
Abstract 

Nowadays, robots become increasingly more au-
tonomous, which gives more importance to the 
Fault Detection and Isolation (FDI) task. In this 
article, major existing faults classification is spec-
ified. Faults are classified with respect to their 
time dependency, their source and their effect on 
system model. After that, mobile robotics-suitable 
FDI methods are classified into four main catego-
ries: material redundancy based, knowledge 
based, data based and model based approaches. 
Then, Extended Kalman Filter (EKF) and Multi-
ple model Adaptive Estimation (MMAE) are ex-
plained and applied in a simulation to detect and 
isolate efficiently four wheel block faults, after 
studying briefly how wheel block faults affect the 
robot model. The average detection and isolation 
rate in the presented simulation is in order of 
90%. 

1 Introduction 

1.1 Fault Detection and Isolation 

Fault Detection and Isolation (FDI) is a crucial task to 

ensure greater autonomy of mobile robots. Fault can oc-

curs at any time during the robot operation. It may prevent 

the robot from achieving its goal, and it may damage the 

equipment. 

FDI consists at least on two stages: 

 Fault detection: When something is wrong, the 

first step is to know that a fault has occurred. This 

operation is the fault detection. 

 Fault isolation: Finding out what the source of a 

fault is, namely determining what the faulty com-

ponent is.. 

A third stage may be added, fault accommodation. It con-

sists on adapting the system so it still can achieve its goal 

despite the presence of fault. 

1.2 Faults categorization 

With respect to their time dependency, faults can be classi-

fied as (Fig. 1) [12]:  

 Abrupt fault: sudden step appears on the signal. 

 Drift fault: The signal deviates during time. 

 Intermittent fault: The fault appears in an interval 

of time and ten disappears. 

 

 

Fig.  1. Fault classification regarding time dependency 

Furthermore, depending on their source, faults can be 

classified as: 

 Sensor faults: e.g. IMU, GPS, odometers; 

 External faults: e.g. invisible or negative obstacle, 

slip; 

 Mechanical Faults: e.g. Blocked wheel, deflated 

wheel, suspension fault; 

 Actuator fault: e.g. Motor fault. 

Moreover, faults can be classified regarding their effect on 

the model of the system as additive or multiplicative faults. 

Considering the state space system in (1): 

                       
               

(1) 

Where    and    are additive faults on the input and output 

respectively. Multiplicative faults appear as a modification 

of the matrices      and  . 

1.3 FDI methods overview 

In order to be applied to mobile robots, FDI method has to 

respect three essential constraints: 

 Online: the FDI method must diagnose the robot 

while he is doing his job. 

 Real-time application: FDI method must not in-

terrupt the operation of the robot. 

 Cope with nonlinear models: The robot kinemat-

ic and dynamic models may have some degrees 

of nonlinearity. FDI method must have the ca-

pacity to deal with such models. 

Many FDI methods exist in the literature, see [1] for a re-

view. These methods can be classified essentially into four 

main categories:  

 Material redundancy approaches: this is the most 

basic approach. It consists on adding redundant 

sensors to measure same variables. The compar-

ison between their outputs leads to detection and 

isolation of faults.  
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 Knowledge-based approaches: in this type of 

methods, we should know the behavior of the 

system in each mode (normal or faulty). Then, 

the FDI is done by predicting the current mode 

of the system at each time. Main methods in this 

category are Particle filter and its variants [2-4]. 

 Data-based approaches: Artificial Intelligence 

[5-6] is a generic tool that can solve many clas-

sification or estimation problems. It can be used 

to treat the output of other methods or directly 

on the measurements to predict the actual mode 

[1]  Model-based approaches: the main idea of these 

approaches is to use the mathematical model of 

the system for the FDI process. Relying on this 

model, we can estimate the variables and then, a 

comparison between these variables and meas-

urements produces residues. The residues treat-

ment leads to detection and isolation of faults. 

Many methods exist in this category, such as Ex-

tended Kalman Fileter (EKF) [1] and Multiple 

Model Adaptive Estimation (MMAE) [7-8]. 
MMAE is efficient and robust FDI technique that can deal 
with additive and multiplicative faults knowing their archi-
tectures. EKF is a good estimator for nonlinear models of 
first order. In the next sections, we will explain the princi-
ple of the Extended Kalman Filter (EKF) and the Multiple 
Model Adaptive Estimation (MMAE). And after, we will 
present a simulation of the MMAE on a mobile robot, 
where each of its parallel models is implemented using an 
EKF. 

2 Methods theory 

2.1 EKF  

The EKF is an extension of the Kalman filter (KF) de-

signed to deal with first order nonlinear systems. Its algo-

rithm is similar to that of KF [7], but it does additional step 

of linearization. Given the following system model:  

                     
            

(2) 

It calculates the Jacobians (equation (3)) of state and out-

put matrices and uses it in the KF algorithm. 

      

  
 
         

;       

  
 
      

 (3) 

In this paper, the Mahalanobis distance is used as a resi-

due, It determines how well measured data fit predicted 

ones. It is calculated as in equation (4): 

         (4) 
Where y is the simple residue vector (predicted minus 

measured data) and s is the output covariance matrix. 

EKF can cope efficiently with nonlinear models of first 

order. However, its performance degrades if the noise 

distribution on the system is very different from Gaussian 

one, or if the degree of nonlinearity is bigger than one. 

2.2 Proposed MMAE scheme 

Multiple Model Adaptive Estimation (MMAE) can be 

used in fault diagnosis to detect and isolate additive or 

multiplicative faults knowing their structures. It is robust 

and adapted to these types of faults. It can be used also to 

design fault tolerant control. In [7] and [8], MMAE ap-

proach is used to detect and compensate sensor and actua-

tor faults in aircraft flight control systems. Surface control 

actuators and sensors (IMU) faults are successfully isolat-

ed and accommodated in real time.  

Its principle is to run a bank of filters in parallel. Each 

filter implements a model matching one mode of the sys-

tem, i.e. normal system, or system with particular fault. 

The outputs of these filters are then treated by a decision 

module to determine the actual mode of the system and to 

produce the final state estimate of the variables. Fig. 2 

illustrates the basic structure of MMAE. A bank of 

Kalman Filters (KF - can be any version of KF) is adopted. 

Every KF outputs the state estimate xi and the residue ei. 

These two variables enter a decision module that generate 

a vector of probabilities p, where pi is the probability that 

the actual mode of the system is mode i. For the FDI pro-

cess, we will be interested in the model estimation for each 

mode and the decision. 
As explained in the section 1, many faults have an additive 
or multiplicative effect on the model. In [10-11], a parame-
ter estimation based FDI is designed for quadrotor faults. 
Many algorithms exist in the literature [9]. However, Least 
Square Estimation (LSE) [12] is widely used in this do-
main due to its generality and simplicity. The main idea of 
LSE is to find the parameters that reduce a cost function; 
this last is based on square error. 

 

Fig.  2. MMAE basic architecture 

 

Fig.  1. MMAE Architecture 
Fig.  3. Adopted MMAE scheme 



The decision module takes the residue of each filter as an 

input, and then treats it to find the system mode. We pro-

pose to monitor the sum on a fixed size sliding window 

for the residue vector of each filter. A comparison be-

tween these sums leads to the identification of the actual 

system mode. Fig. 3 shows the complete proposed FDI 

scheme. 

3 MMAE simulation on wheel block faults 

3.1 Robot model and simulation environment 

A simulation in Gazebo simulator under ROS is done to 

prove the theory. The Jaguar 4x4 wheel robot platform 

(Fig. 4) is used in this simulation. It is a skid steering light 

weight mobile robot, equipped with inertial measurement 

sensor (IMU), GPS and four odometers. The control signal 

is produced thanks to a joystick, to move the robot in rela-

tively slow speed (linear speed lower than 2 m/s and angu-

lar speed lower than 1.5 rad/s). 

The kinematic model in the absolute 2D frame is given by 

the Newtonian equations: 

                     
                    

             

(5) 

Where x, y and θ are the position and the orientation of the 
robot in the absolute 2D frame.   and   are linear and 
angular velocity. They represent the input signal. 

3.2 Fault modeling  

Wheel block faults are studied in this paper. Considering 

the representation of Fig. 5, with Fi is active force pro-

duced by the wheel I and Ri are reactive force resulting of 

wheels friction. Newton’s law on the forces on the normal 

robot gives this equation:   

      

 

                       (6) 

With         is the acceleration vector of the normal robot.  

If one wheel is blocked, then the force produced by this 

wheel is set to zero, and the friction value is increased. The 

modified equation after projection on   is:  

             (7) 
With    is the acceleration vector of the robot with 

blocked wheel.  

By subtracting (6) and the projection of (7): 

                         (8) 
 By arranging this equation and integrating with respect to 

time: 

   
                    

 
    

(9) 

Without loss of generality, supposing constant inputs v and 

w, and ignoring the wheel slip, active and reactive forces 

become constants. So, we can rewrite the equation (9) as:  

         (10) 
Where    is the velocity vector of the robot having a 

blocked wheel and    is the velocity vector of the normal 

robot. It corresponds normally to the control signal  , and 

   is the fault parameter. 

Furthermore, starting from the equation (11): 

                                           (11) 

Where        and     are the resulting torque, robot’s inertial 

matrix and the angular acceleration. Following the same 

reasoning, we obtain after projections: 

    
                    

 
    

(12) 

Thus, we can rewrite this equation as: 
 

         (13) 
Where    is the angular velocity of the robot having a 

blocked wheel,    is the angular velocity of the normal 

robot and    is the fault parameter. Equation (9) indicates 

how this fault can affect the value of the angular velocity. 

In addition, considering a control signal       
            . In this case, because one wheel is blocked, 

the sum of forces on each side of the robot is not even. So, 

the torque is a constant different than zero and a 

parameter     will appear in the equation. Therefore, by 

integrating these parameters in equation (5), the model of 

the robot having a blocked wheel has this form: 

                            
                           

                          

(14) 

This model can be used ideally supposing that the robot 

moves on a homogeneous land. 

 

 

Fig.  5.  Forces and torque 

 

Fig.  4. Jaguar 4x4 wheel mobile robotic platform 

 



3.3 Application and results  

Now, we have the fault architecture. The next step is to 

estimate fault parameters, or the betas. Thus, by running a 

simulation of the robot on a flat ground, we have created a 

database for each considered mode, i.e. normal mode and 

front right, front right, rear left and rear right wheel block 

modes. The collected data are the command signal and the 

position of the robot (    and  ) provided by the pose 

provider. This later is a data fusion of information coming 

from wheel encoders, Inertial Measurement Central (IMU) 

and GPS. To obtain a representative database, the com-

mand signal given to the robot during registering period 

must cover all the possible values i.e.   must vary from 

      to       and   must vary from       to 

     . Each of these databases contains the position and 

the command signal of the robot; with 50 Hz sample fre-

quency and nearly 60 seconds length. Then, LSE algorithm 

is applied on these databases to find the betas matching 

each mode of the robot. For this particular simulation, 

parameters are presented in the Table 1. 

Table 1. Estimated parameters 

 normal Front 
right 
blocked 

Front left 
blocked 

rear left 
blocked 

rear right 
blocked 

   -0.1 -0.2 -0.2 -0.2 -0.2 

    0 -0.5 0.4 0.6 -0.6 

   -0.3 -0.3 -0.37 -0.6 -0.6 

Once we have these parameters, we can implement the 

models matching each mode in an EKF to identify the 

system mode, as in Fig. 3. 

Further, simulation has been done to test the performance 

of the proposed scheme. The response of the diagnosis 

scheme in two cases is presented in Fig. 6 and Fig. 7. In 

both simulations, the robot was initially normal. At itera-

tion 500 a fault is injected; rear right wheel block fault 

(b_rr) for Fig. 6 and front right wheel block fault (b_fr) for 

Fig. 7. The robot returns to it normal state at iteration 

1900.  

We can see that they are no false alarm (i.e. the diagnosis 

method detects a fault while the system is normal) in both 

cases, and good isolation most of the time. However, little 

false fault isolation appears at the beginning of the fault 

and while returning to the normal mode. Furthermore, the 

isolation time is less than 1s. On the other hand, the filter 

detects the normal mode after several seconds of its pres-

ence. This transition time depends on the size of the resid-

uals blocking window i.e. the number n of blocked values 

as in Fig. 3. In fact, the rate of good diagnosis depends on 

the behavior of the robot when the change of mode occurs. 

If a right wheel block fault occurs while the robot is turn-

ing to the right, it may be detected faster if it was moving 

straight forward. Furthermore, the MMAE switching be-

tween modes could be faster for higher speed. 

The good detection rate is high (in order of 90% for long 

simulations). The algorithm takes some seconds during 

transitions to stabilize. But it is robust during steady states 

periods. 

4 Conclusion and perspectives 

MMAE is a good approach to isolate additive or multipli-

cative faults knowing their structures. An MMAE based 

FDI method is presented in paper. This method operates on 

high level data, i.e. position obtained after sensor fusion. A 

simulation is explained in this paper. It proves that the 

performance and the time efficiency of this FDI method is 

good in the simulation case. It isolates four wheel block 

faults in real time. Operating on the same data level, an 

EKF method cannot detect these faults efficiently [1]. 

Furthermore, performance of this MMAE-based FDI 

method can be enhanced more by studying more deeply 

the fault model. 

However, this method suffers from some limitations. It is 

limited to faults with known structures, having nearly 

constant additive or multiplicative effect on the model. 

Moreover, even with such faults (known structure), be-

cause of the limited calculation capacity on board, we 

cannot run a big number of filters in parallel. This means, 

we cannot use this method to isolate a large number of 

faults. This leads us to the conclusion of the recent re-

search [1], that one and only one FDI method is not 

enough to diagnose a big list of mobile robotics faults.  

Yet, in order to diagnose a large set of mobile robotics 

faults in real time, we need a hybrid FDI method. It will be 

formed of a combination of FDI methods, in a way that 

every fault is monitored with the FDI method that can cope 

most efficiently with it. To achieve this goal, a clear and 

objective comparison between FDI methods must be done. 

Fig.  6. Response with b_rr fault 

Fig.  7. Response with b_fr fault 



Future work will consist on: 

 Testing this MMAE approach on other faults, 

such as sensor or actuator faults. 

 Application of other FDI methods cited in the 

previous research paper [1] 

 Definition of an objective universal performance 

indicator to compare the performances of FDI 

methods those are able to diagnose same fault. 

  Definition of a hybrid diagnosis method, able to 

diagnose efficiently big list of mobile robotics 

faults in real time. 
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