CEUR-WS.org/Vol-2289/paperl6.pdf

Analysis of applicability of deep learning methods in compressor fault diagnosis

Anna Sztyber!, Lukasz Chechlinski?, Michal Syfert?, Pawel Wnuk*,
Piotr Lipnicki° and Daniel Lewandowski®
1234Warsaw University of Technology,
e-mail: 'a.sztyber@mchtr.pw.edu.pl, ?lukasz.chechlinski @ gmail.com,
3m.syfert @mchtr.pw.edu.pl, *p.wnuk @mchtr.pw.edu.pl
%6 ABB Corporate Research Center, Krakéw, Poland
e-mail: Spiotr.lipnicki @pl.abb.com

Abstract

The paper presents the results of work carried out
on the applicability of deep learning techniques
for the purpose of diagnostics of industrial rotary
compressors. The paper focuses on the possibil-
ity of using the library TensorFlow by Google to
build classifiers typical for this library, e.g. convo-
lutional neural networks, as well as classical ones
used in diagnostics, e.g. multilayer perceptron
(MLP) or support vector machine (SVM). To pro-
vide a complete diagnostic tool was not the aim
of the paper. Thus, only selected examplary faults
were considered - dips of the power supply volt-
age and surge. At the beginning, a description of
test stand, from which the test data were collected,
is given. The main part of the work contains a de-
scription of the implementation of classifiers, and
the results of their tests conducted on the actual
measurement data. The data, registered during the
experiments on site, represented both, the fault
free state, as well the state with selected faults.
Finally, the concept of the software (functional-
ity and structure) dedicated for using considered
techniques for both off-line tasks of building clas-
sifiers, as well as on-line monitoring in the cloud
is discussed.

1 Introduction

Timely and accurate fault diagnosis is important for the per-
formance of an industrial plant. There are many well devel-
oped model-based diagnostic techniques from the DX and
FDI communities. On the other hand, in recent years, one
observes rapid development of data driven and deep learn-
ing techniques, with successful applications in computer vi-
sion, machine translation and natural language processing
[1]. The progress of deep learning algorithms is accompa-
nied by the development of dedicated software like Tensor-
flow by Google.

The interesting question is: if and how can one apply
some of these new techniques in an industrial fault diag-
nosis. Similar ideas were shown for example in [2; 3;
4].

The main aim of the described project was to find out if
Tensorflow can be applied as a computational tool for in-
dustrial rotary compressors diagnosis. The paper is struc-
tured as follows: in Section 2 test stand is described and the

considered faults are introduced in Section 3. Implementa-
tion of models for fault detection in Tensorflow and obtained
results are presented respectively in Sections 4 and 5. Sec-
tion 6 shows concept of a dedicated software for compressor
diagnosis.

2 Test stand - industrial rotary compressors

The PLCRC Compressor Rig Test stand enables the testing
and verification of different control, monitoring and protec-
tion algorithms in a closed environment [5]. In contrast to
many standard experimental systems seen in research and
academic laboratories using simple blow-off valves, the pip-
ing system of the PLCRC compressor system incorporates
a hot recycle system. Its important property is the ability
to truly reflect physical phenomena which are observed in
industrial applications. The open loop installation receives
air from ambient conditions, compresses and pumps the air
to the discharge tank which models the volume of the con-
nected pipeline. After that, the air can be redirected through
the recycle valve back to the inlet of the installation which
represents the hot recycle valve often encountered in prac-
tice. Potentially, there is also the possibility to add an addi-
tional blow-off valve to the test stand in order to investigate
a more complex system. The P& ID diagram of the setup is
presented in Figure 1 and the complete installation is shown
in Figure 2.

The piping layout was designed such that the experiment
may run in different operating conditions by opening and
closing the inlet and outlet valves and switching between
parallel and series operation of two compressors. Each of
the compressors is equipped with fast recycle pneumatic
valves (in case of surge occurrence). In addition, a selection
of induction and switched reluctance motors fed by ABB
variable-speed drives gave opportunity to control torque and
speed of the machines. This design increased the degrees of
freedom for the control system and was also able to work
with a recycle line, in an arrangement more closely aligned
with those seen in industrial systems.

The data acquisition was foreseen to be based on the
ACS500 controller with its dedicated I/O and communication
modules. The control of the whole stand may be realized
on AC800 PEC platform or AC500 High Performance PLC
covering conventional anti-surge control, process or perfor-
mance control and load sharing control.

The Compressor Rig test stand is treated as multipurpose
experimental rig. The user can verify the developed con-
trol methods for each of the compressors running indepen-
dently, having a parallel or series operation of both compres-

Lz

Control valve

Inlet valve

Reference Speed

Top Inlet tank

Actual Speed Torque |
Top Top Plate
orifice
VSD Top
AC Transformer
GRID °P motor Top

Electric

X

Reference Speed
Bottom

Actual Speed Torque |
Bottom Bottom Plate
orifice
VSD

Bottom

Voltage DC
Bottom

Electric
motor Bottom

Compressor Top

e — — = Daje —

~
parallel / serial connection

Output valve

Outlet tank

Compressor Bottom

Figure 1: Compressor Rig P& ID diagram

Figure 2: Compressor Rig test stand

sors running at the same time. The control may be realized
on AC500 High Performance or AC800 PEC. The process
measurements are collected and recorded by a communica-
tion hub, the AC500 PLC with I/O modules. Note, that all
signals are integrated, i.e. electrical signals, process sig-
nals and mechanical signals can be recorded on the same
hardware. This enables the analysis and online use of all
data, leading to drive and compressor control integration.
From the hub actual and reference values for the ACS880
and ACS850 drives can be read and send. The supervisory
control of the stand is realized by java application, which
allows, as well, data streaming and logging.

3 Faults description

The stand test enables the operation of a compressor system
under various operating conditions and during the simula-
tion of various types of faults, including faults related to
power supply, process components, rotating machinery and
control system.

The research presented in this paper focuses on selected
two following faults:

e Voltage Dip - sudden, short-term (several dozen of ms,
that means a few or a dozen samples) drops (a fall of
several dozen or so percent) of three-phase power sup-
ply (nominal voltage is 400V). This type of voltage
drop can not occur in normal operation, it is a result
of electrical disturbances at the input to the system.
Therefore, it is a fault from the group of power supply
related faults. Changes in the input voltage also occur
during the changes of the control signals. In such a
case, the voltage drops should not be treated as faults.
The important thing is, that the voltage drop is not mea-
sured directly by any of the available process signals
(measurements);

e Surge - the occurrence of pressure oscillation (pulsa-
tion) in the process part, with a frequency of several
Hz, often occurring together with the reverse flow. It
is characterized by loud operation of the device and
it is a highly destructive phenomenon. It occurs un-
der specific operating conditions (flow, pressure before
and after the compressor, rotation speed), therefore, it
is necessary to analyze several process signals to detect
it. It is a fault from the group of process faults. It is
important, that the detection algorithms should distin-
guish oscillations of specific process signals resulting
from the surge phenomenon, from the temporary os-
cillations associated with the change of working point
and / or operating parameters that occur during tran-
sient states in order to avoid generating false alarms.

3.1 Signals selection

There are 46 measured signals available in the test stand.
All of them are sent with a fixed sampling period equal to 2

ms. Those are both, fast-changing signals (power parame-
ters and rotating systems), as well as slow-changing signals
(e.g. temperature).

Based on the preliminary analysis and the expert’s knowl-
edge a subsets of signals were selected for the purpose of
particular fault detection. Some signals, from the whole set
of available ones, were excluded to reduce the dimensional-
ity of the training data space. Some other signals coulnd not
be used, because they were used to trigger a fault, e.g. surge
was caused by the voltage reduction or flow strangling, so
the usage of voltage signals for surge detection would cause
in task simplification. Signals used for each fault are pre-
sented in Table 1.

Table 1: Signals used for detection of each fault

Signal name

ActSpeedCompressorTop
ActSpeedCompressorBottom
ActTorqueCompressorTop
ActTorqueCompressorBottom
RefSpeedCompressorTop
RefSpeedCompressorBottom
ActVoltageDCLinkCompressorBottom
ActVoltageDCLinkCompressorTop

VD Surge

NN N NN
SN NN

4 Implementation of classifiers using
Tensorflow

The TensorFlow library [6] is an interface for designing ma-
chine learning algorithms, and an implementation for exe-
cuting such algorithms. A computation expressed with the
use of TensorFlow can be executed with little or no change
on a wide variety of heterogeneous systems, ranging from
mobile devices such as phones and tablets up to large-scale
distributed systems of hundreds of machines and thousands
of computational devices such as GPU cards. It is focused
on novel machine learning techniques known as deep learn-
ing [7]. Tt is not the only one in the domain. Examples of
other frameworks are Caffe [8] or Theano [9]. An overview
of deep learning frameworks can be found in [10].

Classifiers used in this work learns directly from data, no
prior knowledge of the system model is needed. This ef-
fects in necessity to use the labelled training data, contain-
ing both normal process state and faults examples. For a
given test stand this resulted in manual data labelling, not-
ing when each fault begins and ends. Signals are saved in
experimental data files, while each experiment is assigned
to one of the fault categories (including no fault, i.e. fault
free state). This means, that for each experiment only a sin-
gle fault/no-fault label is needed, and the fault category is
determined based on the experiment name. The example of
the labelled surge fault is shown in Figure 3.

Detection of faults not present in the training data (in a
sufficient quantity) cannot be robustly performed with the
models presented below. However, futher work may adress
this problem, like in [11], where triplet loss is used to clas-
sify face of the human not present in the training dataset.

Fault detection must be performed at the time when the
fault occurs, so each sampling step is a new detection task.
The border between normal and faulty state may be wider
than a single sampling step, so some states should not be
considered during training and testing in the future work.

5000

4200

— ActSpeedCompressorTop
—— RefSpeedCompressorTop

4000

[10000 20000 30000 40000 50000 60000 70000 80000

Figure 3: An example of the labelled surge fault, marked
with a red background

For example, voltage dip start is rapid, but the surge end
cannot be precisely determined.

Fault detection can be performed on the basis of signals
values:

e from the current time step,

e from the current time step with some memory of pre-
vious steps,

e from last NV time steps (explicitly, without internal
model memory).

In this work cases above were implemented appropriately
by the following models:

e Multi Layer Perceptron (MLP) and Support Vector Ma-
chine (SVM),

e Recurrent Neural Network with Long-Short Term
Memory (LSTM),

e Convolutional Neural Network (CNN), MLP, SVM.

The larger signal period is considered by a classifier the
more complex process model can it handle, but, or the other
hand, more data is necessary for its training.

Results obtained for LSTM Network were not rewarding,
so this case will not be described in details. All other models
are described below.

41 SVM

Algorithm Support Vector Machine (SVM) serves for divi-
sion of linearly-separable data by a hiperplane with maxi-
mal margin between classes. It can be applied to nonlinear
problems using kernel trick. We selected this algorithm to
test applicability of Tensorflow to non-neural classifiers.

To include time variability of process signals, classifier
inputs can include values from previous time steps.

Two SVM classifier variants were tested:

(a) only current samples,

(b) current samples and three previous values for each sig-
nal: x(k), x(k — 1), x(k — 2), z(k — 3). It should
be noted, that many variants are possible (other time
delays, signal decimation, etc.).

Due to the functionality of available estimator class only
the linear version of the classifier was tested.

4.2 Multi Layer Perceptron

Multi Layer Perceptron (MLP) is the most popular type of
artificial neural network. It contains input, output and sev-
eral hidden layers. This type of network does not have recur-
rent connections. Each neuron of a given layer is connected
with all neurons of the next layer and each connection has its
individual weight. This network can model nonlinear func-
tions, for more complex functions one needs more hidden
layers.
Two variants were tested:

(a) only current samples (8 inputs),
(b) current and previous values of signals (32 inputs).

The network contains two hidden layers with respectively
100 and 50 neurons with nonlinear activation function
f(z) = max(0,z) and one output neuron with sigmoidal
activation. The model was implemented with high level
Keras interface (https://keras.io/) and Tensorflow
backend.

4.3 Convolutional Neural Network

Convolutional Neural Network is commonly used in the
domain of image classification, where spatial relations be-
tween pixels must be considered. For signals with time re-
lation Recurrent Neural Networks are used, as they are com-
putationaly more efficient. However, signals used for fault
detection are often analised by engineers as charts, so hu-
man can percept values from some period of time at once.
This observation turned us to try CNN in fault detection do-
main based on time series analysis.

CNN takes as an input a tensor of sample length Sp x
number of channels No. N¢e depend on the number of
signals Ng used for the fault diagnosis (No = Ng or
N¢ = 2 - Ng, explained below). Sy, is a hyperparameter,
which equals 12 (unit: probing steps) for voltage dips and
1200 for surge.

Moreover, human percept both signal value and its
changes. Signal differending can be learned by the network
from data. However, providing a simple preprocessing can
speed up (less time and less train data) the training process,
because the meaningfull variations in signal values are much
smaller than the signal mean. Three cases were tested:

e N¢ = Ng, only the raw signal is considered (later ref-
ered as CNN V),

e No = 2 - Ng, where each raw signal is assited with
its preprocessed changes signal (later refered as CNN
V+D),

e No = Ng, only the preprocessed change signal (later
refered as CNN D).

The change signal is calculated as follows: value from
the first probe of the sample is subtracted from every probe
value, and then, the magnitude is multiplied by a factor of
Fe. It is a hyperparameter, which equals 20 for both fault
types, which suit with observing the changes with magni-
tude of 5% of the signal range.

CNNss used for detection of both fault types have the same
parametric structure, and differ only in values of those pa-
rameters. This parameters are:

e sample length Sy,
e Convolutional Channels Factor CCF,
e Layers Grouping Factor LGF'

The CNN structure is described below:

e Network input goes through convolutional layers
convX_Y (e.g. convl_1, convl_2, conv_2_1, conv2_2
etc.). X is the layer group index, while Y is the layer
local index.

e Each convolutional layer convX_Y has X - CC'F out-
put channels and the output length equal to the input
length.

e Number of layers in each layer group equals LGF.
In other words, if each convolutional layer is noted
as convX_Y, the following layers exists: convX_l,
convX_2, ... convX_LGF.

e Each convolutional layer kernel size equals 3, and the
convolution is followed with bias add and ReL.U non-
linearity.

e After each layers group a max pooling operation is per-
formed, reducing the output size by a factor of 2 — de-
spite the layer, which output length is smaller then 5.
This is the last convolutional layers group.

e Convolutional layers are followed with three fully con-
nected layers, containing respectively 64, 16 and 2 neu-
rons.

e Finally the softmax is calculated for the last fully con-
neted layer. Its values match model beliefs for fault and
correct work.

The usage of the dropout regularization was tested, but it

usually descreased results for only few percent.

Parameter values, for each fault type, are presented in Ta-
ble 2.

Table 2: CNN parameters for each fault type

Fault type St CCF LGF
Volatage Dips 12 12 2
Surge 1200 12 3

5 Results

The models described in Section 4 were trained and tested
on the same subset of labelled files (experimental data files).
The samples from the normal process state were randomly
selected, so that the training set contained about 30% of
faulty data (representing state with fault). The results are
described in Table 3. The test data contains mostly non-
faulty states, therefore, the accuracy is not a best metric. We
use the following metrics to evaluate the models quality:

Tectsion = L (1)
b TP+ FP’
TP
l=——-— 2
reca TP FN 2)
2
Fl=— 3)
precision recall

where: T'P - number of true positives (correct detections),
FP - number of false positives detections (false alarms),
F'N - number of false negatives (missed detections).

Best models for each type of fault are marked bold (Ta-
ble 3).

Examples of models performance are shown in Figures 4-
7. Legend for each figure is shown in Figure 4.

1.00

ActSpeedCompressorTop
ActSpeedCompressorBottom
ActTorqueCompressorTop
ActTorqueCompressorBottom
RefSpeedCompressorTop
RefSpeedCompressorBottom

ActVoltageDCLinkCompressorBottom
ActVoltageDCLinkCompressorTop

Classification result

[

0.75 = _l
0.50
0.25
0.00
1200 1250 1300 1350 1400 1450 1500 1550

1600

Figure 4: Voltage dips, SVM, good classification results for

a simple case

08
06 L \\,4
04
02
-\
0.0
1100 1120 1140 1160 1180

1200

Figure 5: Voltage dips, CNN, delayed recovery from the

faulty state

0.8

0.6

0.4

0.2

0.0

100000

200000 300000

400000

500000

Figure 6: Voltage dips, CNN, false alarms in dynamic tran-

sient states

Table 3: Fault detection results

Model precision recall Fy

VD, MLPa 0.843 0.522 0.645
VD, MLPb 0.537 0.384 0.448
VD, SVMa 0.101 0.700 0.176
VD, SVMb 0.239 0.752 0.363
VD, CNN V 0.168 0.446 0.244
VD, CNN V+D 0.246 0.829 0.379
VD, CNN D 0.028 0.350 0.052
Surge, CNN V 0.816 0.638 0.716
Surge, CNN V+D 0.927 0.630 0.750
Surge, CNN D 0.832 0.638 0.723
Surge, MLPa 0.682 0.546 0.606
Surge, MLPb 0.792 0475 0.594
Surge, SVMa 0.200 1 0.333
Surge, SVMb 0.201 1 0.333

0.8

0.6

0.4

0.2

0.0
0 100000 200000 300000 400000 500000 600000 700000 800000

Figure 7: Surge, CNN, correct (but a little noisy) detection

5.1 Results summary

It should be noted, that the main aim of this project was not
to prepare ready-to-use classifier, but to analyse the appli-
cability of Tensorflow for such a task. Therefore, different
methods were tested, but without fine tuning. The results
could be further improved by:

e tuning networks structures (number of neurons, num-
ber of layers, number of input signals),

e meta-parameters tuning (learning rate, type of activa-
tion functions, type and parameters of optimization
method),

e data preprocessing,

e post-processing - filtration of detection signals and
thresholds selection.

Summarising, conducted tests show, that the Tensorflow
can be used to build classifiers for the purpose od industrial
fault diagnosis.

The results of tests of different classifiers can be sum-
marised as follows:

e SVM classifier - Tensorflow libraries contain only lin-
ear version of this classifier, which has limited ability
to represent complicated problems. We were able to
build working classifier for voltage dips, but it is worse
than neural networks. SVM classifier is only available
in tf.contrib.estimator library, which is not a core li-
brary of Tensorflow. Therefore, for non-neural clas-
sifiers we recommend tests using other libraries and

eventually final implementation with the use of low
level Tensorflow functionalities.

e MLP network - for voltage dips this structure gives sur-
prisingly good results even with only static data (with-
out past values of signals). The speed of computations
is also an advantage of this network. In the case of
surge we need more past values, therefore this struc-
ture loses its advantages.

e CNN networks - 1-D convolution (filtration in a time
domain) is a natural way of time series processing.
Convolutional networks are recommended for pro-
cesses with larger time spans, like surge. It is po-
tentially possible to speed up computations by mem-
orizing results from previous samples (similar idea for
computer vision was presented in [12]).

The carried out tests show that the problems, i.e. false
alarms, mainly occur in the following situations:

e when finding the exact moment when voltage dip ends
- practically this is not a crucial issue,

e during startup and shutdown of the process some sig-
nals decrease rapidly causing false alarms - this can be
filtered out by an additional logic in a diagnostic sys-
tem,

e during dynamic state transients (caused short false
alarms) - these can be partially filtered out, another so-
lution is to increase the amount of data from dynamic
states in the training set.

6 Concept of a dedicated software

This chapter presents the concept of dedicated software to
implement algorithms for on-line diagnostics of compres-
sors using the analyzed algorithms. The software will con-
sist of the following two parts:

e an off-line part responsible for the synthesis of the de-
tection algorithms and conducting learning phase,

e an on-line diagnostic part responsible for carrying out
the current process state monitoring.

6.1 Diagnostic algorithm synthesis module

Whole detection algorithm synthesis module is designed as
a typical off-line software dedicated to work on a classic
PCs.

This part, as an input, analyzes sample sets of measure-
ment data from the experiments, and, at the output, delivers:
(a) labeled learning and test sets, (b) diagnostic classifiers.

The general structure of the module with marked general
data flow is shown in Figure 8.

The individual components are responsible for:

e acquisition of experimental data from various operat-
ing states, including possible states with faults. New
unmarked process data from experiments are saved by
the standalone Learning Data Bridge in the Learning
and Testing Database. This task can be also performed
manually, by a diagnostics engineer or an ordinary op-
erator. Even in this case, it is useful to develop a tool
that simplifies saving the data file into the database.

e preparation of training data, including proper data la-
beling (marking a "presence" of fault). This operation
is performed under the supervision of the diagnostic

Process a
1

Process a
n

) /) 0y 7
Diagnostic Engineer wcorn glata from exgeriment

P «ilo\(» uf}éw,.

/.

aexacutable » @
Learning Data

I
1
1
1
1
«csvw data from
experieant

| aflows

«databa... a

Learning and

«TensorFlow libr...
Clasification

Algorithm X le=ang
Database

4, aflows

aflows

«models | 4 - adataba... @
Classifier X |o.* s Classifiers
/ Database

. -,
AN el
s)\P

———

> s
“aflows
g) aTensorFlow libra... 3]
Learning Algorithm X
o

Figure 8: Components and it’s relations - knowledge acqui-
sition phase

=exacutable »
Modelling

engineer with the use of the Labeler component. After
entering the necessary information, the module creates
the signals that describes the presence of fault in the
learning data and stores it in the Learning and Testing
Database. This tool should also enable simple manip-
ulations on data sets such as partitioning, deletion of
data or simple operations on signals. This module can
also use pre-built classifiers stored in the Classifiers
Database to perform an automatic pre-labeling test.

e conducting the procedure of selecting training and test-
ing data as well as teaching models. With the help of
the Modeling Module, the user carries out preparation
of the training data (selection of training cases, data
limitation, additional processing, etc.) and performs
the appropriate process of identifying the classifier pa-
rameters (construction of the classifier). The obtained
classifiers are saved in the Classifiers Database. The
module must be able to use the TensorFlow library and
Learning Algorithms provided by it. The learning pro-
cedure is usually supervised by the diagnostic engineer,
however, the proper identification procedurte is con-
ducted automatically.

This module is designed to be a tool for diagnostic engi-
neer. It support his work providing a convenient tools and
GUI to prepare training data and to supervise the process of
building classifiers. In the future, fully automatic operation
for this module is foreseen, both, in the scope of data la-
beling (marking the data with fault labels), and in the learn-
ing phase (periodic training of classifiers when new training
data becomes available).

6.2 Diagnostic module

The diagnostic part (current monitoring) is a typical soft-
ware designed to operate on-line. This module analyzes
new process dataframes and, at the output, determines the

amodels
Classifier X

wdatabasex

Classifiers
Database a.-

|
wflows I
]
]

Vi

« TensorFlow libran. g] ‘

aexecutablew g]

Faults Detector Classification

for Process 1 Algorithm X
«dataframex raw data e
:«fl:}'-'\-'» = -
) .
Gu "
* ~ Learning and {]
Testing Database
Operator

(a) with supervisor

amodels
Classifier X

wiatabases
Classifiers

|
I
]
]

Vi

« TensorFlow libran. g] ‘

aexecutablew
Faults Detector
for Process 1

Classification
Algorithm X

«dataframen raw data
i wflows

Diagnosis Learning and g]

Database

Testing Database

| aflows

Operator

(b) autonomous

Figure 9: Components and it’s relations - monitoring phase

diagnosis considering system state (presence of faults). In
addition, this module is responsible for distribution of elab-
orated diagnoses.

The general structure of the module together with the de-
signed data flow is shown in Figure 9.

Conducted tasks by this module are as follows:

e acquisition of new process data. The task may be also
completed with pre-processing of signals, e.g. aggre-
gation or scaling.

e classification, i.e. the calculation of the outputs of di-
agnostic models (fault signals), and, as a consequence,
generating a diagnoses about the state of the process.
This task uses a set of available classifiers from the
Clasifiers Database. The Fault Detector module uses
the TensorFlow library to simulate Classification Algo-
rithms. Due to the load balancing, data security and the
use of independent communication channels for differ-
ent objects, it is planned to create independent detec-
tors for individual objects.

o distribution of diagnoses, i.e. implementation of a sim-

ple visualization on the built-in operator interface, the
use of dedicated displays, as well as sending alarms to
the control or supervision system.

This is a part that works essentially autonomously. In the
basic version (Figure 9a), the fault detector will be equipped
with a simple user interface used to display diagnoses. It
will therefore combine both the detector functions and the
operator interface. One can separate these functions by de-
veloping (Figure 9b):

e an autonomous module without a user interface respon-
sible for the implementation and execution of diagnos-
tic algorithms. The elaborated diagnoses will be stored
in Diagnostic Database;

e an independent GUI for diagnostic module. It can be
used for presentation of current process state as well as
historical diagnoses.

In the future, it is planned to add an automatic or semi-
automatic procedures to create new training and testing
datasets. In such case, the module will also use the Training
and Test Database.

Proposed architecture should be flexible enough to be im-
plemented and run on different platforms, starting from con-
trol computers and ending with cloud systems.

7 Conclusions

The crucial issue is the process of collection and prepara-
tion of appropriate training and testing data. The quality
of input data is essential to results. In this project, faults
were labelled after the experiments. We recommend, when
possible, to apply automatic registration of introduced faults
during the experiments.

Regarding Tensorflow as a tool for fault detection we con-
sider the following future work possibilities:

e more effective convolutional network implementation
to speed up training and on-line calculations,

e selection of training data to include more dynamic tran-
sient states,

e experiments with recurrent neural networks,

e low-level implementation of selected non-neural clas-
sifiers,

e enlargement, preprocessing and careful labelling of
training examples database, including methods of au-
tomatic labelling during experiments,

e research on including some compressor model in the
classification process (instead of black-box approach).

According to the carried out experiments the deep learn-
ing techniques does not improve results in the diagnostic
task. The explanation is simple: we can recognize the per-
son on the image without red component of the image, but
we cannot detect voltage dips without voltage signal. Sim-
pler models, like MLP network, gives promising results.
The simple structures have additional advantage - one can
train a model on a CPU in a couple of minutes.

Typical approach to use Tensorflow library is based on
raw data. It leads to the following conditions:

e one need a large amount of correctly labelled training
data,

e no prior knowledge about the phenomenon is used.

These conclusions are consistent with the researched on
deep learning conducted in other application areas. Deep
learning techniques gain advantage with increasing amount
of data. In case of smaller data sets classical approaches
gives similar, or even better, results. Both approaches can
be implemented in Tensorflow library.

In all engineering tasks one want to achieve satisfactory
results with minimal amount of workload. Therefore, if one
do not use simplified models of the process, he needs larger
amount of training examples, so the model could learn how
the process operate. It may be more efficient to build process
model, implemented as Tensorflow graph itself, and use it
for model based fault diagnosis.

To summarize, our test show that application of a Tensor-
flow library to compressor diagnostic can be justified, but
the approach cannot be limited to standard deep learning
techniques.

Acknowledgments

References

[1] Tan Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[2] Monica Alexandru, Christophe Combastel, and Syl-
viane Gentil. Diagnostic decision using recurrent neu-
ral networks. IFAC Proceedings Volumes, 33(11):405—
410, 2000.

[3] Belarmino Pulido, Jesus Maria Zamarreno, Alejandro
Merino, Anibal Bregon, and Depto Ingenieria Elec-
tromecdnica. Using structural decomposition meth-
ods to design gray-box models for fault diagnosis of
complex industrial systems: a beet sugar factory case
study.

[4] Ran Zhang, Zhen Peng, Lifeng Wu, Beibei Yao, and
Yong Guan. Fault diagnosis from raw sensor data us-
ing deep neural networks considering temporal coher-
ence. Sensors, 17(3):549, 2017.

[5] Piotr Lipnicki, Daniel Lewandowski, Michat Kacz-
marek, Andrea Cortinovis, and Diego Pareschi. Volt-
age dips influence on time to surge in compressor ap-
plication. In Jan M. Koscielny, Michat Syfert, and
Anna Sztyber, editors, Advanced Solutions in Diag-
nostics and Fault Tolerant Control, pages 347-356,
Cham, 2018. Springer International Publishing.

[6] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from
tensorflow.org.

[7]1 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. nature, 521(7553):436, 2015.

[8] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. In Pro-
ceedings of the 22nd ACM international conference on
Multimedia, pages 675-678. ACM, 2014.

[9] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi,
Christof Angermueller, Dzmitry Bahdanau, Nicolas
Ballas, Frédéric Bastien, Justin Bayer, Anatoly Be-
likov, Alexander Belopolsky, et al. Theano: A python
framework for fast computation of mathematical ex-
pressions. arXiv preprint arXiv:1605.02688, 472:473,
2016.

[10] Soumith Chintala. An overview of deep learning
frameworks and an introduction to pytorch. 2017.

[11] Florian Schroff, Dmitry Kalenichenko, and James
Philbin. Facenet: A unified embedding for face recog-
nition and clustering. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 815-823, 2015.

[12] Pierre Sermanet, David Eigen, Xiang Zhang, Michaél
Mathieu, Rob Fergus, and Yann LeCun. Overfeat: In-
tegrated recognition, localization and detection using
convolutional networks. CoRR, abs/1312.6229, 2013.

