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Abstract: In this paper, we present a new process monitoring approach for uncertain, or
highly noisy systems, which is based on the well known Moving Window Principal Component
Analysis (MWPCA) extended to the interval case. We propose to use The Midpoints-Radii
PCA (MRPCA) for modelling, which independently exploits two PCAs on the center and radius
matrices of the system’s sensor interval-valued data. Furthermore, by changing the size and the
shift of the window, Both center and radius model parameters are updated on-line; thus deriving
a new Moving Window Midpoints-Radii PCA (MWMRPCA) approach. Based on the updated
MWMRPCA, an interval SPE statistic and its control limit are calculated and updated through
time, and are used for monitoring the state of the process. The performances of the proposed
approach is illustrated by an application to the detection of faults on the Tennesse Eastman
Process (TEP).
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1. INTRODUCTION

Multivariate statistical approaches based on principal
component analysis (PCA) have been widely applied for
fault diagnosis to improve process quality and produc-
tivity. The key idea of PCA is to extract linear struc-
ture from high-dimensional data by finding new principal
axes. In other words, PCA provides a statistical model
of the system while reducing the dimensionality of the
used dataset. For process monitoring, PCA uses several
statistics to detect changes in the system behaviour. An
abnormal situation will cause the corresponding statistic
to exceed the control limits (Qin, 2003), (Harkat et al.,
2006).

A major limitation of PCA-based monitoring is that the
PCA model, once built from the data, is time-invariant,
while most real industrial processes are time-varying. The
time-varying characteristics of industrial processes include
changes in the mean, changes in the variance; and changes
in the correlation structure among variables, and even
changes in the number of significant principal components
(PCs). When a static PCA model is used to monitor
time-varying processes, false alarms often occurs, which
significantly compromise the reliability of the monitoring
system. Thus, a dynamic variant of PCA, such as the

moving window PCA (MWPCA) (Wang et al., 2005) or
recursive PCA (RPCA) (Li et al., 2000) has to be used to
handle these type of processes.

PCA based diagnosis strategies have been developed for
the analysis of single-valued variables. But in real life,
there are many situations in which the use of these single-
valued variables may cause severe loss of information,
and thus compromise the reliability of the approach.
In this case, more robust strategy can be achieved by
describing the process measurements by interval-valued
data. Therefore, An interval-valued PCA model is to be
used to handle the new nature of data.

In the last two decades or so, many researchers investi-
gated the possibility to extend PCA to interval-valued
data. (Cazes et al., 1997), and (Chouakria, 1998), pro-
posed the first interval-valued PCA approaches, known as
the centers PCA (CPCA) and the vertices PCA (VPCA)
methods. The centers method relies on the interval centers
to computes the principal components (PCs), while the
vertices method computes the PCs using the vertices of
the observed hyper-rectangles. Another approach is the
midpoints-radii PCA (MRPCA) introduced by (Palumbo
and Lauro, 2003), which treats midpoints and interval
ranges as two separate variables, and performs based



on two separate models of these variables. (D’Urso and
Giordani, 2004), introduced another approach using least
squares for MRPCA, and (Gioia and Lauro, 2006), put
forward an analytical interval PCA based on an interval-
valued covariance matrix. (Le-Rademacher and Billard,
2012), employed symbolic covariance to extend the classi-
cal PCA, and (Wang et al., 2012) proposed the complete-
information principal component analysis (CIPCA), which
is a variant of CPCA with a new covariance calculation
method. Based on the different interval PCA methods
found in the literature, (Ait-Izem et al., 2015) and (Ait-
Izem et al., 2017), proposed to apply these approaches for
monitoring of uncertain systems by modelling the sensors
uncertainties in the form of interval-valued data.

In this paper, we propose a new moving window interval
PCA approach for on-line monitoring of time-varying
systems subject to uncertainties. The interval PCA model
used is the MRPCA model, which is the most adapted
to the task, as it decomposes the interval-valued data
matrix into center and radius matrix in order to handle
each separately. Based on the moving window principle,
the MRPCA model is updated on-line with shifting of
time window, where different parameters are calculated,
i.e. normalization parameters, MRPCA model parameters,
and detection statistics with their limits. The new Moving
Window Midpoints-Radii PCA (MWMRPCA) is then
more suited for monitoring of time-varying systems as it
follows the changes in such processes. The rest of the paper
is organized as follows: Static PCA, in its conventional
and interval case, is presented in section 2 along with their
application to fault detection. Section 3 is dedicated to the
MWPCA and to the introduction of the new MWMRPCA
algorithm. Then, an application on the Tennesse Eastman
Process (TEP) benchmark data is given in section 5, and
finally conclusions are presented in the last section.

2. STATIC PCA

In this section, we present time-invariant PCA models for
single-valued, and interval-valued data. The interval MR-
PCA model is chosen, among other interval PCA methods,
for its high suitability with the on-line application.

2.1 Classical PCA

In classical PCA, the raw data matrix X ∈ <n×m, after
standardization, i.e. reducing the data to zero mean and
unit variance, is decomposed as follows:

X = TPT + E (1)

T ∈ n × `, P ∈ m× ` and E ∈ n×m represent,
respectively, principal components matrix, loading matrix
and residuals matrix. Where ` is the number of principal
components (` < m). The Euclidean norm of the residual
matrix E must be minimized for a given number of
components. This criterion is satisfied when the columns
of P are the eigenvectors corresponding to the ` largest
eigenvalues of the covariance matrix Σ of X. Thus, PCA
can be viewed as a linear mapping from <m to a lower
dimensional space <`. The mapping has the form:

T = PTX (2)

Where P is the eigenvectors matrix, or the coefficients of
the linear transformation. The projection can be reversed
back to <m with:

X̂ = TPT (3)

Where X̂ is the estimate of the initial data matrix X. Ac-
cordingly, the residual matrix E is the difference between
X and X̂:

E = X − X̂ (4)

2.2 Midpoints-Radii PCA for interval-valued data

In the case of interval PCA, the data matrix X ∈ Rn×m is
represented by interval-valued variables, denoted [Xj ],j =
1, . . . ,m. According to the uncertainties or approximation
error of the process sensors, and for each time sample k,
the measurement takes the form [xj(k), xj(k)], where the
bounds of the interval are given by:

xj(k) = xcj(k)− xrj(k) (5)

xj(k) = xcj(k) + xrj(k) (6)

the global interval data matrix is then constructed as :

[X] = [[X1][X2], . . . , [Xj ]] (7)

In a real application, xcj(k) is the center of the interval,
which is given by the the estimate single-valued measure-
ment provided by the sensor, and xrj(k), also denoted δx(k)
is the uncertainty of measurement or the range of the
interval, which usually presents the sensor precision given
by the manufacturer.

The midpoints-radii PCA (MRPCA) on interval-valued
data, introduced in (Palumbo and Lauro, 2003), is based
on a midpoints (Xc) and radius (Xr) representation,
rather than the standard interval representation [X,X]
of the interval-valued data matrix [X]. MRPCA performs
two PCA’s on these two matrices, and thus depends on
two models, centers and radius.

XcΣ−1P c = λcP c (8)

XrΣ−1P r = λrP r (9)

Where λc, P c and λr, P r are, respectively, the eigenvalues
and eigenvectors of the two eigen-decompositions of mid-
points and range matrices, and Σ is the covariance matrix
given by:

Σ =
(
X

′cXc
)

+
(
X

′rXr
)

+
(∣∣∣X ′cXr

∣∣∣+
∣∣∣X ′rXc

∣∣∣) (10)

Thus, based on classical PCA models of centers and radius
matrices, principal components for centers T c and for
radius T r are given by:{

T c = XcP c`c
T r = XrP r`r

(11)

and interval estimates of centers X̂c and radius X̂r are
given by:

{
X̂c = XcP c`cP

cT
`c

X̂r = XrP r`rP
rT
`r

(12)



Where `c and `c are the number of principal components
for the midpoints model and the radius model respectively.

The interval form for the components [T ] and the estimates

[X̂] can be obtained from the midpoins-radii representa-
tion through a rotation of coordinates. This rotation is per-
formed based on matrix A = QPT (Palumbo and Lauro,
2003), given the following singular value decomposition:

XcTXr = PΛcrQT (13)

Hence, Interval components can be calculated as:{
T = T c −AT r
T = T c +AT r

(14)

and interval estimates given by:{
X̂ = X̂c −AX̂r

X̂ = X̂c +AX̂r
(15)

The interval residual matrix [E] is, as in classical PCA,

given by the difference between [X] and [X̂]:

[E] = [X]− [X̂] (16)

Thus, according to interval arithmetic, the bounds of the
interval residual matrix are given by:{

E = X − X̂
E = X − X̂

(17)

2.3 Fault detection using MRPCA for interval-valued data

In general, the PCA based fault detection scheme uses the
squared prediction error (SPE) statistic, which is defined
as:

SPE(k) = ‖x(k)− x̂(k)‖2 = ‖e(k)‖2 (18)

where e(k) is the residual vector given by the difference
between the measurement vector and its estimate from
the PCA model. A faulty condition is declared if the SPE
index exceeds its control limit δ2α determined statistically
(Jackson and Mudholkar, 1979),(Nomikos and MacGregor,
1995) for a significance level α.

For the interval-valued PCA case, several indices are
proposed as extentions of classical SPE to interval valued
data (Ait-Izem et al., 2017),(Benaicha et al., 2013). A first
method of calculation treats separately both bounds of
the residuals in computing interval SPE, which we denote
SPE, and is given by:

{
SPE(k) = ‖e(k)‖2 = e(k)

T
e(k)

SPE(k) = ‖e(k)‖2 = e(k)
T
e(k)

(19)

Given that e(k) is the interval valued residual computed
from the MRPCA model. In the presence of faults, deci-
sions are made when both bounds in Eq. 19 exceed their
detection threshold.

Another index introduced in (Ait-Izem et al., 2017) is
denoted ISPE index, and is given by:

ISPE(k) = ‖[e(k)]‖2 =

m∑
j=1

‖[ej(k)]‖2 (20)

given that [x(k)] = [[x1(k), x1(k)], . . . , [xm(k), xm(k)]] is
the interval measurement vector; and that

‖[ej(k)]‖2 =
1

3

(
e2j (k) + ej(k)ej(k) + e2j (k)

)
(21)

The control limits for both statistics, i.e. SPElim and
SPElim for SPE index, and ISPElim for ISPE index,
can be computed from their approximate distribution as
detailed in (Nomikos and MacGregor, 1995), based on
Box’s approximation for quadratic forms (Box, 1954), the
example of the ISPE limit is given by the following:

ISPElim = gχ2
h,α (22)

Where g is a weighting parameter included to account for
the magnitude of the ISPE and h accounts for the degrees
of freedom with a significance level of 1 − α, typically
selected to be 95% to 99%. The parameters g and h can
be estimate as:

g =
b

2a
, h =

2a2

b
(23)

Given that a is the estimate mean of ISPE, and b is its
estimated variance.

In comparison to classical PCA, a PCA model for interval-
valued data offers more robustness toward uncertainties of
sensor measurements, due to the interval nature of data.
The interval-valued model considers that every variation
inside the interval is a normal process variation. In other
words, the radius δX of data is considered as a safe zone,
were small magnitude offsets, i.e. uncertainties ζ < δX
are not detected and are considered as normal process
variation, while high magnitude offsets f > δX are
considered as faults.

3. DYNAMIC PCA

In dynamic PCA algorithms, new measurements are used
to update the PCA model on-line. The updating scheme
should include: mean, covariance, principal components
and the confidence limit for the monitoring statistic.
Several algorithms for dynamic PCA can be found in the
literature. In this paper, we investigate the possibility to
extend the Moving Window PCA (MWPCA) algorithm to
the interval-valued data case.

3.1 Moving window PCA

In MWPCA, a data window of fixed length is moved
in real time to update the PCA model once a new
normal sample is available. Thus, for a window of size
w, the treated data matrix at time sample k is Xk =
[x(k − w + 1), x(k − w + 2), . . . , x(k)], and at time k + 1
becomesXk+1 = [x(k − w + 2), x(k − w + 3), . . . , x(k + 1)].
MWPCA algorithm then updates various parameters, in-
cluding : normalization parameters, PCA model param-
eters, and monitoring statistics control thresholds. The
overall strategy for time-varying monitoring using MW-
PCA is given as follows:

(1) Collect training data from the process under NOC.
Normalize the training data using its mean and stan-
dard deviation. Then compute covariance matrix and
carry out an eigen-decomposition to obtain the PCA



model for the process. Choose the number of com-
ponents. Finally, Determine the control limits for the
used monitoring statistic.

(2) Obtain a new testing sample and normalize it using
scaling parameters from the moving data window.

(3) Evaluate the monitoring statistic for the normalized
testing sample using the PCA model obtained in Step
1, and check with the corresponding control limit
from step 1. If not exceeded, the measurement is
considered normal.

(4) If the measurement is normal, update the moving
window by shifting it by one time sample (add new
measurement and delete the oldest measurement).
Repeat from Step 2. Else, the measurement is faulty,
stop update after three consecutive faulty measure-
ments.

3.2 Moving Window MRPCA for interval-valued data

Dynamic variants of PCA, such as MWPCA, were de-
veloped in order to take into account the dynamics or
variations of the system to be monitored, but which remain
less robust due to the effect of measurements uncertainties.
To overcome this problem, we propose in this section a
dynamic approach to PCA for interval-valued data for
diagnosis purpose. The idea is to exploit the MRPCA
model for interval-valued data combined with the well
known Mowing window PCA algorithm.

First, let us recall the normalization procedure for interval-
valued data, each interval-valued measurement is normal-
ized as follows:

[xj(k)] −
(
X̄c

j

)√
V AR ([Xj ])

=

[
xj(k) −

(
X̄c

j

)√
V AR ([Xj ])

,
xj(k) −

(
X̄c

j

)√
V AR ([Xj ])

]
(24)

Where X̄c
j is the centers mean of the j-th interval-valued

variable, and V AR([Xj ]) is the interval variance defined
as follows (Wang et al., 2012):

V AR ([Xj ]) =

n∑
k=1

1

3

(
x2j(k) + xj(k)xj(k) + x2j(k)

)
(25)

Since the MRPCA model is constituted of two sub-models
of center and radius, we propose to apply a moving window
scheme to both models in parallel. The proposed MWM-
RPCA algorithm is detailed in the following algorithm:

Offline mode

(1) Construct the center (Xc) and radius (Xr) matrices
from the initial interval-valued data matrix [X]

(2) Obtain the initial values for normalization parame-
ters, i.e. centers mean mc

0 and interval variance D0

(3) Compute the initial models parameters (for centers
and raidus): covariance Σ, eigenvector matrices P c0
and P r0 , the eigenvalues matrices Λc0 and Λr0, the
rotation matrix A0, and the number of principal
components for the two sub-models `c0 and `r0; based
on the training data block;

(4) Compute interval residuals, and ISPE0 index then
obtain the control threshold ISPElim,0.

(5) Determine the initial size for moving window w.

Online mode
At sample time k, use the previous values of time sample
(k − 1) of mc

k−1, Dk−1, Λck−1, Λrk−1, P ck−1, P rk−1, A0,
SPElim,k−1, `c0 and `r0;

(1) Compute interval residuals and ISPEk index, for a
new sample [x(k)] after standardizing the interval
using mc

k−1, Dk−1;
(2) If ISPEk > ISPElim,k−1 go to step 3, else go to step

5;
(3) Check if the new sample is an outlier. For instance, if

ISPElim,t−s > ISPElim,k−t−1, (t=1,2) (i.e. if three
consecutive out-of control signals have been gener-
ated), the new sample is not an outlier. Otherwise, it
is an outlying sample;

(4) If it is an outlier, go to step 5. Otherwise, consider
the current condition to be abnormal. Typically, the
process condition cannot be determined by examin-
ing one sample. In this case, the model is retained
without updating and the current sample is stored.
Then, if the process condition is proven to be normal
subsequently, the model can be updated in a block-
wise manner;

(5) recompute residuals and ISPEk;
(6) Shift the window and calculate new normalization

and model parameters for the new window (update)
(7) update the number of principal components to retain

for the two sub-models, and SPElim,k.

4. APPLICATION

The performance of the proposed monitoring scheme,
using a MWMRPCA model, is illustrated through an
application on a classical example: the Tennessee Eastman
Process (TEP), whose scheme is shown in Figure 1. This
process is developed by Eastman Chemical Company to
provide a simulation of a real industrial process for the
testing of control and/or monitoring methods. There are
five major units in TEP simulation (as shown in fig 1
a reactor, a separator, a stripper, a condenser, and a
compressor. The process has 12 manipulated variables,
22 continuous process measurements, and 19 composition
measurements sampled less frequently. which all have
Gaussian noise. Corresponding to different production
rates, there are six modes of process operation. The
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Fig. 1. Tennessee Eastman Process

TEP process was run for 1 hours, and we collected 1000



samples from 22 variables. Considering an uncertainty δxi

of measurements, of the order of 5% of the measurements
for each variable, we construct the new interval-valued
data matrix of the process, with δxi being the radius
of the data intervals. The first 150 samples were used
to construct the initial MWMRPCA model, while the
rest of the samples will be processed one by one, by
sliding the window each time, in testing phase (online
monitoring). The model parameters are updated for each
normal sample, where the the number of components is
selected according to the Cumulative Percentage Variance
criterion (PCV), so that the explained variance represents
approximately 95% of the total variance, given as follows:

CPV (`) = 100


∑̀
j=1

λj

m∑
j=1

λj

 (26)

In order to compare the performance of the new MWMR-
PCA monitoring strategy, a classical dynamic PCA model
using the sliding window PCA (MWPCA) (Wang et al.,
2005) approach, as well as a static classical PCA model
were developed based on the same set of data. Subse-
quently, two types of outliers, in two different variables,
and in two different moments were simulated, that is:

(1) An uncertainty ζx9
in reactor temperature, explained

by the variable x9, simulated as bias of amplitude
smaller than the radius (ζx9

< δx9
), from time sample

200 until moment 300.
(2) A fault fx3

in the E feed rate, which is given by
variable x3, simulated as a relatively large bias com-
pared to the uncertainty/radius (fx3 > δx3 , from time
sample 700 to the end.

An interesting property of the PCA for interval-valued
data, applied to the diagnosis, is that the defined radius
of the data acts as a safe-zone. In other words, the PCA
model is insensitive to outliers with amplitude smaller than
the radius (uncertainty), because considered as a normal
variation of the process. As for the outliers with greater
amplitude than the radius, they are normally detected as
faults.

Indeed, by inspecting the figures 2 and 3, which represent
the detection indices SPE and ISPE for the MWMRPCA
model, we can clearly notice the absence of the bias ζx9

representing the uncertainty (present between time 200
and 300), as well as the presence/detection of the fx3

faults
simulated from moment 700. This is due to the nature
of the interval model, which considers the bias ζx9

as a
normal variation of the process. The MWMRPCA model
thus manages to follow the dynamics of the system, to
detect faults, while providing more robustness with respect
to measurement uncertainties. Note that the SPE index
depends on two thresholds, one for each of its bounds,
while the ISPE depends only on a single threshold. The
latter has better performance with regard to the number
of false alarms, and in distinguishing the fault.

According to the SPE criterion calculated in the case of
the MWPCA model, represented in the figure 4, we can
notice that the uncertainty ζx9 present in the variable x9
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Fig. 2. Fault detection using SPE indicator with MWM-
RPCA model for TEP data
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RPCA model for TEP data
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Fig. 4. Fault detection using SPE indicator with MWPCA
model for TEP data
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Fig. 5. Fault detection using SPE indicator with Classical
PCA model for TEP data

has mislead the dynamic MWPCA model. More precisely,
the simulated bias ζx5 is considered as a fault by the
MWPCA model thus resulting in a stopping of model
update. The impact is a huge rate of false detections from
the moment of the presence of uncertainties (from time
sample 200). A conventional dynamic PCA monitoring
strategy, MWPCA in this case, can be thus insufficient to
handle highly noisy systems. Figure 5, represents the SPE
index combined with static PCA, which demonstrates its
total incapacity in detecting faults in a variant system.



5. CONCLUSION

In this work, a new algorithm based on moving window
PCA is presented, for modelling and monitoring of dy-
namic processes. The model used is an interval variant of
PCA, called MRPCA, which treats separately the matrices
of the centers and the radii extracted from the interval-
valued data matrix. Applied on-line, the proposed algo-
rithm verifies for each sample the presence or absence of
faults, using interval statistical indices (SPE and ISPE).
After that, the update of the model and the normaliza-
tion parameters is performed. The presented approach
improves not only the robustness toward measurement
uncertainties, but also allows to have a confidence zone
defined by the radius of the interval, making it possible
to consider any additional amount of information within
this zone as a part of the normal operation of the system.
Applied to the Tenessee Eastman Process, the proposed
algorithm demonstrates good performance over the static
PCA model, and the MWPCA model with sliding window.
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