
Anomaly Detection Using Similarity-based One-Class SVM for Network
Traffic Characterization

Bouchra Lamrini1, Augustin Gjini1, Simon Daudin1,
François Armando1, Pascal Pratmarty1 and Louise Travé-Massuyès2

1LivingObjects, Toulouse, France
e-mail: {bouchra.lamrini,augustin.gjini,simon.daudin,françois.armando,pascal.pratmarty}@livingobjects.com

2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
e-mail: louise@laas.fr

Abstract

In this paper∗, we investigate an unsu-
pervised machine learning method based
on one-class Support Vector Machines for
anomaly detection in network traffic. In
the absence of any prior expert knowledge
on anomalous data, we propose the use of
a similarity measure for Multivariate Time
Series to evaluate the output results and se-
lect the best model. A set of Key Perfor-
mance Indicators, oriented for network and
traffic monitoring, has been used to demon-
strate the promising performance of the un-
supervised learning approach.

1 Introduction
Anomaly detection aims at identifying unusual pat-
terns in data that do not conform to expected behav-
ior [1]. These non-conforming patterns are generally
referred in different application fields to as anomalies,
aberrations, discordant observations, exceptions, nov-
elty, outliers, peculiarities or contaminants, surprises,
strangeness. There has been applications in several
application fields from intrusion detection, e.g. iden-
tifying strange patterns in network traffic that could
signal a hack [2], to system health monitoring, e.g.
spotting a malignant tumor in an MRI image scan [3],
and from fraud detection in credit card transactions
[4], to fault detection in operating environments [5].
In this paper we are interested in anomaly detection
in network traffic.

Support Vector Machines (SVMs) have been one of
the most successful machine learning techniques that
can be used in a variety of classification applications.

∗Index Terms: Anomaly Detection, Support Vector Ma-
chines (SVMs), One-Class SVMs, Unsupervised Learning,
Model Selection, Similarity Measure, Multivariate Time
Series (MTS).

SVMs perform at least as good as other methods in
terms of the generalization error [6].

Many factors contributed to the high popularity of
SVMs today. First of all, their theoretical founda-
tions have been deeply investigated and they come
with a convex optimization procedure ensuring that
the global optimum will be reached. Moreover, the
solution is sparse making it really efficient in com-
parison to other kernel-based approaches [7]. In ad-
dition, they may use a non linear transformation in
the form of a kernel that even allow SVMs to be con-
sidered as a dimensionality reduction technique [8].
One-Class SVMs [9] have been devised for cases in
which one class only is known and the problem is to
detect anything outside this class. This is known as
novelty detection and it refers to automatic identifi-
cation of unforeseen or abnormal phenomena [1; 10;
11], i.e. outliers, embedded in a large amount of nor-
mal data.

In contrast to traditional SVMs, One-Class SVMs
(OC-SVM) learn a decision boundary that achieves
maximum separation between the samples of the
known class and the origin [12]. Only a small frac-
tion of data points are allowed to lie on the other side
of the decision boundary: those data points are con-
sidered as outliers.

Anomaly detection is particularly important for
network traffic. The observed growth rate of infor-
mational and economic damage caused by intention-
ally or unintentionally attacks, faults, and anomalies
has been a driving force behind efforts to ensure that
network monitoring systems are able to detect ab-
normal activity and characterize it. The limitations
of computing and storage resources require compe-
tence and ingenuity to effectively characterize ever-
changing network traffic trends.

Non-availability of labelled data, high costs for
constituting labeled training data, and need to iden-
tify anomalous and novel observations in data without
having necessarily seen an example of that behaviour
in the past are the main challenges tackled in this

work. A central issue is model selection, i.e. choice
of the optimal hyper-parameters that define the OC-
SVM learning configuration. This requires a method
to evaluate the results.

This paper contributes to this problem by evalu-
ating the results of the trained model by comparing
samples predicted normal with samples in the train-
ing set. Because samples are composed of a set of
signals over a temporal window, we propose to use a
similarity index for Multivariate Time Series (MTS)
called EROS (Extended Frobenius Norm). The re-
sults of the model are evaluated iterativelly for differ-
ent hyper-parameters of OC-SVM and the model that
evaluates best is selected. We show that OC-SVM in
combination with the Eros index [read more in Sec-
tion 4.1] can create automatically tuned reliable clas-
sifiers with reasonable computation cost.

The remainder of this paper is organized as follows.

Section 2 presents our case study. Section 3 is de-
voted to an overview of SVMs and One-Class SVMs
methods. In Section 4, we present the EROS similar-
ity measure used to search for the best training model
for anomaly detection. Experimental results and re-
lated discussions are provided in Section 5 to demon-
strate the approach performance. Finally, Section 6
concludes the paper.

2 Case Study
Processing network traffic involves dealing with an
immense amount of data that is quickly and con-
stantly varying. Considering the enormous amount
of data involved it is very easy for malicious activities
to go undetected, especially without any knowledge a
priori about the nature of the traffic, like it is often the
case in the network domain.

Figure 1: Training Data Set. The y-axis represents the KPI signals. From top to bottom: Total Incoming
Traffic, Total Outgoing Traffic, Server Delay, and Network Delay.

In this study, data was collected from a real-time
monitoring platform dedicated to ensure key applica-
tion performance. 51 sites using applications of the
same kind and having roughly the same uses at the
same time, were chosen. For each application, we
selected carefully four relevant Key Performance In-
dicators (KPIs) describing:

1. Total Incoming Traffic.
2. Total Outgoing Traffic.
3. Server Delay, i.e. the connection time to the

server, which sets the expiration time for send-
ing a request.

4. Network Delay that specifies how long it takes
for a bit of data to travel across the network from
one node to another.

A history of two months (3408 samples) of data
generated at a 5 minutes rate was collected for each
of the four KPIs above and for each site. Data was
segmented into time-windows wi, each of 48 points.
Figure 1 shows the data contained in the training set.
Each time-window wi ∈ {w0, ..., wl}, l = 70, is
identified between lines and there are 70 samples.

Let us notice that the data samples that are provided
to the OC-SVM classification algorithm are multivari-
ate, each composed of four KPI segments over the
same time-window. The idea is to detect insidious
problems that require an analysis of the signal under-
lying interactions. We therefore want to detect “ab-
normal windows”. Each segment is characterized by
seven statistical attributes: minimum (MIN), maxi-
mum (MAX), mean (MEAN), median (MED), stan-

Page 2/8

dard deviation (STD), number of average crossings
(nbpMean), squared mean error (SME) computed be-
tween the raw data and the linear fitting. These at-
tributes are used by OC-SVM after normalization.
Figure 2 shows the attributes built for the 70 segments
of the four KPIs mentioned above. The seven at-

tributes MEAN, MED, MAX, MIN, STD, nbpMean,
and SME are illustrated in sub-figures from left to
right. We can already notice some overruns that will
make considerable contribution to the classifier pro-
file defined by the decision function.

Figure 2: Attributes built for training data KPIs. Each point is calculated on a segment of 48 points.

3 An Unsupervised Similarity-based
Method for Anomaly Detection

Support Vector Machines (SVMs) have always been
of interest in anomaly detection because of their abil-
ity to provide non-linear classification through a ker-
nel function. Via this short overview, we show that
SVMs are theoretically well founded. We briefly in-
troduce the basic concepts of SVMs then focus on
OC-SVM that we adopted in this study. A more de-
tailed presentation can be found in [13] and a good
example is available on URL using "LibSVM" library
of Matlab.

3.1 Support Vector Machines
Let us consider the traditional two-class support vec-
tor machines in which we are given a set of n train-
ing instances S = {(x1, y1), (x2, y2), ..., (xn, yn)}.
xi ∈ Rd, where yi is the class label of the xi in-
stance and yi ∈ [−1,+1]. The linear SVMs classifier
recovers an optimal separating hyperplane maximiz-
ing the "margin" of the classifier with the equation:
wTx+ b = 0, with w ∈ F and b ∈ R two parameters
witch determine the position of the decision hyper-
plane in feature space F (its orientation is tuned by w
and its displacement by b). The decision function can
thus be generally written as:

f(x;w, b) = sign(wTx+ b) ∈ {−1,+1} (1)

where:

sign(wTx+ b) =

{
+ 1, if (wTx+ b) ≥ 0

− 1, otherwise
The concept of SVMs is to find (w, b) such that the

hyperplane is positioned at maximum distance of the
nearest training samples of the two classes in order
to reduce the generalization error. This distance de-
fines the "margin". SVMs have first been proposed
for linearly separable classification tasks. However
they were extended to non-linearly separable classifi-
cation problems. Some samples are allowed to violate
the margin (soft-margin SVMs) and a non-linear deci-
sion boundary can be obtained by projecting the data
into a higher dimension space thanks to a non-linear
function Φ(x). Data points may not be linearly sepa-
rable in their original space but they are “lifted” into
a feature space F where a hyperplane can separate
them. When that hyperplane is projected back into
the input space, it has a non-linear shape. To prevent
the SVM classifier from over-fitting noisy data, slack
variables ξ are introduced to allow some data points to
lie within the margin, and the parameterC > 0 (Eq.2)
tunes the trade-off between the classification error on
the training data and margin maximization. The ob-
jective function of SVM classifiers has the following
minimization formulation:

min
w,b,ξi

‖w‖2

2
+ C

n∑
i=1

ξi (2)

Page 3/8

http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/

Subject to:

yi(w
Tφ(xi) + b) ≥ 1− ξi
ξi ≥ 0, i = 1, ..., n

The minimization problem is solved using La-
grange Multipliers αi, i = 1, . . . , n. The new deci-
sion function rule for a data point x is:

f(x) = sign(

n∑
i=1

αiyiK(x, xi) + b) (3)

Every αi > 0 is weighted in the decision function and
thus supports the machine. Since SVMs are consid-
ered to be sparse, there are relatively few Lagrange
multipliers with a non-zero value.

The function K(x, xi) = Φ(x)TΦ(xi) is known as
the kernel function. Since the outcome of the decision
function only relies on the dot-product of the vectors
in the feature space F (i.e. all the pairwise distances
for the vectors), it is not necessary to perform an ex-
plicit projection. As long as a functionK provides the
same results, it can be used instead. This is known as
the kernel trick.

Popular choices for the kernel function are linear,
polynomial, and sigmoïdal. In this study, we used the
Gaussian Radial Base Function:

K(x, xi) = exp(
−‖x− xi‖2

2σ2
) (4)

where σ ∈ R is a kernel parameter and ‖x− xi‖ is
the dissimilarity measure. With this set of formulas
and concepts we are able to classify a set of data point
into two classes with a non-linear decision function.

The power of the method comes from using ker-
nel functions, which enable it to operate in a high-
dimensional, implicit feature space without ever com-
puting the coordinates of the data in that space, but
rather by simply computing the inner products be-
tween the images of all pairs of data in the fea-
ture space. This operation is often computationally
cheaper than the explicit computation of the coordi-
nates. Figure 3 illustrates a non linearly separable
data set clustered by SVM with two different kernel
functions: linear and radial based. The observations
are plotted blue or magenta depending on the class
and the background is darker as the distance from the
hyperplane is higher. Scores are given on the right
bottom corners and show a significant increase for the
non linear kernel.

3.2 One-Class Support Vector Machines
One-Class SVMs (OC-SVMs) are used to separate
the data of one specific class, the target class, from
other data. They are trained with positive examples
only, i.e. data points from the target class. There are
two different approaches: the approach according to

Figure 3: SVM results with two kernel functions.

Schölkopf [13], which is presented in the next para-
graph, and that according to Tax and Duin [14].

In the feature space F , OC-SVM method basically
separates all the data points from the origin by a hy-
perplane and it maximizes the distance of this hyper-
plane to the origin. This results in a binary function
which captures the region of the input space where
the training data lives. Thus the function returns +1
in a “small” region (capturing the training data points)
and −1 elsewhere. The quadratic programming min-
imization function is slightly different from the origi-
nal stated by (Eq.2) and (Eq.3):

min
w,ξi,ρ

‖w‖2

2
+

1

ηn

n∑
i=1

ξi − ρ (5)

Subject to:
w.φ(xi) ≥ ρ− ξi

ξ ≥ 0

i = 1, ..., n

Schölkopf et al. [13] has reformulated SVMs to
take the new regularization parameter η instead of
C in the original formulation (Eq.2 and Eq.3). The
range of C is from zero to infinity, but η is always
between [0, 1]. η characterizes the solution in a nice
interpretable way: (1) it sets an upper bound on the
fraction of outliers, e.g. the training examples re-
garded out-of-class, (2) and it sets a lower bound on
the number of training examples used as support vec-
tors.

Again by using Lagrange techniques and using a
kernel function for the dot-product calculations, the
decision function becomes:

f(x) = sign((wΦ(xi))− ρ)

= sign(

n∑
i=1

αiK(x, xi)− ρ)
(6)

OC-SVMs thus create a hyperplane characterized
by w and ρ which has maximal distance from the ori-
gin in the feature space F , hence separating all the
data points from the origin.

4 Similarity-based Performance
Evaluation for Model Selection

In this section, we address the problem of fitting the
hyper-parameters of OC-SVM automatically, that is

Page 4/8

the problem of automatic model selection. In the case
of OC-SVM, this amounts to choose the kernel pa-
rameter γ and the regularization parameter η. A pair
(γi, ηj) is defined as a learning configuration.

For this purpose, we propose to run OC-SVM for
several learning configurations and select the best
configuration by evaluating the similarity of the KPI
signals for the windows tagged normal by OC-SVM
and the KPI windows of the training data that are as-
sumed to be normal examples. Since a sample win-
dow is composed of several KPI signals, we need
a multidimensional similarity index for Multivariate
Time Series (MTS).

4.1 The similarity Index Eros
Multidimensional similarity measures aim to indicate
simultaneously the level of similarity between several
datasets (databases, data clusters, etc.). Unlike other
methods [15; 16; 17] that seek the level of similarity
between two variables by omitting the existing cor-
relation between the set of variables, a multidimen-
sional method takes into account the contribution of
each variable in defining a global similarity measure.

One of the methods processing MTS is the method
Eros (Extended Frobenius Norm) [18]. The interest
behind this method lies in its ability to assess the simi-
larity of MTS composed of a different number of data
points. It indeed uses the eigenvalues and eigenvec-
tors of the covariance matrix that has size n×n, n be-
ing the number of times series composing the MTS.
In doing so, it also performs dimension reduction be-
cause the number of observations is generally higher
than that of the variables.

We briefly describe the similarity index Eros based
on the Frobenius Norm below. The definitions and no-
tations used in this paper are taken from [19]. We first
formally define the similarity index Eros. Next, we
present the algorithm describing the similarity mea-
sure procedure and the approach proposed for model
selection.

Definition 1. Eros (Extended Frobenius Norm).
Let A and B be two MTS items of size mA × n
and mB × n respectively. Let VA and VB two right
eigenvector matrices by applying Singular Value De-
composition (SVD) to the covariance matrices, MA

and MB , respectively. Let VA = [a1, . . . , an] and
VB = [b1, . . . , bn], where ai and bi are column-
orthonormal of size n. The Eros similarity of A and
B is then defined as:

Eros(A,B,w) =

n∑
i=1

wi |< ai, bi >|

=

n∑
i=1

|cos(θi)|
(7)

where 〈ai, bi〉 is the inner product of ai and bi, w is a
weight vector which is based on the eigenvalues of the
MTS dataset,

∑n
i=1 wi = 1 and cos(θi) is the angle

between ai and bi. The range of Eros is between 0
and 1, with 1 being the most similar.

Definition 2. Singular Value Decomposition. Let
A be a general real m× n matrix. The singular value
decomposition (SVD) of A is the factorization:

A = UΣV (8)
where U is a column-orthonormal N × r matrix, r
is the rank of the matrix A, Σ is a diagonal r × r
matrix of the eigenvalues γi of A where γ1 ≥ ·· ≥
γr ≥ 0 and V is a column-orthonormalM×r matrix.
The eigenvalues and the corresponding eigenvectors
are sorted in non-increasing order. V is called the
right eigenvector matrix, and U the left eigenvector
matrix.

Yang et al. (2005) [18] describe the similarity in-
dex algorithm with the following steps:

1. Compute the covariance matrix of each MTS.
2. Use SVD to decompose each covariance matrix.
3. Recover eigenvalues and eigenvectors.
4. Compute the weight w of individuals by normal-

izing the eigenvalues [18].
5. Compute similarity between MTS.

4.2 Automatic Model Selection
The first task is to define the learning configurations
that will be tested with OC-SVM. We follow the steps
below:

1. Define the hyper-parameter space and a proce-
dure to explore this space. In our case, we set a
min-max and a variation step to constitute a grid
(β × β) value pairs, i.e. β values for each hyper-
parameter.

2. Explore the hyper-parameter space and set OC-
SVM accordingly: for each pair of values, one
OC-SVM classifier is obtained after the learning
step. The best configuration is retained by using
the Eros similarity index on the validation data
(25% of all data) and the training data (50% of
all data). The corresponding OC-SVM classifier
is taken as the best model.

3. Once found the best model, anomaly detection is
performed on new data to evaluate how well the
model behaves.

The similarity of windows tagged normal by OC-
SVM, denoted by MTSnormalk , k = 0, ..., p, and the
data windows of the training data (considered as nor-
mal), denoted by MTSlearnl , l = 1, ..., q, is obtained
as follows. For every learning configuration [Figure
4] given by (γi, ηj):

Page 5/8

1. Compute Eros for every window pair
(MTSnormal

k ,MTSlearn
l), k = 0, ..., p, and

l = 1, ..., q.

2. Compute the average similarity "Erosmean" over

all the window pairs.

The best learning configuration is taken as the one
leading to the maximal "Erosmean" value over all con-
sidered learning configurations (γi, ηj).

Figure 4: Diagram showing the model selection process.

5 Experiments on the Case Study
Our detection approach was applied to the case study
presented in Section 2. A history of two months of
data generated every 5 minutes for four KPIs was col-
lected over 151 sites. The window segmentation [20]
was performed after analyzing two points that can sig-
nificantly impact the detection stage:

• choice of the time-window length, i.e. the num-
ber of hours and samples to take account in a
window,

• definition of a reliable methodology to normalize
training and testing datasets versus in these.

As mentioned in section 2, the time-window length
was chosen of 4 hours, i.e. 48 samples. Clearly,
when access to web applications is established in a
few hours, a window of four hours is considered a
significant period for traffic analysis. As noted above,
each time-window is characterized by seven statistical
attributes: minimum (MIN), maximum (MAX), mean
(MEAN), median (MED), standard deviation (STD),
number of average crossings (nbpMean), squared
mean error (SME) computed between the raw data
and their linear fit. The attributes are computed for
each time-window in order to obtain a multidimen-
sional scatter plot, where each point represents a time-
window. One of the major interests of segmentation
and feature computation is to synthesize the informa-
tion contained in a time-window. This allows the de-

tection not only of singular points, but also of an atyp-
ical set of points even if each point taken.

Acquired raw data provide KPIs with different
ranges, then features (attributes) themselves don’t
have homogeneous ranges. In order to guarantee good
performances of the anomaly detection approach, we
chose to normalize these attributes with respect to
their maximal and minimal values with a tolerance
using a threshold s ∈ [0, 1]. This standard preprocess-
ing ensures that all the attributes contribute equally to
the decision process independently of the parameters
responsible of KPI dynamics.

To automatically select the best model, the hyper-
parameter space was discretized with a 10 × 10 grid,
i.e. β = 10. 100 learning configurations were there-
fore evaluated to select the best model. This off-line
task was performed for each application site and ap-
peared computationally feasible.

Figure 5 shows some of the test results (25% of all
data). From 24 time-windows (wi ∈ {w0, . . . , wm},
m = 23), 4 anomalies have been detected represented
by the 4 time-windows (yellow colored): w3, w4, w10

and w12. The results were confirmed with Parallel
Coordinates plots given in Figure 6.

In a Parallel Coordinates Plot, each attribute is
given its own axis and all the axes are placed paral-
lel to each other. Values are plotted as a series of lines
that connect across all the axes. This means that each
line corresponds to one data window for which we
have 7× 4 attributes (7 features for every KPI).

Page 6/8

The order in which the axes are arranged can im-
pact the way how the reader understands the data.
One reason for this is that the relationships between
adjacent variables are easier to perceive than those be-
tween non-adjacent variables. So re-ordering the axes
can help in discovering patterns or correlations across
variables. We clearly see that the four time-windows
defined by the pink lines represent a strange behav-
ior compared to the normal windows defined by the
green lines.

Presenting this type of detection can ensure that the
network administrators adopts another reasoning to
characterize the nature of the traffic (normal, abnor-
mal, critical, ...) circulating on the network. It may
help him to identify the different forms of anomaly
in his network. Data analysis must give meaning
to the data with the goal of discovering useful in-
formation, suggesting conclusions, and supporting
decision-making. The value of the data lies in the
story it tells.

Figure 5: Anomaly detection (yellow windows are detected abnormal). From top to bottom, KPIs appear
in this order on the y-axis: Total Incoming Traffic, Total Outgoing Traffic, Server Delay, and Network Delay

Figure 6: Parallel Coordinates Plot illustrating the
four abnormal windows. From top to bottom, the
curves labeled in pink color shows successively
the time-windows: w3, w4, w10 and w12.

6 Conclusion
In this work, we applied the OC-SVM method to de-
tect anomalies in real network traffic, contributing
with an automatic method based on the similarity in-
dex Eros [19] for setting the hyper-parameters which
define the learning configuration. It provided very sat-
isfactory results.

The advantages of novelty detection for complex
processes like network traffic are multiple. In partic-
ular there is no need of faulty data. A wide variety of
cases of anomaly exist and it would be impossible to
characterize them all or to gather the corresponding
data. Challenges for future work is related to the
fact that data comes in a stream and dealing with the
data in real-time is quite tedious. The amount of data
leads to cases where resources are limited. Novelty
detection in a distributed framework is also to be
investigated.

Acknowledgement The authors thank Bertrand
Le Marec and David Maisonneuve, leading team of
LivingObjects, for their support and valuable com-
ments about the application.

Page 7/8

References
[1] V. Chandola, A. Banerjee, and V. Kumar.

Anomaly detection: A survey. ACM Computing
Surveys, 41(3):15:1–15:58, 2009.

[2] V. Kumar. Parallel and distributed computing
for cybersecurity. IEEE Distributed Systems On-
line, 6(10):1–9, 2005.

[3] C. Spence, L. Parra, and P. Sajda. Detection,
synthesis and compression in mammographic
image analysis with a hierarchical image prob-
ability model. In Proceedings of the IEEE
Workshop on Mathematical Methods in Biomed-
ical Image Analysis (MMBIA’01), MMBIA’01,
pages 3–, 2001.

[4] E. Aleskerov, B. Freisleben, and B. Rao. Card-
watch: a neural network based database min-
ing system for credit card fraud detection. In
Proceedings Of The IEEE/IAFE 1997 Compu-
tational Intelligence For Financial Engineering
(CIFEr), pages 220–226, 1997.

[5] R. Fujimaki, T. Yairi, and K. Machida. An ap-
proach to spacecraft anomaly detection problem
using kernel feature space. In Proceedings of
the Eleventh ACM SIGKDD International Con-
ference on Knowledge Discovery in Data Min-
ing, KDD’05, pages 401–410, New York, NY,
USA, 2005. ACM.

[6] C.J.C. Burges. A tutorial on support vector ma-
chines for pattern recognition. Data Mining and
Knowledge Discovery, 2(2):121–167, 1998.

[7] C.M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

[8] W. Wang, Z. Xu, W. Lu, and X. Zhang. Deter-
mination of the spread parameter in the gaussian
kernel for classification and regression. Neuro-
computing, 55(3-4):643–663, 2003.

[9] M.A.F. Pimentel, D.A. Clifton, and L.C.
Tarassenko. A review of novelty detection. Sig-
nal Processing, 99:215–249, 2014.

[10] D. Dasgupta and S. Forrest. Novelty detection in
time series data using ideas from immunology.
In Proceedings of The 5th International Con-
ference on Intelligent Systems, Reno, Nevada,
1996.

[11] E. Keogh, S. Lonardi, and W. Chiu. Finding
surprising patterns in a time series database in
linear time and space. In Proceedings of the
8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD
’02, pages 550–556, New York, NY, USA, 2002.
ACM.

[12] B. Schölkopf, J.C. Platt, J.C. Shawe-Taylor, A.J.
Smola, and R.C. Williamson. Estimating the
support of a high-dimensional distribution. Neu-
ral Computation, 13(7):1443–1471, 2001.

[13] B. Schölkopf, R. Williamson, A. Smola,
J. Shawe-Taylor, and J. Platt. Support vector
method for novelty detection. In Proceeding of
the 12th International Conference on Neural In-
formation Processing Systems, pages 582–588,
1999.

[14] R.P.W. Tax, D.M.J. and Duin. Support
vector data description. Machine learning,
54(1):45–66, 2004.

[15] G.E.A.P.A. Batista, W. Wang, and E.J. Keogh. A
complexity-invariant distance measure for time
series. SDM, 2011.

[16] C.A. Ratanamahatana and E.J. Keogh. Mak-
ing time-series classification more accurate us-
ing learned constraints. In Proceedings of
SIAM International Conference on Data Mining
(SDM’04), pages 11–22, 2004.

[17] S. Park, W.W. Chu, J. Yoon, and C. Hsu. Effi-
cient searches for similar subsequences of dif-
ferent lengths insequence databases. In 16th

International Conference on Data Engineering,
pages 23–32, 2000.

[18] K. Yang and C. Shahabi. A multilevel distance
based index structure for multivariate time se-
ries. In 12th International Symposium on Tem-
poral Representation and Reasoning, 2005.

[19] K. Yang and C. Shahabi. A pca-based simi-
larity measure for multivariate time series. In
Proceedings of the Second ACM International
WorkShop on multimedia Databases, 2004.

[20] S. Fuertes, G. Picart, J.Y. Tourneret, L. Chaari,
A. Ferrari, and C. Richard. Improving space-
craft health monitoring with automatic anomaly
detection techniques. In 14th International Con-
ference on Space Operations., page 2430, 2016.

Page 8/8

	Introduction
	Case Study
	An Unsupervised Similarity-based Method for Anomaly Detection
	Support Vector Machines
	One-Class Support Vector Machines

	Similarity-based Performance Evaluation for Model Selection
	The similarity Index Eros
	Automatic Model Selection

	Experiments on the Case Study
	Conclusion
	References

