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Abstract

The extraction of minimal unsatisfiable cores
from an unsatisfiable set of constraints is a com-
putationally hard problem that finds application
in a variety of tasks such as model checking,
configuration, or diagnosis. Domain-agnostic al-
gorithms for online minimal unsatisfiable subset
enumeration allow the computation of all conflicts
and can be applied to any type of constraint sys-
tem. We aim at extending this research by com-
bining two well-known approaches from different
research communities; on the one hand, we ex-
ploit the traversal of the power set as suggested
by the MARCO algorithm in the domain of in-
feasibility analysis and on the other hand, we
take advantage of the implicit exploration of the
search space as proposed by HS-DAG in model-
based diagnosis. In particular, we show that the
conflict-driven search utilized by HS-DAG ren-
ders MARCO’s SAT calls unnecessary and given
a certain problem structure a combination of both
is advantageous in domains where consistency
checks are expensive.

1 Introduction
Various artificial intelligence tasks can be formulated as
constraint satisfaction problems. There are many scenar-
ios where the underlying constraint set can become overde-
termined and in these cases, we are interested in explana-
tions of the infeasibility. In the Boolean domain, these par-
simonious explanations are referred to as Minimal Unsatis-
fiable Subsets (MUSes). Given an unsatisfiable formula, a
minimal unsatisfiable subset (MUS) is a subset of clauses,
such that removing any clause of the MUS turns the for-
mula satisfiable. In recent years, the importance of com-
puting minimal unsatisfiable subsets for formal verification
has led to a significant number of work in this area. For
instance, minimal unsatisfiable cores are used for abstrac-
tion refinement [1] and debugging of declarative specifica-
tions [2]. Besides formal verification, MUS extraction has
been a topic of interest in different fields. Product con-
figuration is a typical domain where systems can become
over-constrained, since the customer’s needs and technical
constraints can contradict one another [3]. In the context
of model-based diagnosis, Reiter [4] exploits MUSes to de-
rive parsimonious diagnoses based on the hitting set relation

between minimal conflicts, i.e., MUSes, and minimal di-
agnoses, i.e., Minimal Correction Subsets (MCSes). Later,
Greiner et al. [5] proposed a variation of Reiter’s approach
named Hitting Set Directed Acyclic Graph (HS-DAG) that
corrects a fault in the original procedure regarding non-
minimal conflicts.

Besides research on single MUS extraction algorithms [6;
7; 3; 8], the need to derive all MUSes for various constraint
types has prompted the development of domain-agnostic ap-
proaches [9; 10; 11; 12]. These methods can be applied
to any type of constraint set as there are no dependencies
between the features of the constraints and the algorithms.
Furthermore, by exploiting domain specific MUS extraction
routines, these approaches can capitalize on any advance-
ment in single MUS computation for a specific constraint
type.

Although these methods may exploit specialized MUS
extraction procedures, Bendík et al. [13] observe that these
constraint-agnostic algorithms are not necessarily efficient
when used in domains other than the Boolean one. The rea-
son is that consistency checks are time-consuming for sys-
tems based on more expressive representations than Boolean
formulas. Many practical problems, however, require a
richer modeling language and thus can be more naturally
formulated as an SMT instance such as spreadsheet debug-
ging [14]. In these cases, ideally, the number of performed
satisfiability checks during MUS enumeration would be
minimized.

In this paper, we compare HS-DAG as proposed in the
context of model-based diagnosis to the recently developed
online MUSes computation procedure MARCO [12]. While
the relation between MUS enumeration and HS-DAG has
been mentioned previously [10], we describe how HS-DAG
can be modified to obtain all MUSes. As our presented HS-
DAG version ensures conflicts are minimized before contin-
uing with the construction of the graph, the pruning meth-
ods as corrected by Greiner et al. [5] are not necessary.
Additionally, we show that HS-DAG’s strategy to conquer
the search space is similar to MARCO’s. However, while
both methods have the benefit of being domain independent
and anytime algorithms, HS-DAG does not require any SAT
solver calls in contrast to MARCO. Before concluding the
paper, we present a combination of HS-DAG and MARCO
that can reduce the number of constraint solver calls on cer-
tain samples as well as an initial experiment.



2 Preliminaries
Given a finite set of constraints C, an MUS is a set of con-
straints that cannot be satisfied simultaneously, while every
proper subset of an MUS is consistent.
Definition 1 (Minimal Unsatisfiable Subset (MUS)). Given
an inconsistent set of constraints C, a subset U ⊆ C is an
MUS ifU is inconsistent and ∀u ∈ U : U \{u} is consistent.

MUSes can be computed either directly or via exploiting
their hitting set dual MCSes [4]. An irreducible hitting set
h for a set of sets Σ is a subset of

⋃
σ∈Σ σ such that ∀σ ∈

Σ : σ ∩ h 6= ∅ and there exists no other hitting set h′ for Σ
such that h′ ⊆ h.
Definition 2 (Minimal Correction Subset (MCS)). Given an
inconsistent set of constraints C, a subsetM ⊆ C is an MCS
if C \M is consistent and ∀m ∈ M : C \ (M \ {m}) is
inconsistent.

An MCS contains constraints that correct the inconsis-
tency when removed. Each complement of an MCS is a
maximal set of constraints that is satisfiable and is referred
to as a Maximal Satisfiable Subset (MSS).
Definition 3 (Maximal Satisfiable Subset (MSS)). Given an
inconsistent set of constraints C, a subset S ⊆ C is an MSS
if S is consistent and ∀s ∈ (C \S) : S ∪{s} is inconsistent.
Example Consider the set of Boolean constraints C with
c1 = a, c2 = ā, c3 = ā∨ b, and c4 = b̄. The combination of
constraint c1 with c2 and c1 with c3 and c4 results in C being
inconsistent; hence, MUSes(C) = {{c1, c2}, {c1, c3, c4}}.
By hitting set computation we derive the following
MCSes(C) = {{c1}, {c2, c3}, {c2, c4}} and subsequently
can determine all Maximal Satisfiable Subsets (MSSes):
MSSes(C) = {{c2, c3, c4}, {c1, c4}, {c1, c3}}.

3 Related Work
MUS enumeration procedures can be categorized into di-
rect and indirect approaches. While the former rely on the
enumeration of constraint subsets to determine their satis-
fiability, the latter exploit the hitting set relation between
MCSes and MUSes. The first proposed direct approaches
utilize a tree-like structure to examine every subset of con-
straints in regard to its feasibility [15; 16]. Independently
from one another Previti and Marques-Silva [10] as well as
Liffiton and Malik [11] proposed to iteratively enumerate
all MSSes and MUSes based on the idea that the power set
of all constraints can be represented as a Boolean formula.
Later, their approaches were merged into the MARCO al-
gorithm [12]. By adapting the Boolean formula whenever
a subset of interest is identified, it is ensured that already
explored portions of the power set are not considered again
in the search. Derivations of MARCO include, for instance,
MUSesHunter [17] and TOME [13]. MUSesHunter focuses
on deriving MUSes by blocking supersets as well as sub-
sets of found MUS and generating MUSes even during the
search for MSSes. TOME relies on the notion of chains
of the power set and local MUSes/MSSes. The algorithm
differentiates from MARCO, as during its main loop only
local MSSes and local MUSes are constructed. Once the
entire lattice has been explored the MSSes and MUSes are
extracted from the local MSSes and MUSes via subset in-
clusion checks.

Indirect approaches rely on the duality between MUSes
and MCSes. The CAMUS algorithm [18] first collects all

MCSes and afterward obtains the MUSes via irreducible
hitting set computation. Bailey and Stuckey [9] rely on
the same notion and present an interleaved process between
computing an MSS/MCS and exploiting the symmetry to
extract MUSes. In the context of model-based diagnosis,
Stern et al. [19] introduce a method that given a collection of
MUSes already computed derives a new hitting set. Based
on the satisfiability of this hitting set, it is either an MCS
or another MUS can be computed. Given the duality be-
tween MCSes and MUSes, the algorithm can be exploited
as a conflict-directed search for diagnoses or a diagnosis-
directed search for conflicts. Liffiton et al. [12] compared
CAMUS to MARCO and observed that exploiting the hit-
ting set duality is more runtime efficient than computing
MUSes directly. However, as the number of MCSes can be
exponential in the number of constraints in C, the first phase
in which the MCSes are enumerated may be intractable.
In these cases, CAMUS cannot output any MUSes, while
MARCO iteratively returns at least some conflicts.

4 MARCO and HS-DAG
In this section, we first discuss the general idea behind
MARCO and HS-DAG. We show that the way these two ap-
proaches explore the subsets of constraints is similar. How-
ever, as HS-DAG is a conflict-driven search method, it is
advantageous in comparison to MARCO as it does not re-
quire an explicit representation of the search space, but the
strategy is implicitly encoded within the construction of the
graph. Hence, in Section 4.3 we propose a combination of
both methods that exploits the structure of HS-DAG and the
search space representation of MARCO.

4.1 Exploration of the Power Set with MARCO
As mentioned MARCO [12] incrementally computes
MUSes and MSSes by exploring the power set of con-
straints. The method exploits that an MUS defines a “low
point" in an infeasible region of the power lattice, while an
MSS is a “high point" in a satisfiable part. Each iteration of
the approach starts with a seed representing an unexplored
subset of constraints. To determine regions within the power
lattice not yet processed, MARCO relies on a Boolean for-
mula encoding of constraint subsets whose feasibility still
has to be determined. Given the Boolean formula represent-
ing a map of the search space, a SAT solver computes the
next seed as a satisfying truth assignment of the formula.
To establish whether the constraint set returned as seed lies
within a satisfiable or unsatisfiable region, a suitable con-
straint solver checks the consistency of the subset of con-
straints. If it is unsatisfiable, an MUS is extracted by em-
ploying any single MUS extraction method. Otherwise, the
subset is expanded until a maximal satisfiable constraint set,
an MSS, is obtained.

Whenever an MUS (MSS) is found, the Boolean for-
mula is updated to exclude all supersets (subsets) of the
MUS (MSS) from later iterations. To block all super-
sets of an MUS from further consideration a clause B↑ =∨
m∈MUS ¬m is added to the Boolean formula, while a

clause B↓ =
∨
m 6∈MSS m is appended to exclude the sub-

sets of a found MSS. The next iteration then starts again
by determining an unexplored point in the lattice. Once the
Boolean formula has become unsatisfiable the entire search
space has been processed and thus all MUSes and MSSes
have been uncovered.



In Algorithm 1 we show MARCO’s pseudo code. First,
the Boolean formula representing the map is defined. As
long as the map is satisfiable, there are still MUSes/MSSes
to compute. In the simplest scenario, a single SAT solver
call returns any satisfiable truth assignment of the map rep-
resenting an unexplored constraint subset. Instead of using
an arbitrary satisfying truth assignment as seed, calculat-
ing the maximal model (getMaxModel) of the Boolean
formula, i.e., the maximum number of literals is true with-
out violating a clause, to determine an entry point as high
as possible within the lattice biases the procedure towards
MUSes [10; 20]. This strategy ensures that each returned
satisfiable constraint set already represents an MSS. The
computation of a maximal model, however, involves sev-
eral SAT solver calls instead of just a single one in case
of a simple truth assignment. Once a seed has been ob-
tained, its feasibility is determined by a constraint solver
(isConsistent). Each inconsistent constraint set is re-
duced to an MUS using a single MUS extraction algorithm
(MUSExtraction), while a consistent seed represents an
MSS. After the computation of an MUS/MSS, the Boolean
formula is updated accordingly.

Input : unsatisfiable constraint set C
Output: all MUSes and MSSes of C

1 map← BoolFormula(|C|);
2 while map is satisfiable do
3 seed← getMaxModel(map);
4 if isConsistent(seed) then
5 outputMSS(seed);
6 map← map ∧ blockSubsets(seed);
7 else
8 MUS← MUSExtraction(seed);
9 outputMUS(MUS);

10 map← map ∧ blockSupersets(MUS);
11 end
12 end

Algorithm 1: MARCO [12]

Example (cont.) Given our constraint set from before,
we can apply MARCO as shown in Table 1. Starting
with the first seed, the method getMaxModel1 returns
{c1, c2, c3, c4}. Since the constraint set is inconsistent, it is
reduced to the first MUS {c1, c2}, as marked by an ellipse-
shaped blue node in the lattice in Figure 1. In Table 1, we
again see the same color coding of the MUS in the first row.
After uncovering the first MUS the clause c̄1 ∨ c̄2 is added
to the map, which marks all supersets of the MUS {c1, c2}
as explored. We indicate this in Figure 1 by coloring all su-
persets of {c1, c2} and the paths leading from {c1, c2} to its
supersets in the same blue color.

The second maximal seed is {c2, c3, c4}, which is consis-
tent and thus represents an MSS. Again we color the node in
the lattice—this time in red and with a rectangular-shaped
node to indicate that it is an MSS. As every subset of an
MSS is consistent as well, the clause c1 is added to map
blocking all constraint sets further down in the lattice. At
this point map = (c̄1 ∨ c̄2) ∧ (c1), hence it is satisfiable.
Once the last MSS {c1, c3} has been uncovered, the map be-
comes unsatisfiable, indicating that all MUSes and MSSes
have been found.

1Assuming Arif et al.’s [20] maximal model method.

4.2 Conflict-Driven Search via HS-DAG
Reiter’s [4] approach for computing parsimonious diag-
noses is based on the duality between MCSes and MUSes
and operates on a tree, which is constructed in a breadth-
first manner. Each node is either labeled with a conflict or
constitutes a minimal diagnosis, i.e., a minimal hitting set of
all conflicts. In the original version, to obtain the refutations
on demand, the algorithm relies on a theorem prover that
returns conflicting constraints in case they exist. Each node
n is equipped with an edge label H(n), containing all edge
labels on the path from the root to node n. Starting from
the root node consisting of an empty edge label, whenever a
new node n is added to the tree it is checked for consistency
using all constraints except the ones in H(n). Suppose the
solver returns a conflict, then the node is marked with the
refutation, which is guaranteed to be disjoint to the current
node’s edge label; otherwise, the node is a leaf and its edge
label represents a minimal diagnosis, i.e., MCS. Each node
characterized by a conflict is expanded such that for each
element c in the conflict an edge is created and labeled c.
The child node’s edge label then contains the path label of
the parent combined with c. Some inadequacies of the orig-
inal algorithm in regard to non-minimal conflict sets were
corrected by Greiner et al. [5] and they devised HS-DAG
operating on a directed acyclic graph instead of a tree.

HS-DAG can be modified to compute all MUSes ei-
ther by ensuring that the constraint solver returns MUSes
instead of arbitrary conflicts or by minimizing each re-
turned refutation to a parsimonious one right away. Al-
gorithm 22 shows a modified HS-DAG that (1) does not
rely on a theorem prover returning conflicts, but only as-
sumes that a call to isConsistent returns true if
the constraint set is consistent and false otherwise and
that (2) extracts a MUS whenever a node is inconsistent
(Line 20). Starting from the root, the algorithm operates
level-wise and first tests whether the currently processed
node can be closed due to being the superset of an already
derived MCS (checkClose). If it remains open, the algo-
rithm examines all previously computed conflicts for reuse
(checkReuseConflict). A MUS can be reused if it is
disjoint to the node’s edge label. If there is such a conflict,
then this MUS is used to expand the node in Line 12 to 14;
otherwise, C \H(n) is checked for consistency. In case it is
consistent, the node n represents an MCS, is marked 3, and
the MCS is communicated; otherwise, the unsatisfiable set
of constraints is minimized to an MUS and subsequently, the
MUS is outputted. The current node n is then labeled with
the conflict and for each element of the MUS a new child
is created with the edge label of the node and the conflict
element as path label. Once there are no more nodes to pro-
cess, the algorithm terminates and all MUSes and MCSes
have been computed.
Example (cont.) Figure 2 and Table 2 depict the HS-DAG
and its execution given the constraint set. For the root node
with an empty edge label, the algorithm checks the consis-
tency of all constraints in the constraint set. This set of con-
straints is inconsistent. We assume that the MUS extraction
algorithm first returns the MUS {c1, c2}. Node n0 thus is
marked {c1, c2} and for each element in the conflict a new
edge and child is created. Note here that we used the same

2As we ensure that all returned conflicts are reduced to an
MUS, the pruning steps corrected by Greiner et al. [5] for non-
minimal refutations are obsolete.



{c1, c2, c3, c4}

{c1, c2, c3} {c1, c2, c4} {c1, c3, c4} {c2, c3, c4}

{c1, c2} {c1, c3} {c1, c4} {c2, c3} {c2, c4} {c3, c4}

{c1} {c2} {c3} {c4}

∅

Figure 1: Power set explored with MARCO

# SAT seed isConsistent MUS/MSS append to map
5 {c1, c2, c3, c4} false {c1, c2} B↑ = c̄1 ∨ c̄2
5 {c2, c3, c4} true {c2, c3, c4} B↓ = c1
5 {c1, c3, c4} false {c1, c3, c4} B↑ = c̄1 ∨ c̄3 ∨ c̄4
4 {c1, c4} true {c1, c4} B↓ = c2 ∨ c3
2 {c1, c3} true {c1, c3} B↓ = c2 ∨ c4

Table 1: Sample execution of MARCO

n0 : {c1, c2}

n1 : 3 n2 : {c1, c3, c4}

n3 : 7

n4 : 3

n5 : 3

c1 c2

c1
c3

c4

Figure 2: HS-DAG constructed

n H(n) C \H(n) isConsistent MUS/MCS
n0 ∅ {c1, c2, c3, c4} false {c1, c2}
n1 {c1} {c2, c3, c4} true {c1}
n2 {c2} {c1, c3, c4} false {c1, c3, c4}
n3 closed
n4 {c2, c3} {c1, c4} true {c2, c3}
n5 {c2, c4} {c1, c3} true {c2, c4}

Table 2: Sample execution of HS-DAG

color coding as in Figure 1 and Table 1 to explicitly show
the connection between the two algorithms. The first MUS
in the execution of MARCO is equivalent to this first con-
flict of HS-DAG. Hence, both are colored in the same blue
in their corresponding figures and tables.

At node n1 the constraint set C minus the edge label c1
is checked for consistency, which in this case is {c2, c3, c4}.
As this set is consistent it represents an MSS, the node is
marked 3, and the MCS {c1} is returned. The consistency
check in n2 reveals that {c1, c3, c4} is not satisfiable and
subsequently the second MUS is extracted. Node n3 can
be closed as its path label {c1, c2} is a subset of the al-
ready identified MCS {c1}. n4 and n5 are consistent, hence,
the edge labels represent MCSes and the computation termi-
nates as no more nodes to process remain.

4.3 Combining MARCO and HS-DAG
It is apparent that given its exhaustive search HS-DAG com-
putes all MUSes and all MSSes by deriving the MCSes.
In contrast to MARCO, it implicitly avoids already ex-
plored regions of the search space through its construction
and closing rules instead of explicitly encoding it within a
Boolean formula. This is advantageous as in MARCO every
time a seed is generated a satisfying assignment is computed
and given that the maximal model is utilized a set of succes-
sive calls to a SAT solver is necessary [20].

HS-DAG does not need to create a seed because the strat-
egy to conquer the search space is given in the way the graph
is constructed, and in addition, it always utilizes a maximal
model by checking the consistency of the constraint set mi-
nus the path label. In case the construction would lead to
a region in the power lattice already processed, such as in
node n3 where the consistency of {c3, c4}would be checked
even though the feasibility of {c2, c3, c4} is already known,
the algorithm takes advantage of the previously computed
MCSes/MSSes, i.e., nodes marked 3. Thus, HS-DAG does
not require any SAT calls, but subset checks with all already
computed MCSes. Without considering the MUS extraction
procedure, MARCO requires five SAT calls to determine the
status of the map, sixteen satisfiability checks to compute
the maximal models for the seeds, and five constraint solver
calls to determine the feasibility of the seeds. In contrast,
HS-DAG requires five consistency checks to determine the

Input : unsatisfiable constraint set C
Output: all MUSes and MCSes of C

1 root← new Node(∅);
2 nodesToProcess←< root >;
3 while nodesToProcess 6= ∅ do
4 newNodes← ∅;
5 foreach n ∈ nodesToProcess do
6 if checkClose(H(n)) then
7 n.mark ← 7;
8 continue;
9 end

10 CO← checkReuseConflict(H(n));
11 if CO 6= ∅ then
12 foreach c ∈ CO do
13 newNodes←

newNodes ∪ new Node(c ∪H(n));
14 end
15 else
16 if isConsistent(C \H(n)) then
17 n.mark ← 3;
18 outputMCS(H(n));
19 else
20 MUS← MUSExtraction(C \H(n));
21 outputMUS(MUS);
22 n.mark ← MUS;
23 foreach c ∈ MUS do
24 newNodes←

newNodes ∪ new Node(c ∪H(n));
25 end
26 end
27 end
28 nodesToProcess←

nodesToProcess ∪ newNodes;
29 end
30 end

Algorithm 2: HS-DAG modified from Reiter [4]
and Greiner et al. [5]



satisfiability of the nodes and five subset checks to examine
whether nodes can be closed.

The version we have presented of MARCO favors the
construction of MUSes early on by calculating a maxi-
mal model for the seed. HS-DAG already implicitly uti-
lizes a maximal seed as proposed by Previti and Marques-
Silva [10] in the context of MARCO. For many purposes
finding all MUSes is sufficient, i.e., the byproduct of MSSes
is not required. In these scenarios, MARCO can further be
tailored towards MUS enumeration by blocking also sub-
sets of MUSes. Since all subsets of an MUS are by defi-
nition satisfiable, marking these constraint sets as explored
does not block any other MUSes [17]. This strategy may
exclude some MSSes from being computed, yet it speeds up
the process of deriving all explanations as the search space
is pruned more efficiently and fewer consistency checks are
necessary.

Even though HS-DAG is a conflict-directed search ap-
proach, we can only be sure that all MUSes have been un-
covered once the entire graph has been constructed as there
is no explicit representation of the power set as in MARCO
allowing us to block up and down whenever an MUS is ob-
tained. Hence our idea is to exploit on the one hand the
implicit exploration given by the construction of the graph
in case of HS-DAG and on the other hand the termination
criteria utilized by MARCO. Algorithm 3 shows the nec-
essary adaptations of HS-DAG. In particular, we create a
Boolean formula for the map and update it whenever an
MUS or MCS is found. If the node is an MCS, we mark
all subsets of its complement as explored and for an MUS,
we block all subsets and supersets of the conflict. After each
adaptation of the map, we check whether the map is still sat-
isfiable. If not we are sure to have outputted all MUSes and
thus can stop the procedure. The correctness and complete-
ness of our approach are directly given through the results of
the original HS-DAG (Theorem 4.1 in [5]) and the Boolean
formula encoding (Theorem 1 in [12]).

1 map← BoolFormula(|C|);
15 . . .
16 if isConsistent(C \H(n)) then
17 n.mark ← 3;
18 outputMCS(H(n));
19 map← map ∧ blockSubsets(C \H(n));
20 if map is unsatisfiable then
21 return;
22 end
23 else
24 MUS← MUSExtraction(C \H(n));
25 outputMUS(MUS);
26 map← map ∧ blockSupersets(MUS) ∧

blockSubsets(MUS);
27 if map is unsatisfiable then
28 return;
29 end
30 . . .
31 end
32 . . .

Algorithm 3: HS-DAG adaptation

Example (cont.) Considering the example from before, we
simply keep a map as does MARCO and update it when-
ever we encounter a new MUS or MCS/MSS. The compu-

tation again starts with the root in Figure 3, where we check
the consistency of {c1, c2, c3, c4} and retrieve the first MUS
{c1, c2}. We append (c̄1 ∨ c̄2) and (c3 ∨ c4) to the map as
shown in Table 3. Adding these clauses to map marks all
supersets and subsets of {c1, c2} as explored in the lattice in
Figure 4. As before, we continue with n1. n1 is consistent,
thus it represents a minimal hitting set and we include the
clause c1 in the map. At node n2, we encounter the sec-
ond MUS {c1, c3, c4} and in order to block up and down
add (c̄1 ∨ c̄3 ∨ c̄4) and (c2) to the Boolean formula. Now,
map = ((c̄1 ∨ c̄2)∧ (c3 ∨ c4)∧ (c1)∧ (c̄1 ∨ c̄3 ∨ c̄4)∧ (c2)),
thus has become unsatisfiable. As this indicates that the en-
tire lattice has been processed, the execution is terminated.

This adaptation of HS-DAG still computes all MUSes in
an iterative and constraint-agnostic fashion. Yet keeping
the map can avoid unnecessary operations and consistency
checks in the last level of the graph. The simple adapta-
tion we have shown does not require any more consistency
checks, but only additional SAT calls specifically a single
satisfiability check of the map at every node. Comparing
the number of SAT calls for MARCO and the adapted HS-
DAG on the example, we see that MARCO requires over-
all twenty-one satisfiability checks, while the adapted HS-
DAG only requires three. In regard to constraint solver calls,
the original HS-DAG and MARCO require five calls, while
the adapted HS-DAG can terminate after three consistency
checks.

Certain observations are crucial. The early detec-
tion that all MUSes have been computed is only pos-
sible in cases, where at least a single MSS is a sub-
set of an MUS. This is apparent as this is the only
possibility an MSS can be marked as explored by an
MUS before it is explicitly derived. Consider the set
of MUSes= {{c1, c2}, {c3, c4}} with the corresponding
MSSes= {{c1, c3}, {c1, c4}, {c2, c3}, {c2, c4}}. Blocking
up and down when uncovering the MUSes does not reach
the MSSes as none of these are a subset of the MUSes.
Even if an MSS is a subset of an MUS there is no guar-
antee that our approach can terminate early. Particularly, an
MSS, which is not a subset of an MUS, generated in the last
level of the HS-DAG cannot be excluded a-priori. Thus, this
approach is not applicable in all cases. Another observa-
tion from Algorithm 3 is that there are as many satisfiability
checks of the map as there are calls to the constraint solver.
This entails that even in cases where an early termination of
the HS-DAG is possible, the SAT calls need to be inexpen-
sive in comparison to consistency checks in order to gain
computational speed.

4.4 Initial Experiments
In an initial experimental study, we compare HS-DAG to
MARCO and to our adaptation of HS-DAG to determine the
extent to which consistency and satisfiability checks may be
saved using our method. Hence, we do not focus on runtime,
but on the number of constraint/SAT solver calls. All meth-
ods are implemented in Java and to bias MARCO towards
MUSes we exploit the strategy to use a maximal model for
the seed [20]. As a SAT solver to derive the satisfiability
of the map we utilize SAT4J3 [21]. By means of a sam-
ple generator, we randomly constructed 100 artificial con-
flict sets, i.e., MUSes, with different overlap, i.e., the num-
ber of shared elements, between the conflicts. For each ex-

3www.sat4j.org/
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n0 : {c1, c2}

n1 : 3 n2 : {c1, c3, c4}

c1 c2

Figure 3: Adapted HS-DAG

{c1, c2, c3, c4}

{c1, c2, c3} {c1, c2, c4} {c1, c3, c4} {c2, c3, c4}

{c1, c2} {c1, c3} {c1, c4} {c2, c3} {c2, c4} {c3, c4}

{c1} {c2} {c3} {c4}

∅

Figure 4: Power set explored with the adapted HS-DAG
n # SAT isConsistent MUS/MCS appended to map
n0 1 false {c1, c2} B↑ = (c̄1 ∨ c̄2), B↓ = (c3 ∨ c4)
n1 1 true {c1} B↓ = (c1)
n2 1 false {c1, c3, c4} B↑ = (c̄1 ∨ c̄3 ∨ c̄4), B↓ = (c2)

Table 3: Sample execution of the adapted HS-DAG

ample, we recorded (1) the overall number of MUSes, i.e.,
|MUSes|, (2) the minimum, maximum, mean, and standard
deviation of the size of a MUS, and (3) the minimum, max-
imum, mean, and standard deviation of the overlap between
MUSes. The rows in Table 4 present the results for the en-
tire set of examples. Since our experiments contain artificial
MUSes, we utilized a mock-up consistency checker to de-
termine whether a given set of elements is satisfiable. As
we are interested in the difference between SAT and con-
straint solver calls between the approaches, we assume that
all approaches rely on the same MUS extraction procedure
for which we do not count the consistency checks required.

Each algorithm was invoked ten times on each example.
The results show that HS-DAG is preferable over MARCO
due the avoidance of any SAT-calls in the conflict-driven
search. On our instances, both approaches require on av-
erage 18.7 constraint solver calls (MAX=142, SD=18.2),
while MARCO additionally needs on average 181.8 satis-
fiability checks (MAX=1381, SD=193.4). Thus, even in
cases where SAT calls are rather inexpensive in compari-
son to constraint solver queries, MARCO always requires
a computation overhead from the SAT calls. Comparing
HS-DAG to our adaptation, it is apparent that on samples
where a premature termination is not possible our approach
leads to additional SAT calls. This was the case for 35 %
of our samples. Considering all examples, we record on av-
erage 11.3 % savings in consistency checks (MAX=76.5 %,
SD=19.9 %) with our method in comparison to the tradi-
tional HS-DAG.

|MUSes| |MUS| overlap
MIN MAX AVG SD MIN MAX AVG SD

MIN 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0
MAX 12.0 20.0 20.0 20.0 5.9 18.0 18.0 18.0 1.5
AVG 3.9 7.3 8.1 7.7 0.4 2.2 3.0 2.4 0.3
SD 2.9 7.6 7.3 7.4 0.7 5.2 5.2 5.2 0.4

Table 4: Example statistics

5 Conclusion
In this paper, we have examined and compared two ap-
proaches to the MUS enumeration problem: HS-DAG and
MARCO. HS-DAG has first been proposed as a conflict-
driven search for diagnoses in the context of model-based
diagnosis, while MARCO is a recently developed iterative
MUS enumeration algorithm. Both approaches are very
similar and share that they are constraint type independent
and generate MUSes online. Yet, while MARCO explicitly
records already explored regions via its Boolean map, HS-
DAG implicitly prunes the search space via its construction
procedure and node closing rules. Even though MARCO
is the state of the art direct anytime MUS enumeration pro-
cedure, we argue that HS-DAG’s avoidance of explored re-
gions is advantageous as both algorithms require the same
number of consistency checks, while MARCO requires ad-
ditionally SAT calls.

An advantage of MARCO is that it can further be tailored
to traverse the search space faster by blocking with each
generated MUS all its supersets as well as subsets. This
technique biases the search even more towards MUS and
may overlook certain MSSes. To exploit this focus strat-
egy in addition to the search space traversal of HS-DAG,
we adapted HS-DAG by tracking the constraint subsets ex-
plored using MARCO’s map representation. In a simple
version, we examine the map’s satisfiability after a new
MCS or MUS is uncovered. Since in this case every con-
sistency check is associated with an additional SAT call, the
approach is only convincing in scenarios where expenses for
a constraint consistency check outweigh the costs of a SAT
call. Furthermore, the suitability of our adaptation of HS-
DAG depends on the structure of the underlying constraint
set. In particular, in order to obtain any improvements at
least a single MSS has to be a subset of an MUS to avoid
explicitly computing the MSS.

For future work we plan on analyzing applications and
their constraints to determine for which systems our method
is advantageous. In addition, it would be interesting to com-
pare our adaptation to other improvements of the HS-DAG
such as 22’s [22] RC-Tree.
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