
Abstract 

In the last years, the use of unmanned underwater 
vehicles in various applications such as monitor-
ing, inspection and surveillance of underwater fa-
cilities, has been significantly increased. The mis-
sion success depends heavily on the ability to di-
agnose, isolate and accommodate faults that may 
occur in the thrusters and sensors of the vehicles 
during the operation. This paper presents an over-
view on the methods employed for thruster and 
sensor fault detection, isolation and accommoda-
tion of underwater robotic vehicles. 
 

1 Introduction 

Over the last decades, there has been a significant increase 
in the use of Unmanned Underwater Vehicles (UUVs) in 
missions such as exploration of the oceans, inspection of 
underwater structures or pipelines, monitoring of underwa-
ter environmental changes, exploration of the sea bottom 
etc. The UUVs can be divided into two categories, namely, 
the Remotely Operated Vehicles (ROVs) and the Autono-
mous Underwater Vehicles (AUVs). The operation of an 
ROV is more limited in comparison to an AUV, because it 
must be controlled by qualified personnel and it is tethered 
to a control cable. On the other hand, AUVs have the ability 
to operate autonomously, in terms of energy and computa-
tional resources. However, the concept of autonomy for 
both categories of underwater vehicles is limited by the oc-
currence of faults.  

Faults can be identified into two categories: a) the ones 
that can be restored and b) those that cannot be restored. A 
fault can be addressed either by adapting the motion or be-
havior of the underwater vehicle via an appropriate recovery 
algorithm or by exploiting potential redundancy in sensors 
or actuators. In any case, the vehicle will be able to continue 
its trajectory and perform the scheduled mission, even with 
reduced capabilities. A fault that cannot be restored is char-
acterized by the complete damage of a control or motion 

component or to a partial loss of its functionality, which ul-
timately leads to failure in performing the mission. In this 
case, the vehicle must be retrieved to the surface for repair 
and maintenance.  

The faults typically appear on either the thrusters or the 
on-board sensors of the vehicle. Thrusters are responsible 
for moving and accelerating the underwater vehicle in 3D 
space. Therefore, when a thruster fault occurs, the actuation 
capabilities of the vehicle are reduced. In that case, if redun-
dancy of thrusters exists then the vehicle may continue its 
trajectory with the same or reduced performance (thruster 
fault tolerant control). However, if there is no excess of 
thrusters or faults occur in multiple thrusters at the same 
time, the fault is considered critical and the mission is 
aborted. Additionally, the reliable functionality of the on-
board sensors is of utmost importance. Through the feed-
back provided by the sensors the closed loop motion control 
of the vehicle is achieved. Hence, a possible damage to the 
sensor suite may severely affect the overall performance of 
the vehicle. Also, increased measurement noise in the sen-
sor signal, can be considered as fault, which must be dealt 
in order the underwater vehicle to continue its mission 
smoothly. 

According to the aforementioned discussion it is easy to 
perceive the crucial role of fault diagnosis in the proper op-
eration of an underwater vehicle. In [1] the author presents 
two techniques that can be used for fault detection and iso-
lation (FDI), one complementing the other. The first tech-
nique is called model based or analytical and relays on the 
use of mathematical models and algorithmic methods to de-
scribe the behavior of the system to be studied. The second 
is called no model or knowledge based and relays on the 
performance of multiple tests, as well as the collection of 
large amount of empirical data (redundancy). According to 
[1], the analytical methods employ quantitative models, 
while the empirical methods use quality models based on 
the available knowledge of the system. In conclusion, the 
combination of these two methods may deliver the best re-
sults for fault diagnosis. 
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The rest of the paper is organized as follows: Section 2 
presents methods for fault diagnosis on thrusters, while Sec-
tion 3 is devoted on sensors fault diagnosis. Finally, Section 
4 concludes the paper.  

2 Thruster fault diagnosis methods 

As previously discussed, thruster faults may compromise 
the reliable operation of the underwater vehicle. Thus, it 
necessary to detect and isolate the fault as soon as it appears. 
On this topic several methods have been published which 
are presented below. 

2.1 Thruster fault diagnosis  

According to [2], the solution to the problem of thruster 

fault diagnosis involves residual generation based on the in-

consistency between the actual behavior of the vehicle and 

the behavior of the reference model. The decision that will 

be taken to diagnose the fault will result from the assess-

ment of the residuals. To address a fault there are two solu-

tions, the active and the passive one. The active solution is 

based on a new control law applied to each case of fault, 

either by addressing the fault within the existing structure 

of the system or by leading to a reconfiguration of the sys-

tem. The passive solution is based on the probability of ap-

plying the control law to manage the fault. The authors in 

[2] propose the first solution. 
 A similar technique is used in [3], where it is mentioned 
that the fault detection and diagnosis is achieved by as-
sessing any significant change in underwater vehicle’s be-
havior. This work is carried out by a bank of estimators. In 
particular, an Extended Kalman Filter (EKF) has been ap-
plied to each type of thruster fault, including the no-fault 
case. The EKF was selected in order to handle the presence 
of non-linearity in the dynamic system. 

In order to solve the problem of detecting and identifying 
simultaneous faults in AUV thrusters and sensors, the au-
thors in [4] propose a quantitative/qualitative hybrid diag-
nostic method combining neural networks with dynamic 
trend analysis. The authors in [5], apply a slightly different 
method based on a mathematical model that uses a Gaussian 
particle filter to identify a fault in the propellers. 

In [6] in order to identify and isolate thruster faults in an 
AUV, the authors designed a discrete time diagnostic ob-
server. A Support Vector Machine (SVM) architecture was 
employed in order to process off line the data collected dur-
ing tests where there was no error. Finally, the residuals 
were calculated based on the observer's outputs and the 
measurements from the system state. To detect and estimate 
the unknown thruster fault, a Radial Basis Function (RBF) 
network built into the observer was employed. 
 A different technique for detecting thruster faults is pre-
sented in [7]. This approach proposes the implementation of 
a research policy learned from a simulated underwater ve-
hicle model. The model adapts to a new condition when a 
fault is detected and isolated. This approach can create an 
optimal trajectory and navigate the AUV to a set target at 
minimal cost, even when the AUV is not working properly 
due to the presence of a fault.  
 All the previous researches for the diagnosis of thruster 
faults were referred to unmanned underwater vehicles. In 
contrast, in [8] and [9] the presented approaches refer to 

ROVs. The main effort in [8] was to develop a model for 
fault detection and isolation at various levels of architectural 
control, such as servo-amplifiers, dynamic model-based de-
sign and steady state monitoring. The aim is to develop a 
reliable diagnostics system based on information redun-
dancy. 

In [9] the proposed fault detection system performs fault 
diagnosis on ROV thrusters by using measurements for the 
vehicle (surge, sway, yaw) motion as well as for the corre-
sponding speeds, without relying on actuator measure-
ments. The detection system consists of a residual generator 
and an evaluation module. The residuals generator is based 
on a nonlinear observer (Thau nonlinear observer). The re-
sidual evaluation was done with a sequential change detec-
tion algorithm. 
 The authors in [10] proposed a geometric approach to the 
issue of completely unblocking the residuals of the faults. 
Most methods used to diagnose faults in nonlinear systems 
are based on residual generation and require a structural 
analysis. The proposed geometric approach is based on the 
assumption that faults do not occur at the same time, and 
sufficient conditions are created for the faults isolation in 
nonlinear systems. 

2.2 Thruster fault accommodation 

In [11] the authors present a Fault Diagnosis and Accom-
modation System (FDAS) which includes two subsystems: 
Fault Diagnosis System (FDS) and Fault Accommodation 
System (FAS). The FDS is a hybrid, on-line, model-free ap-
proach, based on integration of a Self Organizing Map 
(SOM) and fuzzy clustering methods. In the training phase, 
the FDS uses data obtained during test trials to find SOM 
representatives for each fault type. In the detection phase, 
the FDS makes decision about fault type by comparing the 
position of feature vector relative to these maps. The results 
demonstrate efficiency and robustness of the FDS. The FAS 
uses the output of the FDS to accommodate faults and per-
form reconfiguration by updating weights used in the opti-
mization criteria and thruster velocity saturation bounds. 
 Another method developed to accommodate thruster 
faults is proposed in [12], which is based on thruster redun-
dancy. This approach is then extended to incorporate a dy-
namic feedback technique for generating reference push 
forces within the saturation limit of each thruster. This re-
dundancy can be utilized to achieve additional power for the 
AUV and to enhance the vehicle's ability to fulfill its mis-
sion objectives in the event of a thruster fault. 

2.3 Thruster fault tolerance 

Assessing all the above, we conclude that thruster faults can 
be crucial for the performance of the underwater vehicle and 
the mission success. In [13] the authors report that tackling 
a thruster fault can be dealt with inherent redundancy of 
thrusters. Indeed, tolerance to actuator faults is a key issue 
in underwater robotics, since a thruster failure can prove 
critical in task completion. 
 According to [14], the thruster fault can be treated as an 
uncertainty added to the dynamic model, similar to the un-
certainties of system modeling (external disturbances from 
the marine environment). The sliding mode algorithm is an 
effective means of controlling a non-linear system (such as 
an underwater vehicle), due to its strong ability to compen-
sate system uncertainties and external disturbances. Sliding 



mode control is widely used in non-linear systems with 
great uncertainties. 
 The authors in [15], refer to the separation of AUVs 
where two categories in terms of motion capabilities can be 
identified. In the first class, the motion is continuous and 
resembles to the one of airplanes. These are called cruising 
AUVs and they are characterized by less number of thrust-
ers comparatively to the available degrees of freedom. In the 
other category, AUVs with the ability to move in all direc-
tions, as well as to stabilize in one point appear. The latter 
property is of utmost importance in observation missions. 
These are called hovering AUVs and the number of their 
thrusters is greater than the available degrees of freedom. 
Thruster redundancy is a key property in fault tolerance con-
trol. In the same work, experimental results from tests per-
formed using an AUV with four horizontal thrusters and two 
vertical ones are presented. The goal of the experimental 
procedure was to determine whether the AUV can follow 
the prescribed trajectory with a fault: (i) to a horizontal 
thruster, (ii) to two horizontal thrusters and (iii) a vertical 
thruster. In cases (ii) and (iii) the number of active thrusters 
is less than the number of degrees of freedom. Tests have 
shown that the AUV can follow the programmed trajectory 
on a horizontal plane while maintaining the desired depth 
using only three thrusters, where two are horizontal ones. 
However, in some cases changes had to be made to the pre-
ferred direction of the AUV motion. 
 In [16] the authors present a fault diagnosis system con-
sisting of two units. One performs a fault diagnosis and the 
other fault accommodation. The fault diagnosis module is 
based on a neural network fusion information model to de-
tect the thruster fault. The fault accommodation unit is 
based on direct motion calculations and the fault identifica-
tion results are used to find a solution to the control alloca-
tion problem. The proposed method attempts to diagnose 
and accommodate the subsequent faults detected during the 
mission. 

Another attempt to create an integrated fault tolerant con-
trol system (AFTC), which can perform detection, diagnosis 
and fault accommodation, is the one proposed in [17]. The 
system includes an integrated fault detection and isolation 
(FDI) technique based on: (1) a model based FDI that uses 
a bank of Kalman filters, (2) an algorithm for estimating the 
efficiency factor of the faulty sensor or the faulty thruster, 
(3) an approach to redesign the on-line controller in order to 
compensate the detected fault before the system leads to a 
degradation of its performance or to complete destruction. 

3 Sensor fault diagnosis methods 

As previously mentioned, sensors faults are equally im-
portant for the proper functioning of an underwater vehicle. 
To diagnose these faults, several attempts have been made 
and various approaches have been proposed.  

In [18], the authors identify that one of the problems in 
sensor fault diagnosis for AUVs, is the added mass when 
the vehicle performs maneuvers, which should be repre-
sented as an unknown time-varying parameter of the model. 
To accommodate this problem, a method based on a model 
based approach using AQLPR (adaptive quasi-linear parity 
relations) is proposed. This method combines the ad-
vantages of the closed loop and the open loop techniques. 
The characteristics of this method are: (i) adaptability to un-
known added mass in the diagnosis process including closed 

loop techniques (ii) decoupling from the slowly changing 
added mass at the diagnostic stage including open loop tech-
niques. 
 In [19], two methods for sensor fault diagnosis are pre-
sented. The first is the analytical redundancy (AR) method, 
while the second is the multivariable statistical based data 
method. The first method works well when there is an avail-
able and clear process model. However, such model cannot 
be easily achieved due to the non-linear dynamics and high 
complexity of many systems. A more widespread statistical 
method, Principal Component Analysis (PCA), employs a 
clear model of the system that uses data obtained during the 
no-fault operation of the system. According to this method, 
faults are detected by comparing the actual outputs with 
those predicted by the model. However, PCA is a linear 
method and cannot be applied to non-linear systems such as 
AUVs. For this reason, a nonlinear version of PCA, KPCA 
(Kernel PCA), which can be applied to nonlinear systems, 
is also used. Particularly KPCA (Partial KPCA, PKPCA) 
can also be applied for fault detection and fault isolation. 
For best results, the authors suggest applying KPCA for sen-
sor faults and PCA for thruster faults. 
 The work presented in [20] refers to faults in the Doppler 
Velocity Log (DVL) sensor. The faults frequently appear in 
this class of sensors, are of two kinds: (i) the sensor output 
remains unchanged and (ii) the output jumps at a time or 
over a period of time. To accommodate the problem, a 
method based on strong tracking filter (STF) theory and a 
singer model of the first order time correlation function is 
proposed. The proposed method was used for velocity out-
put identification and velocity sensor fault diagnosis. 
 In [21], a new method is proposed that combines phase 
space reconstruction and an extreme learning machine. This 
method is applied to predict the output of the sensor and 
achieve fault diagnosis. Specifically, data is initially col-
lected from the normal fault-free sensor's operation and an 
ELM model (Extreme Learning Machine) is constructed. 
The residuals are then calculated on the basis of predictive 
outputs and measurements of the state of the system. The 
model outputs will be used when there is a problem with the 
sensor, in order to compensate for the actual, but false out-
puts that the sensor will deliver. Finally, when a sensor fault 
occurs, the outputs of the ELM model can be used instead 
of the actual sensor outputs to compensate for the sensor 
failure. In recent years, ELM has been significantly in-
creased to solve sensor problems described by nonlinear 
models. This is due to the fact that ELM can learn much 
faster and with higher generalization performance than tra-
ditional learning algorithms. It is also capable of solving 
problems related to precision, calculation costs, and local 
minimum. 
 In [22], the authors propose a second order dynamic pre-
diction gray algorithm GM(2.1) for the fault detection in a 
fiber optic gyro sensor. The GM(2.1) is a modeling method 
based on a gray generation function and with a differential 
fitted to the core. It is based on a small number of known 
information to predict the next data acquisition from the 
sensor. If the predicted data do not match the received data 
from the sensor, then a fault is recognized, and the resulting 
data is sent to the system. The strong point of this method is 
the short fault recognition time. 
 In [23], a system based on diagnostic observers and data 
fusion of signals from sensors using a Kalman filter was 



suggested. The error-free data from the observers is com-
pared with the actual data sent by the sensors. The residuals 
that may be produced from this comparison indicate the oc-
currence of a fault, but an estimate of the size of the fault is 
also made. The estimates of the measured values, which are 
used to generate the control signals, are then calculated. 
This system combines the kinematic model of the vehicle 
with the data acquired from the sensors and allows the fault 
detection and accommodation for the sensors of an under-
water vehicle. 

Conclusion 

This paper presents a bibliographic survey of the methods 
appear in fault diagnosis and accommodation for thrusters 
and sensors of underwater robotic vehicles. There are sev-
eral approaches that are of particular scientific interest and 
with proven results that approximate the original purpose of 
fault diagnosis. Nevertheless, existing works regarding the 
fault accommodation in thrusters and sensors of underwater 
vehicles are still limited. 
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