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Abstract

The increasing complexity of tasks that are re-
quired to be executed by robots demands higher
reliability of robotic platforms. For this, it is cru-
cial for robot developers to consider fault diag-
nosis. In this study, a general non-intrusive fault
diagnosis system for robotic platforms is pro-
posed. A mini-PC is non-intrusively attached to
a robot that is used to detect and diagnose faults.
The health data and diagnosis produced by the
mini-PC is then standardized and transmitted to
a remote-PC. A storage device is also attached to
the mini-PC for data logging of health data in case
of loss of communication with the remote-PC. In
this study, a hybrid fault diagnosis method is com-
pared to consistency-based diagnosis (CBD), and
CBD is selected to be deployed on the system.
The proposed system is modular and can be de-
ployed on different robotic platforms with mini-
mum setup.

1 Introduction
In the fast developing world of today, robots are being de-
signed and manufactured to aid humans in tasks which are
repetitive, dangerous or tedious. One of the main fields
of development for robotics is Unmanned Ground Vehicles
(UGVs). UGVs are fast growing and are of high interest to
both the commercial and defence industries because of their
practicality in different use-cases. Scenarios such as search
and rescue, explosive ordnance disposal, mine clearing, or
perimeter monitoring are attractive for using technologies
such as UGVs. Some of the reasons why this technology is
continuing to grow is because of the increasing availability
of low-cost sensors and microcontrollers, increased labour
cost due to globalization, change of the acceptability of hu-
man causalities and loss of life and many more reasons [1].
Recent studies have shown that the UGV market is projected
to grow from USD 1.49 Billion in 2016 to USD 2.63 Billion
by 2021 1.

An interesting aspect of the UGV market survey is that
based on mode of operation, teleoperated robots lead the
market among tethered, semi-autonomous, and autonomous
robots. This is because of the unreliability of autonomous

1https://www.marketsandmarkets.com/Market-
Reports/unmanned-ground-vehicles-market-72041795.html

robots, and the nature of the dynamic environments that hu-
mans want to deploy robots in. Unreliability is an aspect of
being autonomous; since there is no human intervention in
truly autonomous robots, the internal communications and
decision-making processes of the robot are not known to the
user. Due to these reasons and the unreliability which comes
from the robot being autonomous, one can expect faults to
occur frequently.

It is therefore crucial for robot designers and developers
to consider faults during their design process, either in build-
ing systems that are fault tolerant, or in creating systems
that have fault diagnosis capabilities. In the robotic domain,
fault tolerance can be achieved by adding redundant sensors,
actuators, or even redundant software components that make
sure some computations are always executed. Fault toler-
ance is usually required in systems which are safety-critical
or systems that require low downtime. Moreover, adding re-
dundant components increases the total cost of the system,
or adds greater computational complexity to the system.

Another aspect that comes to mind regarding designing
systems that are fault tolerant or have fault diagnosis ca-
pabilities, is the tracking of the status of components, and
storage of important information in order for the users or
experts to be able to assess and analyse the status of a sys-
tem over time when required. One of the most notable sys-
tems that do so are aircrafts. Aircrafts have dedicated data
recorders, famously known as black boxes, which store im-
portant information and data logs of multiple signals com-
ing from different components. Over the years, flight data
recorders (FDRs) have proven to be crucial, in analysing the
status of aircrafts after accidents or faults have occurred.

Data representation and standardisation is also an issue
that needs to be considered while developing robotic sys-
tems. Since robotic platforms nowadays are highly cus-
tomizable, and a range of different components are available
to a developer, one can expect such complex systems to ex-
change data in both high volume and rate. It therefore makes
sense to have a generalized method to represent the health
of different components in a way that is thorough enough to
give the user or developer an overview of the robot’s health,
and be able to cope with the different components running
on the robot.

The goals of this study is to develop a fault diagnosis sys-
tem that can do the following:

• Design a fault diagnosis system that can be deployed
on varying robotic platforms with minimum setup.

• Non-intrusively monitor and diagnose varying robot



components.

• Standardize the health messages produced by the diag-
nosis system.

• Transmit standardized health messages to a remote-PC.

• Log the health data produced by the diagnosis engine
of the monitored components.

2 Related Work
To achieve the goals of this study, fault diagnosis meth-
ods needed to be reviewed in order to select an appropriate
method. Robotic platforms nowadays have a wide range of
components deployed on them and since one of the goals
of the study is to design a system that can incorporate dif-
ferent components of a robot, the selection of the diagnosis
method is crucial.

Having a wide range of components to monitor means
that a substantial amount of data is to be expected to be gen-
erated by the diagnosis engine. Standardizing the represen-
tation of the health data produced by the diagnosis engine
would be useful to the developers and users of robotic plat-
forms. This would help in easing the integration of new
components to be monitored in the diagnosis system, since
they will be enforced to follow a data structure. Standard-
izing the health messages as well will help in creating inde-
pendence between the fault diagnosis methods used, and the
diagnosis data produced by the method.

2.1 Fault Diagnosis Methods
The selected method of diagnosis should be light weight and
low in computational complexity since it is intended to be
deployed on a mini-PC with limited resources.

Fault diagnosis methods can be split into mainly four
categories, namely, model-based, knowledge-based, data-
driven and hybrid methods. Khalastchi and Kalech [2],
provide a comprehensive survey of fault diagnosis methods
with regards to the robotics domain.

Model-based diagnosis (MBD) relies on creating a model
of a system by either having a set of analytical equations or
a set of logical formulas that describe the behaviour of the
system. When an inconsistency is found between the ac-
tual output of the system and the expected output from the
model, the system is considered then to be faulty. Analyti-
cal or logical equations usually describe a specific behaviour
of some phenomena. Therefore they usually require prior
knowledge of the system. Structural models however, de-
scribe the dependency of components to each other, which is
by comparison to behavioural models, easier to derive since
describing relations between components is not as compli-
cated as describing phenomena through analytical or logical
relations. Some studies have been where model-based diag-
nosis is applied to the robotics field. The interested reader
can review the following studies; [3], [4]. Model-based di-
agnosis face some challenges when applied to the robotic
field, some are summarized here:

• Constructing a model that represents the behaviour of
components on the robots such as sensors, that gener-
ate noise and operate in continuous time,

• Presenting the dynamic nature of the environment
which the robot is deployed in, or representing the
robot-environment interaction.

Knowledge-based approaches are used in a way that
mimics human reasoning where it can diagnose a fault
based on known symptoms or based on previous knowl-
edge. Knowledge-based diagnosis branches mainly into
causal analysis [5] and expert systems [6].

Data-driven approaches are mainly classified into two
main branches, statistical approaches [7], [8], [9] and ma-
chine learning approaches [10]. These methods rely on
monitoring the online data produced by different compo-
nents in a system to detect and diagnose faults.

Finally, hybrid approaches are using any of the afore-
mentioned methods in a combined manner. For this study,
two fault diagnosis approaches were of interest consistency-
based diagnosis (CBD) [11] and sensor fault detection and
diagnosis (SFDD) [12]. CBD is a model-based approach
that has the advantage of being light weight and can be
used to model complex behaviours of different components.
SFDD is a hybrid combination between model-based and
data-driven appraoches and was found to be attractive be-
cause of the ability to use the available data from compo-
nents on a robotic platform and the ease of modelling by
only requiring a structural model. Both methods will be ad-
dressed in detail in section 4.

2.2 Data Standardization
Since robotic platforms are highly customizable with re-
gards to their function and number of components deployed
on them, it is difficult to find a data standard that is im-
posed on robotic platform components and accepted widely
by the robotics research community. Nevertheless, this is
not the case with military vehicles, which is a more well de-
veloped field, where data standards already exist for electric
and electronic components representation and communica-
tion [13], [14]. Taking inspiration from military vehicles,
one can take advantage of already well developed standards
and apply them to the robotics field. Of course, there exists a
huge difference between components deployed on vehicles
and robots. However, since fault diagnosis methods which
can be deployed on robots can also be deployed on vehicles,
one can benefit from using standards related to fault diagno-
sis and health monitoring of vehicle components.

For this study, access to the NATO Generic Vehicle Ar-
chitecture (NGVA) was granted. NGVA 2 is based on the
UK Generic Vehicle Architecture [14]. It is an open archi-
tecture design approach to land platforms. GVA uses open
standards to software and hardware interfaces, in order to
ease upgrading or replacing electric or electronic compo-
nents on a vehicle, rather than being dependant on third
party hardware or software interface providers. GVA was
later adopted and enhanced by European nations as NATO
GVA (NGVA).

Fig. 1 gives an overview of the NGVA data infrastruc-
ture. The NGVA data model contains a collection of data
modules, that represent different subsystems or components
of a system. NGVA uses Data Distributed Services (DDS)
[15], which is a machine-to-machine middle-ware. DDS
has the advantage of providing reliable real-time informa-
tion exchange between system components or subsystems.
DDS works in a publish-subscribe manner, where it allows
applications to publish or subscribe to topics on different
computers within a network or on the same computer si-
multaneously.

2https://natogva.org/



Figure 1: NGVA data infrastructure layered view [16].

Adopting such a standard to the robotics field with re-
gards to fault diagnosis can be of great advantage, especially
with regards to the goals of this research, since it provides
an independent platform for communicating with a remote-
PC, giving a higher robustness overall to the system, by not
depending on the robot’s operating system. Furthermore,
since NGVA enforces a data infrastructure for the data being
exchanged, one can benefit from having a standard to repre-
sent the health of components regardless of the fault diagno-
sis method used. From having an overview of the different
data standards available from NGVA, the Usage and Con-
dition Monitoring System (UCMS) module was selected as
the most appropriate standard to represent the health of sub-
systems and components deployed on the robot.

3 System Architecture
To develop a system that satisfies the goals and require-
ments of this project, a system architecture had to be de-
veloped. Since the main goal of developing such a system is
to non-intrusively monitor and diagnose faults of a robotic
platform, a mini-PC was selected to be used to gather infor-
mation on monitored components. The mini-PC would have
it’s own power supply and would connect to the robotic plat-
form via the available communication method to listen/spy
to the data that can be used later on for fault diagnosis. This
way, the fault diagnosis system would not burden the robotic
platform with more computational tasks or use any of the
robotic platform’s power resources.

Since many of the robotic platforms nowadays use Robot
Operating System (ROS), it was used as the the main frame-
work for this study [17]. ROS is a commonly used robotic
framework that is based on a publish subscribe model. A
robot running ROS contains nodes that can perform compu-
tations, and can publish or subscribe to topics. For example,
a robotic platform with a camera connected would have a
camera node that would publish the raw frames produced
by the camera and another node can subscribe to these pub-
lished frames to perform further computations.

As for the standardization of the health messages that will
be produced by the diagnosis engine deployed on the robotic
platform, the UCMS data model module was selected to be
used and evaluated.

After considering the requirements and constraints of the
system to be developed, a conceptual system architecture
was developed using an attribute-driven design method and
can be seen in Fig. 2.

Figure 2: Conceptual system architecture of the non-
intrusive black box connected to the robot.

The architecture can be devided into two main compo-
nents, namely, on-board and off-board. The on-board com-
ponents includes the robotic platform along with the black
box that contains the complete fault diagnosis system. The
robotic platform has several components connected to it
such as sensors and actuators. sensors can produce infor-
mation which can be used by ROS nodes and nodes can also
publish commands to different actuators. For the purpose of
diagnosis, configuration parameters can be derived from the
different ROS nodes that represent the different components
deployed on the robotic platform. The configuration param-
eters can help the diagnosis system by providing the neces-
sary metadata, semantics or static information required by
the fault diagnosis method.

The black box contains the fault diagnosis module which
gathers data about the monitored components and produced
a diagnosis based on the selected method. The produced di-
agnosis is then standardized using the UCMS data module
and transmitted on the network using DDS as the middle-
ware. The storage device also collects the produced diagno-
sis data and can be used for multiple purposes such as time
analysis of component’s health.

The off-board component represents the remote-PC that
contains a graphical user interface (GUI) and a storage de-
vice. The GUI displays the standardized UCMS health in-
formation and can also keep a log of the data via the storage
device available. The remote-PC can have multiple uses as
well, however, for this study the focus is the black box and
the diagnosis module.

Fig. 3 presents a tier view of the system architecture, the
system can be divided into 4 tiers. The logic tier contains
the black box that contains the fault diagnosis module. Both
Fig. 2 and 3 can give the reader more insight into the de-
signed system architecture.



Figure 3: Tier view of system architecture containing phys-
ical, physical gateway, logic and remote PC - interface tiers.

4 Consistency-based Diagnosis Vs. Sensor
Fault Detection & Diagnosis

4.1 Consistency-Based Diagnosis
Founded by Reiters [11], consistency-based diagnosis is
used in diagnosing systems by describing the correct be-
haviour of the components and the way components inter-
act. CBD uses First Order Logic (FOL) to describe the be-
haviour of the system including its components. A model
of a system is then a collection of the FOL statements de-
scribing the behaviour of the components. These models
are used to diagnose the system based on observations of
the real system. Describing a system in terms of its com-
ponents means that the system can be decomposable, which
can help in fault isolation. A description of a system can
then be split into three main parts [18]:
• Behaviour of component types.
• List of Components.
• Component structure.
The following example will be used in describing the

modelling and diagnosis process of Consistency-based di-
agnosis. Usually, logic circuits are used to describe CBD,
such as the circuit shown in Fig. 4.

Figure 4: Structure of a circuit.

In Fig. 4, components of type AND, OR, XOR gates are
connected together. The description of behaviour of compo-
nent type will be in the following form:

typei ∧ ok(x)→ Φ(x) (1)
In equation 1, Φ represents a generic formula that states

how the component behaves, typei represents the types of
components and x is the component that belongs to type x.

After describing the behaviour of component types, the
components in the system need to be listed along with
their types. Therefore for Fig. 4, the COMPTYPES list
will be as follows: {ANDG(A1), ANDG(A2), ORG(O1),
XORG(X1), XORG(X2)}

Finally, the system structure needs to be given, stating the
connections between the components.

CONN = {out(X1) = in2(A2),

out(X1) = in1(X2),

out(A2) = in1(O1),

in1(A2) = in2(X2),

in1(X1) = in1(A1),

in2(X1) = in2(A1),

out(A1) = in2(O1)}

(2)

After listing the connections between the components
(CONN), the system description (SD) becomes complete.
Therefore a complete system description is:

SD = TY PES ∪ COMPTY PES ∪ CONN (3)

This system description is now the model of the system
that can be used for diagnosis. In order to diagnose a system,
observations (OBS) are required to be drawn from the real
system. A diagnosis problem is defined as a triple:

(SD,COMPS,OBS) (4)
where SD is the system description, COMPS is the set of

suspected components and OBS is a finite set of first-order
sentences containing the observations made of the system.
As the system is running, consistency is checked between
the model and the observations. If an inconsistency exists,
a diagnosis is called for. In a CBD problem, a diagnosis
assumes that only a subset of the components are faulty and
the rest are normal. Therefore:

D ⊂ COMPS (5)
where D is minimal set of components such that:

SD ∪OBS ∪ {AB(c)|c in D} ∪ {¬AB(c)|c in COMP −D}
(6)

is consistent. Meaning that the system description along
with the observations are consistent with the system compo-
nents contain a set of faulty components or in other words
abnormally behaving components.

Finally, to find the faulty components in D, a hitting set
algorithm is used. This is done by assuming that one of the
components in D is faulty, and then checking for consistency
with the system description, this is done repeatedly until a
component can be declared as faulty.

Using CBD to diagnose faults in robots has been done
previously in different studies [3], [19], [20]. The advantage
of using CBD for robots, is that it can be applied to differ-
ent levels of the system. For example, CBD can be used in
diagnosing faults in a wheel motor by modelling the compo-
nents of the motor and checking for consistency, or it can be
used in diagnosing the whole robotic system by modelling
all the available components and their connections on a sys-
tem level, rather than a component level. The limitations of
CBD is that it can only diagnose what is stated in the mod-
els, therefore, if a fault occurs in a component which is not



modelled, it will not be detected. Another limitation is that
modelling a system thoroughly takes a substantial amount
of time, and the diagnosis will only be as accurate as the
modelling is.

4.2 Sensor Fault Detection & Diagnosis
In [12], Khalastchi et al. derive a method for sensor fault
detection and diagnosis for autonomous systems. The fault
detection method used in this paper is a combination of a
data driven approach with a model-based approach. The ad-
vantage of this method is that it can be used online, as the
data is being produced by the sensors.

The study focuses mainly on two kinds of sensor faults,
which are difficult to detect; stuck and drift. Stuck is when
a sensor is producing the same value regardless of the state
of the system, drift is when the readings being produced are
gradually increase or decrease over time and deviate from
the real reading. It is difficult to imply that a sensor is faulty
if it is stuck, since it might be operating within its normal
range, therefore using minimum and maximum values as
thresholds will not detect that the sensor is in a faulty state.
As for drift, it is also difficult to imply that a sensor is faulty
when there is drift because of the same mentioned problem.

To address this problem, the authors combine a data
driven approach that determines the correlation of sensors to
each other using Pearson Correlation, and a structural model
that represents which sensor relies on which internal hard-
ware component. The advantage of using such a model over
other methods such as mathematical models is that it is eas-
ier to derive and represent.

The authors describe their process as follows:

• A sliding window of size m × n, named Ht is taken as
input to the process. Where m is the number of time
steps per window containing the reading of the sensor,
and n is the number of sensors to be monitored.

• The sliding window is split into two halves. The first
half of the matrix, is subjected to a correlation test to
determine which sensors are correlated to each other.
The output of this test, for each monitored sensor, is a
set of correlated sensors.

• After the correlation is determined, the second half of
the sliding window Ht, is checked to see if the correla-
tion of the sensors hold. If there exists a correlation be-
tween two sensors in the first half, and the correlation
does not hold in the second half, the sensor is marked
as uncertain, and a pattern is assigned to the sensor.

• Using the structural model of the system, and the
marked sensor, along with its set of correlated sensors,
a check is performed to find out if this change in corre-
lation is due to a fault or a response of the system.

• If it is found that a fault has occurred, the structural
model is again used to determine which component or
sensor of the system is responsible for the fault.

The algorithms developed in this [12] study were tested
on a laboratory wheeled robot, having three sonar range de-
tectors and three infra-red range detectors, and on a flight
simulator which gives the authors the ability to inject faults
and test their algorithms. The results of the tests were
promising showing high fault detection rates and very low
false alarm rates.

A drawback of the proposed approach is that it only tar-
gets sensors which provide single dimension data. Mean-
ing that some complex sensors such as cameras can not be
taken into consideration when using this algorithm. It was
also noted that the proposed method does not take care of
positive or negative correlations, and takes only the abso-
lute value of the correlation. Since the positive and negative
correlations are not taken care of, the drift pattern proposed
in the study, can not also be detected. Finally, the com-
putational complexity of the algorithm increases with the
increase in number of sensors monitored, making the algo-
rithm difficult to implement on a PC with limited resources.

4.3 Comparison
After investigating both methods, the following analysis can
be made. Table. 1 summarizes the key differences between
both methods. It can be seen from the comparison and the
discussions presented on both methods, that consistency-
based diagnosis is more suitable for our project since it is,
most importantly, lower in computational complexity and
has the ability to cover a wider range of components with-
out the need of extracting a special kind of data, such as
one-dimensional data for SFDD. CBD also requires less pre-
processing to the incoming data since the data only needs to
be filtered from noise, if it exists. On the other hand, SFDD
will require the signals from different components to be one-
dimensional, filtered from noise, subjected to a correlation
test, subjected to a test to check if the correlation holds, be-
fore being used for fault detection or diagnosis. For these
reasons, the selected method to be tested for this study is
CBD.

Table 1: Comparison Between CBD and SFDD.
Category Consistency-based Diagnosis Sensor Fault Detection

& Diagnosis
Operation online. online.

Modelling
Requires model containing
components, connections,
and component types.

Requires structural model.

Preprocessing Filter readings if required
in windowed fashion.

filtering in a windowed
fashion + correlation test
+ List of suspicious sensors.

Monitored Components Can monitor different
kinds of components.

Can monitor different
kinds of components
provided they generate
one-dimensional data.

Computational Complexity Low computational complexity.
Computational complexity
increases with increase in
components monitored.

Comments

Low initial set up time.
Will use the available data
from components for fault
diagnosis.

Higher initial set up time,
since one-dimensional data
needs to be drawn from
components, which may
not be available to start
with.

5 Health Data Standardization & Remote
Communication

This section will give an overview of the Usage and Con-
dition Monitoring System (UCMS) data model module and
the Health and Usage Monitoring System (HUMS) [21] data
standard which was developed by the UK GVA for vehicles.
The UCMS data model module is derived from the HUMS
data standard and is developed mainly for military vehicles.

The UCMS data model module contains multiple classes
that are to be used for health representation of components
and subsystems across a military vehicle platform. The fol-
lowing classes are currently part of the data model:



• Monitored Entity: Represents what component or
subsystem is being monitored and contains information
on the health status of the component or subsystem.

• Monitored Entity Specification: Contains informa-
tion on the specifications or static data that are related
to the monitored entity.

• Monitored Characteristic: Represents which aspect
of the monitored entity or subsystem is being moni-
tored. It contains information on the value of the aspect
that is being monitored.

• Monitored Characteristic Specifications: Contains
the static data that is related to the monitored character-
istic, such as the unit and description of the monitored
characteristic.

• Threshold: Contains information on the thresholds
that are related to the monitored characteristics, such
as the value of the threshold and the threshold type.

• Threshold Specification: Contains the static informa-
tion related to the threshold.

• Threshold Exceeded Event: Represents when a
threshold is exceeded and records the time that this
event occurred and the value that was recorded of this
event.

• Failure Event: Represents an event where a failure of
the monitored entity has occurred and contains a de-
scription of the failure along with other information
that can be useful to the operators.

Naturally, vehicle components are fundamentally differ-
ent than components that are to be deployed on robotic
platforms. Vehicle components, especially military vehicle
components, are much more durable and are manufactured
for higher reliability since they are to be deployed in harsh
environments and also, to give confidence to the crew oper-
ating these components since they may be putting their lives
in danger. However, faults may still occur and they need
to be handled quickly to avoid breakdowns or complete fail-
ures of components or subsystems. Moreover, military vehi-
cles are constantly upgraded to cope with the technological
advancements and to have tactical advantage being on the
field. Therefore, adopting a health standard that enables eas-
ier and faster upgrades to the vehicle platform would be cru-
cial. This requirement is also shared with robotic platforms.
Because of the higher availability of components such as
sensors and actuators in the market, robotic platforms re-
ceive component upgrades and get reconfigured frequently
to adopt to different use cases.

Since the NGVA community, which developed the
UCMS data model module uses Data Distribution Services
(DDS) for data exchange, it was also used in this project to
communicate with the remote-PC. The specific DDS soft-
ware used in this project was developed by RTI3. Some of
the advantages and key features of using DDS will be ex-
plained in this section.

DDS provides a databus for applications which require
real-time data exchange. Distributed systems, such as our
project here, require real time data exchange, between the
black box and the remote-PC for example. Applications
such as this project as well, require reliability and indepen-
dence from the robotic platform itself, since the goal is to

3https://www.rti.com

monitor the health of the robot, regardless of its state and al-
ways give the user an overview of the behaviour of the robot
and its monitored components. Using DDS in this project
helps achieve this goal, since it creates independence be-
tween the black box and the remote-PC. Moreover, since the
data would be available on the databus, the applications will
only deal with the data, instead of needing to deal with an-
other application, along with its dependencies. Another ad-
vantage of using DDS, is the availability of Quality of Ser-
vice (QoS) policies, which allow the publishers, subscribers,
data readers or writers of the applications to adopt certain
behaviours. Some of these attributes include:

• Durability: a parameter that can specify if the data that
is produced by a certain entity, such as a data publisher,
is available for new or late joiners such as applications
requiring this data.
• History: it is a parameter that specifies the volume of

data to store on the data bus to be available for other
subscribers.
• Reliability: a parameter that deals with how the net-

work deals with lost samples.

6 Experimental Evaluation
6.1 Setup
Since the goal of the study is to design a fault diagnosis
system that can incorporate hardware and software compo-
nents, the following setup was used for experimenting:

• A service robot running ROS, with a wide range of
components such as motors, cameras, laser range find-
ers.
• A Raspberry Pi 3 Model B with a 375 GB storage de-

vice attached to the robotic platform via the robot’s net-
work interface.
• A remote-PC to receive the standardized health mes-

sages and inform the user of the health status of the
monitored components.

As for monitoring and diagnosing the health of compo-
nents, three components were selected to be modelled us-
ing a CBD-ROS library 4, namely, a USB camera, a micro-
phone, and a software node generating a noisy signal. Fig.
5 depicts the setup of different ROS nodes and topics used
for experimentation.

Figure 5: Setup of ROS nodes and topics for experiment.

Having the robot and different nodes setup for the exper-
iments, the observers can now be applied to the ROS nodes

4http://www.ist.tugraz.at/ais-wiki/model_based_diagnosis



and topics. These system description is to be deployed on
the Raspberry PI, which contains the nominal behaviour of
how the different components and topics behave. Fig. 6
presents the different observers deployed on each node and
topic.

Figure 6: Observers applied on nodes and topics.

The parameters used for each of the observers are given
in table 2. The parameters here represent the expected be-
haviour of the nodes. After the diagnosis engine is setup
on the Raspberry Pi, the observations produced by the en-
gine need to be mapped to the UCMS standard discussed in
section 5.

Table 2: Assignment of observers to ROS nodes and topics.
Node/Topic Observer parameters

Active Hz Timeout Score
/usb_cam Applied

/usb_cam/Image_raw

Filter: mean
Window size: 50
Hypothesis: Gauss
mean: 15
std_dev: 0.01

1 second

/audio_capture Applied

/audio

Filter: mean
Window size: 50
Hypothesis: Gauss
mean: 30
std_dev: 0.01

1 second

/Signal_generator Applied

/signal

Filter: mean
window size: 50
Hypothesis: Gauss
mean: 15
std_dev: 0.01

1 second

Filter: mean
Window size: 50
Hypothesis: Gauss
mean: 15
std_dev: 0.5

The mapping of the ROS nodes and topics to the UCMS
data model module is shown in Fig. 7 and table 3.

Table 3: Mapping of CBD output to UCMS topics.
Consistency-based Diagnosis output UCMS mapping
Observer Resource Monitored Entity
Observer type Monitored Characteristic
Observer threshold Threshold
Observer threshold exceeded Threshold Exceedence Event
Diagnosis Failure Event

From this mapping, each ROS node will be mapped as
a Monitored Entity in UCMS along with Monitored Entity
Specifications. Each ROS node produces topics that publish
information to the robot network that can be used by other
nodes or can be used to activate some actuator for example.
Each ROS node and its related topics can have multiple ob-
servers, which will be mapped to the Monitored Character-
istic and Monitored Characteristic Specification topics. The
different observers will be easily distinguishable since they
will have different source IDs. The thresholds that will be
applied to each observer (if applicable) will be mapped to
the Threshold and Threshold Specification topic. Once an

Figure 7: Mapping of nodes and observers.

observer reports a threshold has been exceeded, this will be
mapped to a Threshold Exceedence Event topic. If a faulty
observation is observed, and the diagnosis engine produces
a node that is marked as faulty, this will be mapped to the
topic Failure Event.

6.2 Results

After injecting random faults into the system such as killing
of nodes, changing the frequency of publishing of topics and
unplugging the actual camera and audio devices to induce
faults into the system. The results of the tests were recorded
after 20 runs of 5 minutes for each test with a random num-
ber of faults. The results can be summarized as follows:

Table 4: Experimental Results
TOTAL Injected 290
TOTAL Detected 320
TOTAL True Positive 276
TOTAL false positive 23
TOTAL false negative 12
Accuracy 88%
Precision 0.92
Recall 0.96
F1 score 0.93
Average CPU usage 32.5%
Average Memory Usage 142.2 MB

The results show that a complete diagnosis system can
be deployed on a mini-PC while using only less than 35%
of it’s computational powers by using consistency-based di-
agnosis. Using DDS for remote communication with the
off-board PC helps in creating independence between the
robotic system along with the black box and the remote-PC,
since the remote-PC is only interfacing with the health data
which was standardized after being produced by the diagno-
sis engine. As well as transmitting health messages to the
remote-PC, the data store also keeps the health data of the
monitored components, acting as a redundant component in
case communication is lost wit the remote-PC.



7 Conclusion
This study presented a general system design for non-
intrusive fault diagnosis of robotic platforms by the addition
of a black box. The goals of the study is to create a system
that can be deployed on different robotic platforms easily
with minimum setup. Two methods of fault diagnosis were
selected to be investigated, namely, consistency based diag-
nosis and sensor fault detection and diagnosis [12]. CBD
was selected to be implemented in our proposed system and
showed a high accuracy of 88%.

As for standardizing and transmitting health data of mon-
itored components to a remote-PC, the usage and condition
monitoring system (UCMS) data model module, developed
by NATO generic vehicle architecture team was used. It
was found that using DDS for transmitting the standardized
health messages to the remote-PC helped in adding reliabil-
ity to the system since it is independent of the robotic plat-
form. Also, the addition of a storage device to the system
for logging the health data produced by the diagnosis engine
increases reliability since it keeps a log of the health of the
components even in case of loss of communication with the
remote-PC.

It was found that a complete diagnosis system can be de-
ployed on a mini-PC while only using less than 35% of it’s
computational capabilities.
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