
Abstract 

Two distributed fault diagnosis approaches were 
compared, by analogy, to determine which is 
more efficient regarding computational 
complexity. The first approach considered all 
“locally computed” global and compound sets 
with minimal cardinality using a heuristic 
optimization method while minimizing 
subsystems interactions (communication). The 
second approach aimed at obtaining minimal 
coupled MSOs for minimizing the number of 
common links between MSOs by adding 
constraints in already existing optimal sensor 
placement algorithm, which uses BILP, but not in 
a distributed context. As a result of comparison, 
complexity of both approaches is characterized. 

1. Introduction 

For complex systems with large-scale distribution and 
communication constraints, it is appropriate to use 
distributed approaches [1]. Distributed approaches are 
more reliable than centralized approaches in case of the 
failure of the centralized diagnoser (also in decentralized 
schemes). Moreover, distributed approaches are preferred 
because of lack of scalability and efficiency of centralized 
solutions during online analysis for large-scale systems 
since that can be dealt with complexity by partitioning the 
system into subsystems [11]. Failures in communication 
links and nodes, and degraded diffusion through the 
affected nodes by propagation of overloads can lead to 
cascading failures. Moreover, transmission delays 
increasing the detection time can affect diagnostic 
accuracy [2]. Reducing communication costs in distributed 
contexts requires minimizing data transfer between local 
subsystems [1]. Therefore, distributed algorithms should 
consider the requirements of computational and 
communication efficiency. To deal with computational 
complexity in distributed algorithms, efficient approaches 
for the sensor placement analysis and to compute feasible 
MSO sets need to be developed. 

The Minimal Structurally Over-determined (MSO) set 
approach offers an alternate way to find all ARRs. 
According to [9], a minimal structurally over-determined 
subsystem (MSO subsystem) is a part of the over-
constrained part of a system graph from which removal of 
one constraint will make the subsystem to become just 

constrained, i.e., structural redundancy 1. Therefore, each 
MSO set will consists of in any case one constraint that can 
be used as an ARR. 

The global FMSO sets are obtained from the set of local 
FMSO sets, and the union of locally computed shared sets 
which forms a compound FMSO set that includes at least 
one shared FMSO set whose fault support is not empty, 
contains equations from at least two subsystems. 
 
In this paper, two distributed fault diagnosis approaches 
were compared, by analogy, to determine which is more 
efficient regarding computational complexity. The first 
approach [1] considered generates all “locally computed” 
global and compound sets with minimal cardinality using a 
heuristic optimization method while minimizing 
subsystems interactions (communication). The second 
approach [4] aimed at obtaining minimal coupled MSOs, 
for minimizing the number of common links between 
MSOs by adding constraints in already existing optimal 
sensor placement algorithm [3] which uses BILP, but not 
in a distributed context.  
 
The two considered approaches deal with the problem of 
distributed fault diagnosis (local diagnosis with minimum 
global diagnosis) that aims to obtain a set of optimal local 
diagnosers that guarantee the same properties as a global 
diagnoser. Both approaches target to provide the maximum 
possible detectability and isolability that can be achieved 
for a system given a set of measurements. 
 

In the first approach [1], the Fault-Driven Minimal 
Structurally Overdetermined (FMSO) Set concept is 
introduced, which can be directly used to construct an 
ARR (or residual generator). A heuristic optimization 
method to obtain the minimal cardinality set of compound 
FMSO sets is used in [1]. This optimization procedure can 
be improved by using BILP optimization as proposed in 
[2] utilizing MSOs (each is sensitive to a set of faults) and 
the structurally equivalence to the compound FMSO sets 
formation shown. 

In the second approach [4], after applying sensor 
placement algorithm proposed in [3], a set of minimum 
coupled set of MSOs are obtained. The adaptation 
presented in [4] aims at placing the sensors not only to 
guarantee detectability and isolability properties but also to 
facilitate the partition of a system into various subsystems 
by reducing number of links (communication) within a 
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system. This algorithm also minimizes the number of 
sensors to be installed thus reducing overall cost. 

For solving the BILP optimization without the need of 
previous computation of the complete MSOs set, which is 
a computationally complex task, some methods have been 
developed [7]. In [12], an efficient method to finding all 
the minimal sensors set for maximum fault detectability 
and isolability from a structural model is proposed. 
 

The structure of the paper is as follows: Section 2 
presents a four tank system used as case study along the 
paper. Sections 3 and 4 present the two distributed fault 
diagnosis approaches. Section 5 presents the comparison 
of the two approaches using the case study presented in 
Section 2. Finally, Section 6 draws the main conclusions. 

2. Case Study 

The case study used to compare both approaches is based 
on four tank system, proposed in [2], and is shown in Fig. 
1. V1, V2, V3, V4 are the volumes of water in each tank, q12, 
q23, q34, q4 represents the flows of water through each pipe 
(P1, P2, P3, P4), u1 and u2 represents the water sources. 
 

u1 u2

q12 q23 q34 q4

v1     v2 v3 v4

T1 T2 T3 T4

S1 S2

p1 p2 p3 p4

 

Figure1: Four Tank System [2], [4]. 

 
The four tank system is modeled through the following 

equations [4]: 
 

𝑒1 :   𝑣̇1 =  
1

𝐶𝑇1 + 𝑓1
  (𝑞𝑖𝑛1 − 𝑞12)  𝑒4 : 𝑞𝑖𝑛1  = 𝑢1 

𝑒2 :  𝑞12 =  
𝑣1− 𝑣2

𝑅𝑣12 + 𝑓2
   𝑒5 :    𝑣1 = 𝑦1 

 
𝑒3 :   𝑣1 = ∫ 𝑣̇1 𝑑𝑡    𝑒6 :   𝑞12 = 𝑦2 

 

𝑒7 :   𝑣̇2 =  
1

𝐶𝑇2 + 𝑓3
  (𝑞12 − 𝑞23)  𝑒10 :   𝑣2 = 𝑦3 

 

𝑒8 :  𝑞23 =  
𝑣2− 𝑣3

𝑅𝑣23 + 𝑓4
   𝑒11 :  𝑞23 = 𝑦4 

 
𝑒9 :   𝑣2 = ∫ 𝑣̇2 𝑑𝑡 

 

𝑒12 :   𝑣̇3 =  
1

𝐶𝑇3 
  (𝑞𝑖𝑛2 + 𝑞23 − 𝑞34)  𝑒15 : 𝑞𝑖𝑛2  = 𝑢2 

𝑒13 :  𝑞34 =  
𝑣3− 𝑣4

𝑅𝑣34 + 𝑓5
   𝑒16 :  𝑞34 =  𝑦5 

 
𝑒14 :    𝑣3 = ∫ 𝑣̇3 𝑑𝑡 

 

𝑒17 :    𝑣̇4 =  
1

𝐶𝑇4 + 𝑓6
  (𝑞34 − 𝑞4)             𝑒19 :    𝑣4 = ∫ 𝑣̇4 𝑑𝑡 

𝑒18 :    𝑞4 =  
𝑣4

𝑅𝑣4 
    𝑒20 :    𝑣4 = 𝑦6 

3. First Approach: Fault-Driven Minimal 

Structurally Overdetermined Sets 

 
3.1 Background concepts 
 
This approach [1], [6] establishes a structure connecting 
FMSOs with minimum number of shared measurements 
(communication) from neighboring subsystems by an 
iterative matching procedure. 

The global FMSO sets, Ф, are obtained from the set of 
local FMSO sets Φ𝑙, and locally computed shared FMSO 
sets Φ𝑠 and shared CMSO sets Ψ𝑠 (different subsystems) 
which forms a compound FMSO set [1], [6]. 

The shared CMSO (Clear Minimal Structurally 
Overdetermined) set, whose fault support is empty, 
corresponds to the measurements (internal (subsystem i) 
and from neighboring subsystems (shared variables)). 

The FMSO sets including equations with shared variables 
are called shared FMSO sets [1], [6]. 

The shared variables 𝑋𝑖
𝑠  =  {𝑞12, 𝑣2, 𝑞23, 𝑣3,𝑞34, 𝑣4}, which 

𝑋𝑖
𝑙 don’t include, are considered as known variables [1], 

[6]. 

Compound FMSO set (𝜑′): A global FMSO set that 
includes at least one shared FMSO set whose fault support 
is not empty, contains equations from at least two 
subsystems [1], [6]. 

The optimal compound FMSO set selection is performed 
by a heuristic method. 

A local FMSO set for any subsystem Σi is also an FMSO 
set of Σ, hence a global FMSO set [1], [6]. 

A local FMSO set (𝜑 ∈ Φ𝑖
𝑙)

'
s equations include local and 

shared variables of Σi and only involve the fault fi. To 
achieve detectability of fault fi, only the equations included 
in 𝜑 required [1], [6]. 

The concept of compound FMSO set allow us to establish 
the relation between FMSO sets for the subsystems and 
FMSO sets for the global system [1], [6]. 
 

To illustrate the previous concepts the example used in 
[1], [2], [6] is used that considers the first tank of the 
proposed case study 
 

  𝑒1 :    𝑣̇1 =  
1

𝐶𝑇1 + 𝑓1
  (𝑞𝑖𝑛1 − 𝑞12) 

  𝑒2 :  𝑞12 =  
𝑣1− 𝑣2

𝑅𝑣12 + 𝑓2
 

  𝑒3 :    𝑣1 = ∫ 𝑣̇1 𝑑𝑡 
  𝑒4 : 𝑞𝑖𝑛1  = 𝑢1 

  𝑒5 :    𝑣1 = 𝑦1 
  𝑒6 :  𝑞12 = 𝑦2        (1) 
 

Then, the set of shared FMSO sets Φ𝑖
𝑠is {𝜑1, 𝜑2, 𝜑3}: 

 



  𝜑1 = {𝑒2, 𝑒5}, 𝑤ℎ𝑒𝑟𝑒 : 
𝑋𝜑1 = {𝑣1}, 𝑍𝜑1 = {𝑞1, 𝑣2, 𝑦1, 𝑦2}, 𝐹𝜑1 = {𝑓2}  
  𝜑2 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}, 𝑤ℎ𝑒𝑟𝑒 : 
𝑋𝜑1 = {𝑣̇1, 𝑣1, 𝑞𝑖𝑛1}, 𝑍𝜑2 = {𝑞1, 𝑣2, 𝑢1}, 𝐹𝜑2 = {𝑓1, 𝑓2}  
  𝜑3 = {𝑒1, 𝑒3, 𝑒4, 𝑒5}, 𝑤ℎ𝑒𝑟𝑒 : 
𝑋𝜑1 = {𝑣̇1, 𝑣1, 𝑞𝑖𝑛1}, 𝑍𝜑2 = {𝑞1, 𝑢1, 𝑦1}, 𝐹𝜑2 = {𝑓1}       (2) 
 

  𝜑 ⊆ Σ𝑖 , 𝑋𝜑 ⊆ 𝑋𝑖
𝑙 , 𝑍𝜑 ∩ 𝑋𝑖

𝑠 ≠ ∅, and 𝑍𝜑 ⊆ (𝑍𝑖 ∪ 𝑋𝑖
𝑠)    (3) 

 
The procedure to compute a global FMSO set 𝜑𝑐, starts 

by searching in the bipartite graph G(X, Г) for a matching 
that covers each shared variable of 𝑋𝜑𝑟

𝑠  (𝜑𝑟 is the root 
FMSO set) given by Figure 4 in [1], [6]. 
According to the operational procedure of Algorithm 1 in 
[6], [1], it is possible to get the set of all global FMSO sets 
Ф from the set of local FMSO sets Φ𝑙 shared FMSO sets 
Φ𝑠 and shared CMSO sets Ψ𝑠. 
Considering all the possible root FMSO sets, 164 
compound FMSO sets are computed for this system. 
Added to 𝜑4 = {𝑒1, 𝑒3, 𝑒4, 𝑒5, 𝑒6}  ∈  Φ1

𝑙
, which is a local 

FMSO set for subsystem Σ1, the 165 global FMSO sets are 
found for Ф [1], [5]. 
 
3.2 Distributed diagnosis 
 
Given a set of faults, measurements and local models for 
every subsystem, we now construct local diagnosers that 
together make the entire system completely diagnosable. 
Using the Algorithm 2 and definitions of Chapter 2 in [1], 
[6], we can develop a local full diagnosis for every 
subsystem. 

These results demonstrate that all considered faults can 
be detected and isolated, e.g. in the considered example, 
detectability is achieved for f1 using 𝜑4 ∈ Φ𝑖

𝑙  (local 
FMSO) of Table 4 in [1], [6] (no additional measurement 
is needed). For f2, detectability is achieved obtaining a 
compound FMSO set 𝜑9 ∈ Φ1

𝑐 lumping 𝜑1 ∈ Φ1
𝑠 (as root 

FMSO set) with 𝜓1 ∈ Ψ1
𝑠 and 𝜓2 ∈ Ψ2

𝑠. Optimal 
compound FMSO sets from 164 compound FMSO sets are 
obtained by heuristic method as presented in Table 1. 
 
Φ1
𝑐 = {𝜑9}    𝐹𝜙1 

  𝜑9 = {𝑒2, 𝑒5, 𝑒6, 𝑒10}   𝐹𝜑9 = {𝑓2} 
 ---------------------------------------------------------------------- 
Φ2
𝑐 = {𝜑10, 𝜑11}   𝐹𝜙2 

 𝜑10 = {𝑒6, 𝑒7, 𝑒9, 𝑒10, 𝑒11}  𝐹𝜑10 = {𝑓3} 
 𝜑11 = {𝑒8, 𝑒10, 𝑒11, 𝑒13, 𝑒16, 𝑒20} 𝐹𝜑11 = {𝑓4} 
---------------------------------------------------------------------- 
Φ3
𝑐 = {𝜑12}   𝐹𝜙3 

 𝜑12 = {𝑒11, 𝑒12, 𝑒13, 𝑒14, 𝑒15 , 𝑒16 , 𝑒20} 𝐹𝜑12 = {𝑓5} 
---------------------------------------------------------------------- 
Φ4
𝑐 = {𝜑13}   𝐹𝜙4 

 𝜑13 = {𝑒16, 𝑒17, 𝑒18, 𝑒19, 𝑒20} 𝐹𝜑14 = {𝑓6} 
 
Table 1: Optimal compound FMSO sets Φ𝑖

𝑐(i = 1..4) 
obtained by heuristic method for distributed diagnosis [1], 
[6]. 
 

Algorithm 2, using a heuristic optimization method, 
produces a minimal cardinality set of compound (global) 
FMSO sets while minimizing subsystems interactions. 

4. Second Approach: Minimal Coupled MSOs 

4.1 Background concepts 

In the second approach [4], the graph G(V, E) representing 
the set of MSOs is obtained considering that 
 
 the MSOs are the graph vertices collected in a set V, 
 the measured input/output variables are the graph 

edges collected in a set E.  
 

Each MSO set will consists of in any case one constraint 
that can be used as an ARR. MSOs represent the 
redundancies in the system and can form the basis for fault 
detection and isolation. As given in [2], for the running 
example, there were 165 MSOs generated using the 
algorithm proposed in [12]. For example for the first tank, 
the only MSO = {𝑒1, 𝑒3, 𝑒4, 𝑒5, 𝑒6} as 𝑒5 is the redundant 
equation. The number of ARRs generated in this way will 
be larger than the set of ARRs found from a single 
complete matchings (ranking algorithm), and get a set of 
ARRs for each of these matchings (the number of ARRs 
was 16 (C1, …, C16) as obtained in [4]). 
 

The second approach by ARRs in original [4] performs 
better concerning computational complexity, without the 
need of previous computation of the complete MSOs set. 
For the comparison on a common basis, in this work we 
used MSOs instead of ARRs in the second approach. The 
analysis is to be shown with MSOs as the same carried out 
by ARRs, judging that the inference will be equivalent. 
After obtaining the model from the sets of equations or set 
of all MSOs, sensor placement algorithm [3] is applied. 

 
A binary matrix W = [wij] of size n× k containing the set 

of MSOs (the row set) and sensors (the column set) is 
formed. Matrix W refers to the set of sensor faults an MSO 
is sensitive to. In the same way, the binary matrix V = [vij] 
of size n× l relates the set of MSOs (the row set) and 
process faults (the column set). These relations are known 
as fault signature matrix (FSM) [9]. After obtaining W and 
V (the process faults not shown here) according to [4], the 
values of W and V are used to find various constraints in 
(6) [4], [13]. 

4.2 Minimizing the coupling between MSOs 

In order to facilitate the distributed implementation of the 
fault diagnosis systems, the sensors should be placed such 
that the coupling between MSOs is minimized. This is 
achieved by adding additional constraints that minimizes 
the number of common links between MSOs [4], [13]. 
First, a constraint that reduces the number of row links 
coupling is written in compact form as 

     11
(0) 0 0i j i p i i ii u i

W I r    
 

      
(4) 

An analog constraint could be added to minimize the row 
links coupling as follows 

       11
0 0

T

i j j j jj y j
W I c   

 
    

(5)
 

The MSOs (the row set (vertices)) are added. 
 

Additional constraints were added in the existing 
optimal sensor placement algorithm using Binary Integer 



Linear Programming [4]. Finally, the sensor placement and 
MSOs optimization problem is solved. 
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The values of q, λ, rows (r), columns (c) obtained are 
shown in Table 5.3 in [13]. The result shows that only 4 
sensors are needed (minimization of sensor) which 
measures the volume variable V1, V2, V3, V4 and only four 
MSOs will be required to satisfy the detectability and 
isolability of faults in these sensors, minimizing at the 
same time the degree of coupling among the obtained 
MSOs according to (4) and (5) [4]. The algorithm chooses 
these four MSOs since it fulfills the necessary conditions, 
firstly the solution obtained allows to isolate the fault 
which is shown in Table 2 [4] how the solution fulfills the 
necessary conditions of isolability (since each column is 
different so it is isolable, shown in Table 2 [4]), secondly 
the solution obtain is detectable since a unique solution is 
obtained, thirdly the solution obtained gives equal number 
of 1’s in respective rows and columns shown in Table 3 [4] 
which is a necessary condition for formation of a system. 
 

 V1 V2 V3 V4 
MSO i-1 1 1 0 0 
MSO i 1 1 1 0 

MSO i+1 0 1 1 1 

MSO i+2 0 0 1 1 
 

Table 2: Fault Isolability [4]. 

 
It is seen from the Table 2 that the analysis results in 4 
vertices and 6 edges, whereas the ideal solution should 
produce 4 edges as 1’s are only on the diagonal elements 
on FSM. 
 

 V1 V2 V3 V4  
MSO i-1 1 1 0 0   = 2 
MSO i 1 1 1 0   = 3 

MSO i+1 0 1 1 1   = 3 

MSO i+2 0 0 1 1   = 2 

   = 2   = 3    = 3   = 2  
 

Table 3: Equal number of ones in rows and columns [4]. 

The algorithm chooses MSOs also in such manner that 
these MSOs form a system with minimum coupling by 
choosing MSOs with minimum number of 1’s in rows and 
columns (the ideal solution by algorithm for this case is 
diagonal matrix, with diagonal elements are 1’s and rest of 
other element are 0) but such solution is not possible in 
this case. A minimum coupled or decoupled system can be 
divided into various subsystems in much better way as 
compared to a highly coupled system. In this case, the 
system can be divided into two subsystems using the 
approach presented in [8].  The first subsystem is formed 
by MSOs, MSOi-1, MSOi (Tank 1 and Tank 2) and the 
second subsystem is formed by MSOs, MSOi+1, MSOi+2 

(Tank 3 and Tank 4). After dividing the system into two 
subsystems, the fault signature matrices are created 
following the decentralized fault diagnosis algorithm in [8] 
(summarized in Section II) and after creating fault 
signature matrices, fault detection and isolation can be 
carried out. The proposed algorithm in this chapter allows 
obtaining a minimum coupled system by which 
partitioning of the system into various subsystems become 
easy as compared to the subsystems obtained by 
decentralized fault diagnosis algorithm described in [8] 
where we get a highly coupled system using ranking 
algorithm [9]. Tank 1 and Tank 4 have no coupling with 
each other and the only coupling between two subsystems 
is single coupling between MSOi and MSOi+1 (Tank 2 and 
Tank 3), the system obtained is one of the least coupled 
system, can be seen in Fig 5.2 in [4]. The other system can 
also be MSOi+3, MSOi+4, MSOi+5 and MSOi+6 shown in Fig 5 
in [4] since this system has the same type of coupling 
when compared with chosen system but the cost or weight 
of sensor used for MSOi-1, MSOi, MSOi+1, MSOi+2 is lower 
than the cost of the sensors used for MSOi+3, MSOi+4, 
MSOi+5  and MSOi+6 thus it can be seen that the algorithm 
chooses the best system according to least coupling and 
cost. 
 

… , MSOi-3, MSOi-2 
MSOi-1, MSOi, MSOi+1, MSOi+2 

           MSOi+3, … 
If we cannot obtain the "best" matching property with 

all the possible MSOs, the system is not structurally 
monitorable and we have to place some additional sensors. 

5. Comparison of Two Approaches 

The matrix sizes regarding efficiency in computational 
complexity for each approach are demonstrated. As the 
comparison objective, the approaches are assessed under 
the case of using, for both, a Binary Integer Linear 
Programming (BILP) for optimization. 

The first approach [1] considered Fault-Driven Minimal 
Structurally Overdetermined Sets, used a heuristic 
optimization method to obtain the minimal cardinality set 
of compound FMSO sets. 

To be able to apply a BILP optimization in the first 
approach, the structurally equivalence of the model of 
Khorasgani’s approach [2], which uses BILP, to the 
compound FMSO sets formation and its obtaining the 
equivalent results with the first approach were shown. 
Hence, we can use this approach for the first approach [1] 



for that to be comparable with the second approach [4] in 
terms of matrix sizes. 

Then, the matrix size increase for the second approach 
to obtain minimal coupled MSOs, by adding constraints in 
already existing optimal sensor placement algorithm 
(BILP) [3], was demonstrated to see which approach is 
more efficient. 

5.1 First approach: Fault-Driven Minimal 

Structurally Overdetermined Sets [1] 

This approach [1] used a heuristic method (Algorithm 2) in 
optimizing the compound FMSO sets, after generating all 
“locally computed” global and compound sets using 
Algorithm 1 [1], a structure connecting FMSOs with 
minimum number of shared measurements 
(communication) from neighboring subsystems: 
 
164 compound FMSO sets 
 
165 global FMSO sets     (1 local FMSO set) 
 

Using the definitions given in Section 3.1, we can 
demonstrate a sketch for the optimal compound FMSO set 
selection, the shared FMSO /CMSO sets, e.g., for 
subsystem 1 (Si): 

  subsystem 1(Si) 

 for   subsystem 1(Si)       shared FMSO sets 

         (as root FMSO set) 

    optimal 

a compound FMSO set 𝜑9 ∈ Φ1
𝑐   lumping 𝜑1 ∈ Φ1

𝑠
 

 

with    𝜓1 ∈ Ψ1
𝑠    and    𝜓2 ∈ Ψ2

𝑠. 
 

   subsystem 1(Si)   subsystem 2 (S2) 

 shared CMSO set            (neighboring susbsystems) 

     shared (variable) CMSO set 

 
           (also shared FMSO sets)  

from neighboring subsystems 

       

                   (7) 

 
The shared CMSO set, whose fault support is empty, 
corresponds to the internal measurements (Si) and 
measurements from neighboring subsystems (shared 
variables). 
 
From the Table 1, Φ𝑖

𝑐 (i = 1..4) by a heuristic method, 5 
optimal compound FMSO sets for the 4 subsystems are 
obtained from 164 compound FMSO sets as given below: 
 
Φ1
𝑐 = {𝜑9},Φ2

𝑐 = {𝜑10, 𝜑11},Φ3
𝑐 = {𝜑12},Φ4

𝑐 = {𝜑13}. 
 
  𝜑9 = {𝑒2, 𝑒5, 𝑒6, 𝑒10} 
 𝜑10 = {𝑒6, 𝑒7, 𝑒9, 𝑒10, 𝑒11} 
 𝜑11 = {𝑒8, 𝑒10, 𝑒11, 𝑒13, 𝑒16, 𝑒20} 
 𝜑12 = {𝑒11, 𝑒12, 𝑒13, 𝑒14, 𝑒15 , 𝑒16 , 𝑒20} 
 𝜑13 = {𝑒16, 𝑒17, 𝑒18, 𝑒19, 𝑒20}       (8) 
 
The red colored equation relates to the shared CMSO set 
(variable) from neighboring subsystems, corresponding 
minimal subsystems interactions (one or possibly more 

from each nearest neighbor), the blue colored equation 
relates to the shared CMSO set from subsystem i (Si), the 
black colored equation to the shared FMSO set from Si 
(the root), and the yellow colored equation to the shared 
FMSO set from a neighboring subsystem. 

5.2 Applying Khorasgani’s BILP Approach [2] to 

the First Approach in Optimizing the 

Compound FMSO Sets by Analogy 

Khorasgani [2] used in this approach the Binary Integer 
Linear Programming (BILP) for optimization. 
The optimization problem takes into account the 
relationship between measurements and MSOs (each MSO 
is sensitive to a set of faults). 
A distributed MSO selection is to design an algorithm that 
selects MSOi (locally) in a way that we add a minimum 
number of measurements to develop a local diagnoser 
(agent)for each subsystem. 
 

The optimal shared variables selection is performed by 

the Binary Integer Linear Programming (BILP). 

 

MSOk-l   =   MSOi (measurements)     +     measurements 

             Mi        Mo 
                    (the part of CMSO set) 

         from neighboring subsystems 

 
           (9) 
 
where Mo represents the set of measurements (not 
belonging to subsystem i) we need to communicate to the 
subsystem Si along with the set of measurements, Mi 
associated with the subsystem Si. 
 

MSOi corresponds, in the optimal compound FMSO set, to 

the shared FMSO set and the part of the shared CMSO set 

as the internal measurements in subsystem i (Si). 

 

Mo corresponds, in the optimal compound FMSO set, to 

the part of the shared CMSO set as the measurements from 

the neighboring subsystems of Si. 

 

According to [2], using a MSO is equivalent to using the 

measurements (Mi) that are included in the MSO, and we 

need to include this in the optimization problem. For 

example, consider MSO11, it has three measurements M11 

= {u1, y1, y2}. Using MSO11 in a local diagnosis subsystem 

means we need to communicate these measurement 

streams to that subsystem to achieve global diagnosability 

for the faults that belong to that subsystem. 

 
We need to demonstrate that this model can be 

considered as structurally equivalent to the compound 
FMSO set model of the first approach, and hence, we can 
use this approach, which uses BILP, in the first approach 
for that to be comparable with the second approach: 
As given in [2], for the running example there were 165 
MSOs generated, 3 measurements in the subsystem 1, and 
8 measurements for the entire system. 



Subsystem 1 has two faults of interest, and the goal is to be 
able to isolate them from any of the 6 faults in the 
complete system. 
Therefore, to solve the optimization problem in [2] for 
subsystem 1 (S1), matrix A has 
 
177 rows (equal to the number of constraints): 

- 2 constraints to guarantee the local detectability 
of f1 and f2, 

- 10 constraints to guarantee the local isolability of 
f1 and f2 from the other faults, and 

- 165 constraints to capture the relationship 
between the MSOs and the measurements and 

 
173 columns (equal to the number of binary variables):  

- 8 constraints for the measurements 
- 165 constraints for the MSOs and 

  
b is a vector with 177 elements (equal to the number of 
constraints). 
 
Table 5 shows, in the MSOk-l form, the minimum number 
of shared measurements (from neighboring subsystems 
and possibly one from each neighbor) obtained with the 
BILP Optimization. 
 
Table 5: Set of augmented measurements to each 
subsystem model [2]. 
 
Subsystem  Set of augmented measurements 
       S1      MSOk - l   y3  (S2) 
       S2      MSOk - l y2, u2, y6 (S3, S1, S4) 
       S3      MSOk - l  y4, y6  (S2, S4) 
       S4      MSOk - l y5  (S3) 
 

From the Table 6, the solution obtained in the first 
approach by heuristic method the measurements from 
neighboring subsystems as the CMSO sets (𝜓𝑖  ∈ Ψ𝑖

𝑠) of 
𝜑9,10,11,12,13 (5 optimal compound FMSO sets Φ𝑖

𝑐, (i = 
1..4) for the 4 subsystems) is shown. 
 
Table 6: Set of augmented measurements to each 
subsystem model – first approach solution by heuristic 
method [1]. 
 
       S1        𝝋𝟗        y1, y2        y3            (S2) 
       S2        𝝋𝟏𝟎        y3, y4        y2            (S1) 
        𝝋𝟏𝟏        y3, y4        y5, y6         (S3, S4) 
       S3        𝝋𝟏𝟐        u2, y5        y4, y6         (S2, S4) 
       S4        𝝋𝟏𝟑        y6         y5            (S3) 
 
As seen from the Table 5 and Table 6, all the 
measurements (one from each neighbor) from the 
neighboring subsystems are the same except for S2, u2 in 
[2] is selected instead of y5 in [1] from the same subsystem 
(S3). This difference comes from the use of shared FMSO 
set from a neighboring subsystem (𝑒13used in 𝜑11) in this 
approach [1] (see equation (8) and Table 5). For both 
application ([2], Table 5 and [1], Table 6), subsystem 2 is 
the only subsystem that shares a variable with a second 
order connected subsystem, all the other subsystems only 
need to communicate with their first order (nearest) 
connected subsystems. To minimize the number of 

measurements from the other subsystems, as given in the 
cost function in Eq. 9 [2], the cost will incur only the 
external measurements from the neighboring subsystems 
and not the measurements as internal in Si and as the use 
of shared FMSO set from a neighboring subsystem with 
the root shared set (Si).  
 
Therefore, we could decide that both application lays on 
the same basis and Khorasgani’s approach using BILP 
(i.e., the optimization stage) obtains the optimal 
equivalent results so as to be used in the first approach for 
comparison. 
 
The above case is that the shared FMSO set’s fault support 
is not empty and then there are two faults (f4, f5) included 
in 𝜑11 corresponding two shared FMSO sets, but, since the 
local diagnoser 𝜑12 will respond to its subsystem’s (S3) 
fault (f5), in achieving global diagnosability, 𝜑11 can act 
for only the fault (f4) of the root shared set (S2) not the one 
(f5) of the shared set in the neighbor (S3). 
 
Alternatively by another algorithm, a different compound 
FMSO set for S2 can also optimally select the same 
measurements from the neighbors in Table 5 (possibly 
more than one from each first order (nearest) neighbor) 
which provides a practical advantage by not needing to 
transfer data over long distances, which can be costly and 
error-prone [2]. 
 

This approach [2] now establishes a structure 
connecting FMSOs, in compound, with minimum number 
of shared measurements from neighboring subsystems. 

 
If we apply Binary Integer Linear Programming (BILP) 

instead of a heuristic method in the first approach, for the 
four tanks (S1, S2, S3, S4), similar to the analysis in [2]: 
 
subsystem 1 (S1), matrix A has  
 
176 rows (equal to the number of constraints): 

- 164 constraints to capture the relationship 
between the FMSOs and the measurements  

In this case, 164 constraints are used for the relationship 
corresponding to the number of all compound FMSO sets 
computed in the first approach except for the one local 
FMSO set. 
Since we have 165 global FMSOs (165 constraints) in this 

approach as given in [1], the total number of columns (c) 

for each subsystem is 173. 
 
for all the subsystems, the matrix A: 
 
                                           total (r)   total (c)    

subsystem 1 (S1) 

         2 faults                 2    10   164     176 (r)   173 (c) 

         3 measurements 

 
subsystem 2 (S2) 
         2 faults    2    10   164     176        173 

         2 measurements 

 
subsystem 3 (S3) 
         1 fault    1     5  164     170        173 



         2 measurements 

 

subsystem 4 (S4) 

         1 fault    1     5    164      170       173 

         1measurement 

      

         (10) 

 

for the system (S1, S2, S3, S4): 

 

176  +  176  +  170  +  170   =  692 (r) 

  

The analysis results in (692, 173) element matrix. This 

matrix size is to be processed if we apply BILP to the first 

approach for optimizing the compound FMSO sets, which 

is to be compared with the one to be obtained in Section 

5.3. 

5.3 Second Approach: Minimal Coupled MSOs 

The analysis is performed for the four tank example: 
 
As obtained in the second approach in Section 4.1, using 
the methodology in [3] as the first step: 
 

 n   number of MSOs = 165    = λ, 
 

 k    number of candidate sensors = 8   =q, 
 

q = 8, λ= 165, and 

 

 l     number of process faults = 2 

   (11) 
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The number of rows (i.e., constraints) 
 
• The MSO selector constraints (11) in [3] involve  
 
      n (λ) = 165 rows 
 
• The detectability constraints (14) and (17) in [3] 

involve 
 
             l + k (q) = 10 rows 
 
• The isolability constraints (20), (24), and (30) in [3] 

involve 
 
      𝐶2

𝑙 + 𝑙. 𝑘 + 𝐶2
𝑘 =  1 + 16 + 28 =  45 rows 

 

 

  (165 + 10 + 45)  =  220  rows 

 

    n (λ) + k (q) = 165 + 8  =  173  columns 

 

The analysis results in as (220, 173) element matrix. 
 
This is the matrix size for the four tank example, before 
adding constraints (the rows) in the following, as obtained 
with the existing optimal sensor placement algorithm. 
 
The matrix size by adding additional constraints, the row 
set, to choose MSOs that form a system with minimum 
coupling (communication) was shown below: 
 
From Section 4.2, using equations (4) and (5) [4], we 

checked how these additional constraints act. 

 

(W165× 8   0165 × 165- I165× 165   0 165 × 2)   (r)165 × 1≤   0165× 1 

 

(W8× 165    08 × 6      - I8× 8)     (c)8 × 1≤   08× 1 

 

         (13) 

 
For each constraint, with the values as the numbers of 
MSOs (n (λ) = 165) and (candidate) sensors (q = 8) in 
columns, a simple validation performed first to see that the 
corresponding number of columns does not change by this 
approach as 173 in total as a joint effect of the constraints, 
thus maintaining the number of columns obtained with 
using [3]: 
 
The rows added for each constraint as 165 and 8 are given 
in equation (13). 
 

 165 × 8 

      8 × 165 

If we add the number of rows obtained with two additional 
constraints: 
 

165 + 8  =173 rows       

 

And totally, 173 rows are added. 

 

As many as the column number before adding constraints 

the rows are added. 

 
If we add the additional number (173) of rows (constraints) 
obtained in this section after adding constraints (the rows) 
in eq. (13), to the number of rows in (220, 173) matrix. 
 

(220 + 173) =  393 rows 

We obtain the resulting (393, 173) element matrix. 
 

In comparison, it is shown that for optimization the 
second work [4] performs better as (393, 173) element 
matrix than the first approach [1] processing a (692, 173) 
matrix in terms of computational complexity. 



6. Discussion and Conclusions 

Two distributed fault diagnosis approaches were 
compared, by analogy (i.e., the matrix sizes) to determine 
their efficiency in the case of using, for both, a Binary 
Integer Linear Programming (BILP) for optimization using 
a four-tank system example. 

Though, as demonstrated in the first approach [1], the 
Fault-Driven Minimal Structurally Overdetermined 
(FMSO) Sets can be directly used to construct an ARR or 
residual generator, the matrix sizes to be processed for 
computing the optimal sets (apart from the computation of 
all global (compound) sets) were assessed. 

Since the first approach used a heuristic optimization 
method to obtain the minimal cardinality set of compound 
FMSO sets, we applied Khorasgani's BILP optimization 
method, utilizing a structurally equivalent model to the 
compound FMSO sets formation, to the first approach to 
decide that Khorasgani’s approach using BILP obtains the 
equivalent results so as to be used in the first approach for 
the purpose of comparison. 

Then, we applied Binary Integer Linear Programming 
(BILP) instead of a heuristic method for the four tanks to 
find the matrix size to be processed in this case. 

In the second approach [4], minimum coupled MSOs for 
minimizing the number of common links (communication) 
between MSOs are obtained by adding constraints (the row 
set/MSOs) in already existing optimal sensor placement 
algorithm [3], which uses BILP, but not in a distributed 
context and thus uses the complete set of MSOs. 

For the comparison on a common basis, in this work we 
used MSOs instead of ARRs in performing the analysis of 
the second approach. 

In the original second approach [4], in applying sensor 
placement algorithm, for solving the BILP optimization 
without the need of previous computation of the complete 
MSOs which requires a high computation time, the ARRs 
(the model) were generated using ranking algorithm and 
all the possible ARRs in addition to the primary ARRs 
obtained from the set of system model equations. 

After solving the sensor placement problem, the 
algorithm ensures a set of minimum coupled (minimal 
sensors) set of MSOs for maximum fault detectability and 
isolability. 

In comparison, it is shown that the second work 
performs better in terms of the matrix sizes to handle. Then 
again, it is preferential to use the second approach with 
ARRs in original [4] concerning computational 
complexity, in that case resulting as (95, 24) matrix. 
In addition to this work, adding redundant sensors (the 
column set) to obtain the ideal solution (best matching) in 
the fault signature matrix can be shown. 

As the most efficient approach from the required MSO 
sets point of view causal computation approach can be 
studied which needs no MSO sets. 

The uncertainty in the system could be studied by using 
statistical and stochastic methods for robust distributed 
fault detection and isolation. 
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