of the water tank system com-
pared to the model prediction. Shaded regions indicate 30,
red points are anomalous measurements with a 25% reduced
flux. (Bottom) Normalised residuals of the upper graph.

it is introduced because observations do not match expec-
tations immediately. Note that the first anomalous points
actually conform to the usual range of observations during
normal operation, and thus could not be detected by a time
independent anomaly detection approach. Figure 8 shows
the Long-Term memory state together with the valve control
signal before, during and after the blockage. It is interesting
to see, that even after the expected time for the valve to open
again passed, the internal state is further reduced, matching
the actual water level.
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Figure 8: The internal Long-Term memory state of the water
tank system that is learned by an LSTM of depth one, with
only one internal state. Also shown is the input to the LSTM
indicating when the valve is opened. The 75% flux blockage
is active during the red shaded period.

3.2 Power Demand

The Power demand dataset [16] contains a single signal
which is the power consumption of a dutch research insti-
tute recorded every 15 minutes over a total period of one
year. Several characteristics make this dataset interesting as
a toy real world dataset. It contains both short term (daily)
and long term (weekly) temporal patterns characterised by
increased energy consumption during work days. It contains
“anomalies" in the form of holidays with significantly lower
energy consumption (see Figure 9). Additionally, there is
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Figure 9: (top) Typical weekly pattern in the power demand
data. Two exemplary states weakly corresponding to the
weekly and daily pattern are displayed as well. (bottom)
Unusually low power demand during the summer results in a
generally large model deviation compared to what is learned
from the winter period. Additionally, the LSTM does not
foresee the holidays which results in even larger prediction
erTors.

a seasonal shift as the power demand decreases during the
summer, only to increase again at the end of the year.

We use the data from January 2. to March 21. as training
data because the seasonal shift is slow enough and there are
no holidays during this period. We will treat this problem
analogous to a control system, where system input consists
of two Boolean variables marking the beginning of each day
and each weak. (Which is zero all the time except once a
day/week, where it is one). The task is to predict the current
power consumption.

Figure 9 shows the model predictions (+1c-band) to-
gether with actual data from training and test set (during
summer). Additionally, two of a total of 10 internal long-
term memory states that are weakly associated with daily
and weekly patterns are shown. About 3/10 states resem-
bled a daily pattern, 4/10 weekly while the rest could not be
associated with a weekly or daily pattern. The top of Figure
10 shows the residuals of the training set after convergence.
The distribution can hardly be distinguished from a normal
distribution which suggests a successful training stage.

The bottom of Figure 10 illustrates the anomaly detection
approach. To indicate the summer period we empirically
choose a threshold of 4 standard deviations, while anomalies
should exceed 8o (without further optimisation). All holi-
days (days 87,90,120,125,128,139,359,360) have been de-
tected with two additional false positives at day 365 (which
exhibits a normal day pattern followed by a large power
drop) and day 277 (which exhibits a pattern close to a work-
ing day, but on a Saturday), see Figure 11.
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Figure 10: (Top) Residuals of the power demand training set. (Botfom) Residuals of the test set. The seasonal shift is
noticeable in the first half of the data sample. Large positive model deviations indicate holidays. Points with absolute
deviations greater than 40 are coloured orange, deviations greater than 8o are coloured red.
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Figure 11: False positives of the open Saturday and End of
year power drop.

4 Discussion & Remarks

Another study of anomaly detection with the power demand
data set can be found in [10]. Here, the authors applied auto-
regressive LSTM-sequence learning to the task, obtaining
good results (0.94 precision, 0.17 recall and Fj ; = 0.90).
Precision is the fraction of anomalous data amongst all pos-
itively labelled instances, while recall is the fraction of de-
tected anomalies. The F3 score is the weighted harmonic
mean of precision and recall, with 8 weighing the impor-
tance of precision over recall. It should be noted that all
observations on a holiday are to be labelled as anomalous,
although most of the day (especially the night cycle) looks
like any other day. This naturally leads to a high false pos-
itive rate for this problem and motivates to focus on a Fjg
score with low (3, putting a low weight on false positives.
There are a number of differences to our approach. First,
we deliberately abdicate of the use of a validation set con-
taining anomalies in order to fine-tune thresholds to make
the model sensitive to the right kind of anomalies. Instead,
as is motivated by real world scenarios where no anoma-
lous behaviour has been observed, the threshold is chosen
more or less arbitrary, by inspecting the distribution of nor-
malised residuals of the training set (or alternatively of a
small validation set). Second, our approach is not auto-
regressive but relies on input related to changes of system
state. This makes the anomaly detection approach more
robust to anomalous data (given also as input to the auto-
regressive formalism before being compared to the model
output), but less versatile to different kinds of data, where

such input is not readily available or hard to construct given
high-dimensional time-series data. Using the aforemen-
tioned test-set as well as an 80 anomaly threshold, final
analysis results in a precision of 0.95, a 0.31 recall and
Fp.1 = 0.93. Our method is sensitive to the missing power
consumption on a holiday far earlier than the auto-regressive
method simply by being independent of noisy anomalous
model input, misleading the algorithm to assume a late rise
instead of a missing day-pattern. Because data is noisy, the
positively sloped edge at the beginning of the shift occurs
at slightly different times each day, which can be accounted
for by proper uncertainty modelling.

The problem of model uncertainty, in particularly with
regards to neural networks is still an open question of re-
search, but definitely necessary to quantify in the domain
of anomaly detection. In this work, only the noise which
is inherent in any data is modelled. Systematic uncertainty
because of missing information or insufficient model com-
plexity is not addressed (see [17] for a general overview of
uncertainty modelling in deep learning approaches).

Experiments showed that learning the variance along with
the mean makes learning by gradient descent more difficult,
even when using optimisers such as Adam [18] or Momen-
tum. It was beneficial to keep the 7 variables frozen in a first
learning stage.

The kind of data modelling described in this approach re-
quires a distinction of in- and output variables. Only the
outputs are modelled and checked for anomalies. If anoma-
lies are present in the inputs, the faulty system input should
lead to a miss-prediction of output variables y and therefore
trigger the anomaly classification. However, this is not guar-
anteed and needs to be investigated in greater detail. The
Figures 7 and 8 show, that the LSTM is able to extrapo-
late beyond the normally observed patterns in a meaning full
way, indicating that even anomalous input could generate a
“correct” (compared to the data) but nevertheless anomalous
(given the context) output.

For many real world systems it is a problem to clearly
distinguish between the x and y variables. A simple parti-
tion into actor and sensor signals which is often possible in
control theory is not applicable to every system. One should
keep in mind to always include all exogenous variables in x,



because they cannot be predicted by any other variable. In
many CPS, some of these signals are binary in nature, such
as on/off commands. Other possible candidates are environ-
mental measurements that are not or only barely influenced
by the system that is to be monitored.

A clear disadvantage of requiring a hard separation be-
tween in- and output variables is limited use in systems
where such input can inherently not exist (e.g. heart rate
monitoring or similar systems). Of course it is possible to
adapt the model to include the output variables as input in
something like an encoder-decoder recurrent neural network
[13]. However, for the purpose of anomaly detection it is
not guaranteed that every anomalous input is always going
to generate an output significantly different to the observed
value.

Although not discussed in this work, it is generally pos-
sible to use the approach described in this paper for time
series forecast. If the output prediction of observation vec-
tor y is to be estimated into the future one changes the
training procedure for the LSTM to predict ahead of time:
f : (St,]_, o St+t’—1,xt) — (st+t’ R ytth’) with ¢’ determin-
ing the shift into the future.

5 Conclusions

We presented a model based anomaly detection for CPS
data based on state dependent LSTM neural networks. In
order to train the LSTM, a modified loss function intrinsi-
cally including the problem of noise prediction is derived.
Equipped with this characteristic, LSTM are able to learn
the temporal patterns inherent in CPS data and can out-
put reliable predictions of observations made on the system.
Predictions of both signal and noise can then be used to de-
tect anomalies or system deterioration.
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