
Abstract 

Smart diagnosis of the milling in an industrial en-
vironment is a difficult task. In this work, the di-
agnosis using machine learning techniques has 
been developed and implemented for composite 
sandwich structures based on honeycomb core. 
The goal is to qualify the resulting surface flat-
ness. Different algorithms have been implement-
ed and compared. The time domain and frequency 
domain features are calculated from the measured 
milling forces. The experimental results have 
shown that a good milling diagnosis can be ob-
tained with a Linear Support Vector Machine 
(SVM) algorithm: good accuracy and short train-
ing time. 

1 Introduction 

The Industry 4.0 framework needs new intelligent ap-

proaches. Thus, the manufacturing industries more and 

more pay close attention to artificial intelligence (AI). For 

example, smart monitoring and diagnosis, real time evalua-

tion and optimization of the whole production and raw 

materials management can be improved by using machine 

learning and big data tools [1]. An accurate milling process 

implies a high quality of the obtained material surface 

(roughness, flatness) [2]. With the involvement of AI-

based algorithms, milling process is expected to be more 

accurate during complex operations. 

 

T. Mikołajczyk et al. developed an Artificial Neuronal 

Network (ANN) for tool-life prediction in machining with 

a high level of accuracy, especially in the range of high 

wear levels, which meets the industrial requirements [3]. 

The particularity of their work was the combination of a 

multilayers ANN model with image processing in order to 

reduce the potential error.  

D. Pimenov et al. evaluated and predicted the surface’s 

roughness through artificial intelligence algorithms (ran-

dom forest, standard Multilayer perceptron) [4]: in their 

investigation the obtained performance depends on the 

parameters contained in the dataset. 

M. Correa et al. compared the performances of Bayesian 

networks (BN) and artificial neural networks for quality 

detection in a machining process [5]. Even ANN models 

are often used to predict surface quality in machining pro-

cesses, they preferred BNs for their significant representa-

tion capability and for the fast model building. 

 

In this work, a smart milling diagnosis has been developed 

for composite sandwich structures based on honeycomb 

core. The use of such material has grown considerably in 

recent years, especially in the aeronautic, aerospace, sport-

ing and automotive industries. Recent development pro-

jects for Airbus A380 or Boeing 787 confirm the increased 

use of the honeycomb material. But the precise milling of 

such material presents many difficulties. 

 

The objective of this work is to develop an industrial sur-

face quality diagnosis for the milling of honey-comb mate-

rial, by using supervised machine learning methods. Cut-

ting forces are online measured in order to predict the 

resulting surface flatness. 

However, the literature's review does not exhibit deep 

studies related to the monitoring and the diagnosis of hon-

ey-comb core machining in order to ensure flawless sur-

face.  

2 Experiment description 

 
2.1. Workpiece material  
The workpiece material studied in this investigation is 
Nomex® honeycomb cores with thin cell walls. It is pro-
duced from aramid fiber dipped in phenolic resin (Fig. 1). 
The honeycomb cores consist of continuous corrugated 
ribbons of thin foil bonded together in the longitudinal 
direction. The aim of such a process is to create a structure 
allowing lightness and stiffness together thanks to the 
hexagonal geometry of formed cells. Figure 1 illustrates 
the geometric characteristics of the honeycomb core. 
 
The use of honeycomb material in sandwich composite is 

limited by the fragility of each wall of the honeycomb, 

which influences the quality of obtained surfaces after 

machining [7, 8, 9]. 
The Nomex® honeycomb machining presents several 
defects related to its composite nature (uncut fiber, tearing 
of the walls), the cutting conditions and to the alveolar 
geometry of the structure which causes vibration on the 
different components of the cutting effort [10]. 
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Honeycomb designation: A10-72-5OX 

 
Density 

[kg/m3] 

Cell size l 

[mm] 

Wall size t 

[mm] 

Angle α 

[°] 

72 5 0.08 100 

 

Figure 1. Nomex® honeycomb cores and the main geometrical 

characteristics. 

 
It is clear that the use of ordinary cutting tools and also the 
mechanical and geometrical characteristics of honeycomb 
cores will have a crucial effect on machinability and on the 
quality of the resulting surface [11].  

 
2.2. Cutting tool and experimental environment 
For our study, the used milling cutter is provided from our 
industry partner the EVATEC Tools Company. In fact, 
ordinary cutting tools for machining honey-comb core 
produce generally tearing of fibers and delamination of 
cell structures. Subsequently, these cause a reduction of 
bond strength between the skin and the honey-comb core, 
and thus a weaker joint for composite sandwich structures. 
As shown in figure 2, the EVATEC tool used is a com-
bined specific tool with two parts designed to surfac-
ing/dressing machining operation [12]. The first part is a 
cutter body made of high speed steel with 16 mm in di-
ameter and having ten helix with chip breaker. This tool 
part is designated by hogger. The second part is a circular 
cutting blade made of tungsten carbide with a diameter of 
18.3 mm and having a rake angle of 22° and a flank angle 
of 2.5°. These two parts are mechanically linked to each 
other with a clamping screw. 
 

 

 
Figure 2. Milling cutter used for Nomex® honeycomb core 

‘‘CZ10’’. 

 
Figure 3 shows the forces acquisition setup. During the 
measurements, the x-axis of the dynamometer is aligned 
with the feed direction of the milling machine and the 
longitudinal direction of the workpiece (parallel to core 
ribbons and the direction of honeycomb double wall). The 
3 orthogonal components of machining force (Fx, Fy and 
Fz) were measured according to figure 3 using the Kistler 
table [12]. 

  
Figure 3. Experimental test setup 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Machining center Realmeca® RV8 specifications 

 
2.3. Milling experiments 
All experimental milling tests illustrated in this paper were 
carried out on a three-axis vertical machining center Real-
meca® RV-8. For assessing the performance of the ma-
chining process of Nomex® honeycomb core we moni-
tored and measured the cutting forces generated during 
cutting, by using Kistler dynamometer model 9129AA. 
The Kistler table is mounted below the Nomex sample in 
order to measure the three components of the machining 
force as shown in figure 3.  

The milling experiment conditions are summarized in 
table 2. Four different speeds (high and low speeds) and 
four feed values were selected.  

 

Spindle speed 

(rpm) 

2 000 10 000 15 000 23 000 

Feed rate 

(mm/min) 

150 1 000 1 500 3 000 

Table 2. Milling experiment conditions.  

 

2.4. Measured signals 
Figure 4 shows the milling forces measured for honey-
comb at 2000 rpm spindle speed and 3000 mm/min feed 
rate. Cutting forces are in the order of a few Newtons, they 
do not exceed 60 Newtons. Generally, the force in vertical 
direction (Fz) is quite small, thus, it is advised that to 
keeping vertical forces small in milling composite due to 
the delamination issue. In our case, the vertical cutting 
force component is greater than other forces components 
which can be attributed to the mechanical properties of the 
honeycomb structure where the honeycomb structure is 
characterized by a better out-of-plane compression behav-
ior than its tensile and shear strength. The evolution of 
cutting forces shows significant oscillations, these oscilla-
tions are caused by vacuum in the cells of the honeycomb 
and the angle between the cutting direction and the honey-
comb cell wall direction. 
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Figure 4. Milling force measurements for 2000 rpm spindle speed 

and 3000 mm/min feed rate: (a) during all process; (b) during 

0.2s (zoom) 

 
Figure 5 shows the evolution of the surface quality (flat-
ness) for various combinations of cutting conditions (spin-
dle speed and feed rate). The defect of shape is higher for 
low speeds. Thus, for high feed rates that exceed the 1500 
mm/min, the unevenness exceeds 500 µm which character-
izes the severe tearing of the honeycomb walls. 
 
 
 
 
 
 
 
 
 
 

Figure 5. Effect of cutting parameters on surface flatness. 

 
Given the low level of cutting forces, the quality of the 
obtained machined surface allows to establish criteria for 
determining the machinability of the honeycomb struc-
tures. The appearance of the uncut fibers is a machining 
defect specific to the composite material which depends on 
the type of the fibers and their orientation. The tearing of 
Nomex® paper, linked to the cellular appearance of the 
honeycomb structure, occurs under the effect of shear 
loading [12, 13]. 

3 Milling diagnosis using machine learning 

techniques 

There are many approaches in machine learning. The two 
principals are [15] : 
- Unsupervised approaches : based only on input data 
(unlabeled data) ; the goal is to find a natural grouping or 
structuring in the data set in order to reduce the number of 
observations ; 
- Supervised approaches: based on input and output data 
(labels). 
 
Supervised learning algorithms (with labeled data) can 
split in two categories [15] : 
- Classification models which partition observations in 
categorical groups (leads to a predictive model for discrete 
responses). 
- Regression models which describe the relationship be-
tween outputs and variables through a mathematical func-
tion (leads to a predictive model for continuous responses). 

Our work focused on supervised learning for the classifica-
tion of data according to predefined specific classes. 

3.1 Features calculation 

The features are calculated in time domain and frequency 
domain from the raw signal represented on figure 4, in 
steady state behavior (transient zones, i.e. the time zone 
when the cutting tool enters into the honeycomb core and 
the zone when it exits, are not taken into account). The 
milling force plotted in figure 4 is the vertical force (Fz) of 
a given milling. That force is negative due to the fact that 
the z-axis direction of the dynamometer has been oriented 
downwards 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6. Measured milling force in time domain: (a) total data 

plot, (b) signal during steady-state phase 
 
After a first data processing (filtering), firstly many fea-
tures are calculated in time domain for the measured mill-
ing force signal called hereafter x(t).  

 
The calculated time domain features are: 

 
- maximum of x(t) (1) 
 
- minimum of x(t)  (2) 
 
- difference between the maximum of x(t) and the mini-
mum of x(t) : amplitude range (3) 
 
- median value of x(t)  (4) 
 
- Maximum of the absolute value of the signal : 

𝑚𝐴𝑆 = 𝑚𝑎𝑥(|𝑥𝑘|) (5) 
 
- Interquartile range : 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (6) 
where 𝑄3 and 𝑄1 represents respectively the upper and 
lower quartile.  

 
- Inter decile range : 

𝐼𝐷𝑅 = 𝐷90 − 𝐷10 (7) 
where 𝐷90 and 𝐷10 means respectively the 90

th
 ant the 

10
th

 decile. Both Inter quartile and Inter decile range are 
a measure of statistical dispersion of the values in a set of 
data. 

 
- Average value of the signal : 



𝑚𝑒𝑎𝑛(𝑥) =  
1

𝑁
∑ 𝑥𝑘

𝑁

𝑘=1

 
 

(8) 

 
- Average value of the absolute value of the signal :  

𝑀𝐴𝑆 =
1

𝑁
∑ |𝑥𝑘|

𝑁

𝑘=1

 
 

(9) 

 
- Average value of the absolute value of the derivative 
signal : 

𝑀𝐴𝐷 =
1

𝑁 − 1
∑ |

𝑑𝑥𝑘

𝑑𝑡
|

𝑁−1

𝑘=1

 
 

(10) 

 
- Variance : 

𝑉𝑎𝑟 =
1

𝑁
∑(𝑥𝑘 − 𝑚𝑒𝑎𝑛(𝑥))

𝑁

𝑘=1

 
 

(11) 

 
- Energy of the signal : 

𝐸(𝑥) = ∑ 𝑥𝑘
2

𝑁

𝑘=1

 
 

(12) 

 
- Energy of the centered signal : 

𝐸𝑐 = ∑(𝑥𝑘 − 𝑚𝑒𝑎𝑛(𝑥))
2

𝑁

𝑘=1

 
 

(13) 

 
- Energy of the derivative signal : 

𝐸𝑑 = ∑ (
𝑑𝑥𝑘

𝑑𝑡
)

2𝑁−1

𝑘=1

 
 

(14) 

- Skewness : 

𝑆 =
𝐸(𝑥 − 𝑚𝑒𝑎𝑛(𝑥))

3

𝑉𝑎𝑟3/2
 

 

 

(15) 

- Kurtosis : 

𝐾 =
𝐸(𝑥 − 𝑚𝑒𝑎𝑛(𝑥))

4

𝑉𝑎𝑟2
 

 

(16) 

 
- Moment order i (i = 5 : 10) : 

𝑚𝑖 =
𝐸(𝑥 − 𝑚𝑒𝑎𝑛(𝑥))

𝑖

𝑉𝑎𝑟𝑖/2
 

 

(17) 

 
- Shannon entropy : 

𝐸𝑆(𝑥) = − ∑ 𝑥𝑘
2

𝑁

𝑘=1

∗ log2(𝑥𝑘
2) 

 

(18) 

 
- Signal rate : 

τ =
𝑚𝑎𝑥(𝑥𝑘=1:𝑁) − 𝑚𝑖𝑛(𝑥𝑘=1:𝑁)

𝑚𝑒𝑎𝑛(𝑥)
 

 

(19) 

 
Secondly 19 features are calculated in frequency domain in 
a similar way for the measured milling force signal. There-
fore, the Fast Fourier transform (FFT) of the signal x(t) has 
been calculated : 

𝑌(𝑘) = ∑ 𝑥𝑖𝑒−𝑗2𝜋𝑘
𝑖
𝑁

𝑁

𝑖=1

, (𝑘 = 1, … , 𝑁) 
 

(20) 

where N is the number of samples of the signal x(t). 
 
The frequency domain features are calculated for the Y(f) 
signal. For example the Fast Fourier transform (FFT) plot 
is given on figure 7. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Measured milling force in frequency domain : FFT plot. 
 

All the calculated features (in time and frequency do-
mains) have been normalized and stored in a table whose 
lines and columns respectively represent the physical ex-
periments and the associated feature values.  
 
Normalization 
The resulting features being of different units and scale, it 
is necessary to normalize them in order to avoid meaning-
less and redundant information. The chosen normalization 
is given by the equation 21 [14] : 

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒
𝑛𝑜𝑟𝑚

=
𝑓𝑒𝑎𝑡𝑢𝑟𝑒 − 𝜇(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)

𝜎(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)
  

 

(21) 
where µ and σ represent respectively the mean value and 

the standard deviation of each column of feature type. 

This normalization leads to : 

 {
𝜇(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛𝑜𝑟𝑚) = 0

𝜎(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛𝑜𝑟𝑚) = 1
 

 
The normalized features are dimensionless and can thus be 
compared. The normalized feature table contains 39 fea-
tures and 3 input parameters for each experiment: the rota-
tion speed, the cutting speed and the depth of cut (i.e. the 
quantity of material the tool will take during milling). 
 
Feature reduction 
It is necessary to reduce the number of features in order to 
avoid overfitting on one hand and on the other hand to 
reduce the online computing time of the features. That 
dimensional reduction was made, by using the Principal 
Component Analysis (PCA) [19]. PCA can be seen as a 
data pre-processing method which leads to a weighted 
reduced matrix Z where each principal component Z

n
 (col-

umn of Z) is a linear combination of all the original varia-
bles (X

p
) [19]:   

 

𝑍𝑛 = 𝛼1𝑛𝑋1 + 𝛼2𝑛𝑋2 + ⋯ + 𝛼𝑝𝑛𝑋𝑝 
 

(22) 

Based on a pareto plot of the principal component vari-
ances (fig. 8), the reduced dataset can be obtained by keep-



ing only the m-first principal components which allow to 
reach a variance percentage of 99%. In our experimental 
case, m=9. So only the nine first principal components are 
kept.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Pareto plot of the variance percentage. 

3.2 Labeled data 

From the evaluation of the effect of the cutting parameters 
on surface flatness results, we defined two classes of sur-
face quality applied to the output data of each observation 
(see table 3) :  

Label Flatness (µm) Qualitative value 

'A‘ 0 – 600 Best surface quality 

‘B' 600 – …  Worst surface quality 

Table 3. Label table for the experimental observations. 

  
As shown in table 3, we have two labels, called classes. 
Class 'A' corresponds to the positive class,  Class 'B' corre-
sponding to the negative class. News data will be predicted 
using the rules below: 

- If prediction probability result ≥ 0.5 : class A 
- If prediction probability result < 0.5 : class B 

Training and validation set 

The data were reduced in a training subset (used to train 
the classification algorithm) and a test subset (for the vali-
dation). For selecting the observations in each data subset, 
a random logical selection was made. The table below 
resumes the partition of the data used in each classification 
algorithm. 

Dataset Percentage Class A Class B TOTAL 

Training 
 

70% 15 20 35 

Test  
(Validation) 

30% 6 8 14 

TOTAL 100% 21 28 49 

Table 4. Partition of the data. 

3.3 Supervised learning 

In this work, several classification algorithms have been 
implemented in the Matlab software environment (with the 
Matlab Statistics and Machine Learning Toolbox, Version: 
R2017) :  
- k-nearest neighbor (kNN) 
- Decision tree (DT) 

- Support Vector Machine (SVM) 
  
In order to evaluate how the internal parameters of each 
algorithm influence their efficiency, several variants of the 
same algorithm have been implemented (various distances, 
different kernels, etc.). 

 
The first k-nearest neighbor (KNN) was implemented by 
keeping the default Euclidean distance. For the same mod-
el, a limited number of neighbors (k=2) have been applied.  
Another training model consisted to weight each observa-
tion (the rows of our data set). Moreover the KNN algo-
rithm has been modified by using the Chebychev distance.   
The first used decision tree algorithm is a fitted binary 
classification decision tree. Then tree has been pruned to 
obtain a pruning tree of level 2. 
Two SVM algorithms have been implemented using dif-
ferent kernel functions. The first one is a linear SVM 
which is the default function for a two-class data set. The 
second one is the Gaussian SVM algorithm which is a 
normalized polynomial kernel. 

4 Obtained results 

4.1 Results of the trained models 

Table 5 shows the accuracy result of each algorithm per-
formed with the complete normalized data set  

Algorithms Accuracy 

(in %) 

KNN         100% 

KNN k=2    88.6% 

Weighted KNN k=2        83.4% 

Chebychev KNN k=2      100% 

Tree          100% 

Pruned tree  66.67% 

Linear SVM         91.4% 

Gaussian SVM           91.4% 

Table 5. Prediction error for the normalized data set. 

 
From table 5 we can observe that the simple decision tree 
classifier leads to the best trained model for predicting new 
data. But when that same algorithm was pruned, it lost an 
accuracy of 32.33%.  

Algorithms Accuracy  

kNN         99% 

kNN k=2    85% 

Weighted kNN k=2        98.2% 

Chebychev kNN k=2      87.5% 

Tree          99.2% 

Pruned tree  66.67% 

Linear SVM         99.8% 

Gaussian SVM           93.8% 

Table 6. Prediction error for the Label table for the n-by-n 

weighted matrix. 

Table 6 shows the accuracy result of each algorithm per-
formed with the reduced normalized data set (obtained 
from the PCA).  
A first conclusion is that for a dimension reduced feature 
table, the algorithms gave better results. From table 5 
(which presents the accuracy result from the weighted 
reduced data set), it could be noticed that both three algo-
rithms produces high accuracy rate for no-parametric algo-
rithm. Specifically, linear SVM is the most efficient with 



the lowest running time and the highest accuracy. It is also 
noticed that more an algorithm is constrained by parame-
ters, more its performances are reduced. It is the case of 
the pruned tree for which we limit the expansion: it is 
difficult for the model to find the best singleton split.  
 

4.2 Prediction results for new experiment data 

We used some news experimental data set in order to eval-
uate the performance of the trained model. The goal is to 
predict online (during milling) the surface quality. Results 
are presented here for the trained model by using the linear 
SVM classifier algorithm. Table 7 shows the percentage of 
true positive rate and false negative rate obtained from the 
evaluation of the prediction.   

 Predicted class  

Actual class A B  

A TP = 61.5% FN = 38.5% 100% 

B FP = 0% TN = 100% 100% 

(TP: true positive rate; FN: false negative rate; FP: false positive 

rate; TN: true negative rate) 

Table 7. Performance of the prediction using SVM classifier. 

 
The negative class B was the best predicted class. This is 
simply explained by the fact that it is the most predomi-
nant class in the data set.  
The linear SVM algorithm loses in performance for data 
set with large predictors (i.e. large features). However, 
with the reduced number of of features (9_first principal 
components), this algorithm has been the most accurate 
algorithm with the best prediction rate for the lowest train-
ing time.  

5 Conclusion and further works 

The milling's quality is qualified by the roughness or the 
flatness of the resulted surface. In this work, different 
supervised learning algorithms have been implemented 
(offline) and compared. Each AI-based model has been 
applied to a set of features. These features were calculated 
from measured milling forces. 
From the prediction results, SVM algorithm seems to be 
the most efficient algorithm in this application.  
The next step consists to implement an online version 
(therefore the features have to be calculated online). 
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