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Abstract
In this paper, a method for formulating and solv-
ing the optimal sensor placement problem for an
electro–pneumatic actuator is presented. The ap-
proach minimizes the number of additional sen-
sors while maintaining maximum possible diag-
nosability and isolability. The proposed strategy
is based on a Binary Diagnostic Matrix. Proposed
isolability measure distinguish weak and strong
isolability. It uses the branch-and-cut algorithm
to find a solution.

1 Introduction
The quality of diagnosis is often characterized using the
fault isolability. Different methods of Fault Detection and
Isolation (FDI) can be compared with it.

Available measurements strongly affect the performance
of an FDI system for a given industrial process. Additional
sensors providing additional information about a process
can improve the performance of an FDI system. From a
practical point of view, it is vital to achieving the best possi-
ble FDI system performance with minimal additional costs.
The problem of optimal sensor selection can be understood
as a combinatorial problem of selecting the optimal set of
measurements.

In recent years, numerous papers discussed different
problems of the optimal sensor placement. The required
minimum fault isolability of the diagnostic system is usu-
ally considered [1; 2] . Some of the proposed methods also
maximize designed fault isolability using heuristic methods,
e.g., genetic algorithms [3].

The model-based FDI considers faults as deviations from
nominal values of process parameters or as unknown pro-
cess inputs. If system model and measurements behave
differently, then faults are detected. In [4], a method for
searching for the optimal sensor set based on Analytical Re-
dundancy Relations (ARRs) is proposed. First, all ARRs
are found under the assumption that all sensor candidates
are installed. Then, a sensor set is selected that minimizes
the cost while satisfying detectability and isolability require-
ments. However, this solution is computationally expensive.
A modified, incremental approach, using Minimal Struc-
turally Overdetermined (MSO) sets, was proposed in [5]. In
[6] the Binary Integer Programming is used to find the opti-
mal sensor set using the set of all possible MSO sets. FDI re-
quirements were ensured using non-linear constraints. The
resulting problem is computationally difficult to solve. This

method was further improved in [7] and [8]. There, FDI re-
quirements were specified as linear constraints. As the cost
function is linear, the problem falls into Binary Integer Lin-
ear Programming (BILP). It can be efficiently solved with a
branch-and-bound algorithm with standard Linear Program-
ming (LP) solver. Those methods were thoroughly com-
pared in [9]. Budgetary constraints were analyzed in [10].
The branch-and-bound algorithm is used to obtain the opti-
mal solution. Regardless of chosen method, simple, qualita-
tive methods of analysis of fault isolability are insufficient.
Generalized, quantitative method of fault isolability analysis
is required.

This paper presents the method of an optimal sensor
placement for diagnostic purposes using linear constraints
and a linear objective function. The method uses a new
measure of isolability proposed by the author. The main
contribution of this metric is that both weak and unidirec-
tionally strong isolability properties are considered and dis-
tinguished. Various additional optimization constraints are
analyzed. The model of an electro–pneumatic actuator was
used as an example illustrating the procedure.

The paper is organized as follows. In Section 2, the pre-
liminary definitions used in this work are given. Section 3
defines the measure of fault isolability. Section 4 presents
the proposed optimization procedure. Section 5 describes
the example of an electro–pneumatic actuator. Conclusions
and final remarks section finalizes this paper.

2 Preliminaries
A signal sensitive to faults is considered as a diagnostic sig-
nal in FDI. A symptom is a value of a diagnostic signal
which indicates fault or faults. In the case of multi-valued
diagnostic signals, one fault type may generate different val-
ues of each diagnostic signal. A fault signature is a vector
of diagnostic signal values associated with a particular fault
[11]. In case of multi-valued diagnostic signals, multiple
values of a single diagnostic signal can be associated with
a fault. The specific vector of values of diagnostic signals
is called an alternative signature [11]. In the case of bi-
nary diagnostic signals, each fault has exclusively one alter-
native signature, while for multi-valued diagnostic signals
there might be multiple alternative signatures.

There are different definitions of fault isolability. Gen-
erally, faults are considered isolable when at least some of
their signatures are different [12].

Binary Diagnostic Matrix (BDM) or Incidence Matrix is a
form of notation of a relationship specified by the Cartesian
product of diagnostic signals sets S = {sj : j = 1, 2, ..., J}



Table 1: The Binary Diagnostic Matrix example. 1 in jth
row and ith column means that fi is detectable with signal
sj .

f1 f2 f3 f4 f5 f6 f7 f8
s1 1 1 1 1
s2 1 1 1 1
s3 1 1 1 1
s4 1 1 1
s5 1 1

and faults F = {fi : i = 1, 2, ..., n}. Each row displays
sensitivity of a given diagnostic signal to each fault. Each
column Vi = [v1,i, v2,i, , vJ,i]

T of binary diagnostic matrix
V can be associated with a fault fi. Often column Vi is
called signature of fault fi. An example of binary diagnostic
matrix is shown in Table 1.

The basic definition of isolability can be formulated in the
context of BDM in the following way [13]:
Definition 1.
Faults fk, fm ∈ F are weakly isolable if their signatures

are different.
In the example from Table 1 all faults with exception of

a pair (f2, f3) are weakly isolable. A weak isolability in
some applications is not sufficient. It is possible that due to
a different sensitivity of diagnostic tests or process dynam-
ics some signals appear earlier and match a signature of a
different, weakly isolated fault. In the above example, the
appearance of only the signal s1 may be insufficient to indi-
cate the fault f1 reliably. Later signals s2 or s3 may appear
indicating faults f2, f3 or f5. Therefore a stronger isolabil-
ity property is required [13].
Definition 2.
A structure is unidirectionally strongly isolating if it is

weakly isolating and if no column in the structure matrix
can be obtained from any other column by turning an arbi-
trary number of “1”s into “0”s or by turning an arbitrary
number of “0”s into “1”s.

In a unidirectionally strongly isolating structure, each pair
of faults differs in at least two entries. Firstly, where “1” is
in the first column and “0” in the other one and secondly,
where “0” is in the first column and “1” in the other one. A
weak isolability is a necessary condition for a strong isola-
bility.

In Table 1 faults f5 and f6 are unidirectionally strongly
isolable.

From Definition 2 following statement can be extrapo-
lated:
Definition 3.
The signature Vi is excluding a fault fk if Vi is different than
Vk and Vi cannot be obtained from Vk by turning “1”s into
“0”s.

Opposite does not have to be true.
Definition 4. Faults fk, fm ∈ F are weakly isolated iff each
alternative fault signature φ(fk) excludes the fault fm, or
each alternative fault signature φ(fm) excludes the fault fk.

If faults are mutually excluding each other, then they are
strongly isolable.
Definition 5. Faults fk, fm ∈ F are unidirectional strongly
isolable iff each alternative fault signature φ(fk) excludes

the fault fm, and each alternative fault signature φ(fm) ex-
cludes the fault fk.

In Table 1 signature V2 is excluding f1. Opposite is not
true so they are not strongly isolable.

Commonly, in FDI an exoneration assumption is ac-
cepted. It states that a lack of symptoms exonerates a fault.
It means that all symptoms must appear for a fault isolation.
This assumption is not always valid. Due to dynamics of
symptoms and different sensitivity to faults, they may not
appear simultaneously or may even not appear at all.

3 Measure of isolability
An implementation of the measure of isolability for a Binary
Diagnostic Matrix was proposed in [14]. The value of this
measure is calculated in two steps:

1. Calculate the value of the following discrete function
for all possible ordered pairs of faults:

D: F ×F → {0, 1}, (1)

where: F is the set of faults and fk ∈ F, k = 1 . . . K
are particular faults. It is assumed that the value
D (fk, fm) = 1 when the appearance of all symptoms
of the fault fk excludes the fault fm. If this is not true,
then D (fk, fm) = 0.

2. Calculate the value of the measure as:

ψ =
1

(K − 1)K

K∑
k=1

K∑
m=1
m6=k

D (fk, fm). (2)

In the case of multi-valued diagnostic signals, the condi-
tional isolability metric was proposed in [15]. The first step
of calculation of the value of the proposed metric (1) needs
to be slightly modified in order to take into account condi-
tional isolability. Instead of assigning exclusively values 0
or 1 to each ordered pair of faults, the D (fk, fm) can take
any value from the range [0, 1]. Let D (fk, fm):

D (fk, fm) =
card ({φ : φ ∈ Φ(fk) ∧ φ excludes fm})

card (Φ(fk))
,

(3)
where: Φ(fk) is the set of all alternative signatures of the
fault fk.

The formula (3) generalizes the first step of calculation
of the proposed measure. It can be understood as a fraction
of all alternative signatures of fk that excludes fm. In the
case of binary diagnostic signals, there is always only one
alternative signature φ(fk). The value ofD (fk, fm) is then
equal to 0 or 1. Consequently, in the case of binary diag-
nostic signals, the formula (3) is equivalent to formulation
below the formula (1).

The proposed metric of isolability makes it possible
to distinguish unidirectional strong isolability from weak
isolability. If D (fk, fm) = 1 ∨ D (fm, fk) = 1, then the
signature of the fault fk excludes the fault fm or the signa-
ture of the fault fm excludes the fault fk. Therefore, accord-
ing to Definition 4, the faults are weakly isolable. Moreover,
if D (fk, fm) = 1 ∧ D (fm, fk) = 1, then the signature
of the fault fk excludes the fault fm and the signature of the
fault fm excludes the fault fk. Thus, faults fk and fm are
unidirectionally strongly isolable as defined in Definition 5.

The value of the presented measure of isolability can be
interpreted as a mean fraction of all diagnoses that can be



excluded, after the occurrence of a single fault. The measure
of isolability takes the maximal value when all pairs of faults
are unidirectionally strongly isolable. In such a case, each
single fault signature excludes (K−1) other faults (the fault
does not exclude itself). Then

∑K
k=1

∑K
m=1
m6=k

D (fk, fm) =

(K − 1)K and the value of the measure of isolability is
equal to (K−1)K

(K−1)K = 1.

4 Problem formulation for BDM
In this section, only binary diagnostic signals are analyzed.
If a fault fk is unisolable from fm, then D(fk, fm) is equal
to 0. Otherwise, it is equal to 1. The value ofD(fk, fm) can
be calculated in the following way:

xDk,m
= D(fk, fm) = max

xsj

{
xsj : vj,k 6= 0 ∧ vj,m = 0

}
,

(4)
where: xsj is the decision variable, which indicates that
jth diagnostic signal is available. This formula states that
D(fk, fm) is equal to 1 if at least one diagnostic signal sj is
sensitive to the fault fk and not sensitive to the fault fm. The
shorthand notation xDk,m

will be used instead ofD(fk, fm)
as a variable in the description of an optimal sensor place-
ment problem.

Similarly, the variable xsj can be expressed as:

0 ≤ xsj ≤ min
xi

{xi : xi is necessary to calculate sj} ,
(5)

where: xi is the decision variable, which indicates that ith
sensor is available. If even one of the sensors necessary
for the diagnostic signal sj is unavailable, then this signal
cannot be used. The inequality relation ≤ is used, because,
even if all required sensors are available, the diagnostic sig-
nal may be not of interest, e.g., due to a too high cost of
development of necessary models.

Example 1.
In Tab. 2 an example of a simple BDM is presented. There
are three faults and three diagnostic signals. Each diagnos-
tic signal requires two sensors to be available.

Table 2: Simple BDM and sensor requirements for diagnos-
tic signals.

f1 f2 f3
s1(x1, x2) 1 1 1
s2(x1, x3) 1 1
s3(x2, x3) 1

The following equations can be constructed:

xs1 ≤ min{x1, x2},
xs2 ≤ min{x1, x3},
xs3 ≤ min{x2, x3},

xD2,1 = D(f2, f1) = max{xs2} = xs2 ,

xD3,1
= D(f3, f1) = max{xs2 , xs3},

xD3,2 = D(f3, f2) = max{xs3} = xs3 ,

xs1 , xs2 , xs3 ≥ 0,

xi, ssj ∈ {0, 1}, i, j = 1 . . . 3.

(6)

The pairs of faults for which D(fk, fm) = 0 were omitted.

The objective function maximize
x

1
6

∑K
k=1

∑K
m=1
m 6=k

xDk,m

with constraints (6) is a difficult, constrained, non-linear
optimisation problem.

4.1 Additional constraints
Fault detectability

Generally, it is not possible to determine which faults will
be detectable before solving the basic optimal sensor place-
ment problem. In practice, detectability of the most impor-
tant faults is often required. In a special case, this require-
ment can refer to all faults.

The detectability of a given fault can be interpreted as the
possibility to distinguish this fault from the state without
faults. To satisfy detectability requirements, an additional
constraint can be added in the following way:

D(fk, faultless state) = max
xsj

{
xsj : vj,k 6= 0

}
= 1. (7)

This ensures that there is at least one signal sensitive to fault
fk.

If the problem with this additional constraint becomes in-
feasible, then it is impossible to meet the detectability re-
quirements.
Example 2.
The detectability requirements for the problem introduced in
Example 1 can be formulated in the following way:

f1 : max{xs1} = xs1 = 1,

f2 : max{xs1 , xs2} = 1,

f3 : max{xs1 , xs2 , xs3} = 1.

(8)

Isolability constraints

For some critical subset of faults, it may be beneficial to re-
quire the solution of the optimal sensor placement problem
to isolate these faults. These requirements can be fulfilled
by introducing additional equality constraints. For example,
if it is important that a fault fk is isolable from a fault fm,
then the following constraint should be added:

xDk,m
= 1. (9)

If unidirectional strong isolability is desired, then two
constraints should be added:

xDk,m
= 1,

xDm,k
= 1.

(10)

If the isolability requirements cannot be satisfied, then the
constrained problem will be infeasible.
Example 3.
For the diagnostic system introduced in Example 1, if it is
required that the fault f3 is isolable from both f1 and f2,
then the following constraints should be added:

xD3,1
= 1,

xD3,2 = 1.
(11)

5 Optimal sensor placement problem for an
electro–pneumatic actuator

To demonstrate an example of the optimal sensor placement
formulation, an electro–pneumatic valve actuator will be
discussed. Fig. 1 illustrates the actuator [16]. It consists
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Figure 1: Causal graph of the electro–pneumatic actuator
[16]. SP – set point, CV – control value, CVI – control value
of the electro–pneumatic transducer, PVP – pressure mea-
surement in servo–motor chamber, PVX – stem displace-
ment, F – flow rate.

of an electronic controller, an electro–pneumatic converter,
a servo–motor, a control valve, and an electro–mechanical
stem position feedback. The list of available measure-
ments includes the control value CV, the control value of
the electro–pneumatic transducer CVI, the stem displace-
ment measurement X, and the pressure in the chamber of
the servo–motor. Tab. 3 lists the considered faults. Tab. 4

Table 3: List of actuator faults.
Fault Faulty component
f1 E/P transducer
f2 Pneumatic servomotor
f3 Position feedback
f4 Pressure sensor fault
f5 Supply air pressure
f6 Control valve

specifies the considered binary diagnostic matrix.

Table 4: List of considered diagnostic signals for the
electro–pneumatic actuator.

Signal Residual f1 f2 f3 f4 f5 f6
s1 X − f(CV ) 1 1 1 1 1
s2 X − f(CV I) 1 1 1 1 1
s3 X − f(Ps) 1 1 1 1
s4 Ps − f(CV ) 1 1 1 1 1 1
s5 Ps − f(CV I) 1 1 1 1 1 1

Using Tab. 4, the maximum value of the metric of isola-
bility ψ can be calculated as:

ψ =
1

(K − 1)K

∑K

k=1

∑K

m=1
m6=k

D (fk, fm) =
9

30
= 0.3.

(12)
To find the diagnostic structure with ψ = 0.3 and the min-

imum number of required sensors the optimal sensor place-
ment problem should be formulated as (13).

minimize
x

xCV + xCV I + xPs + xX

s.t.
1

30

K∑
k=1

K∑
m=1
m 6=k

xDk,m
= 0.3,

xs1 ≤ xX ,
xs1 ≤ xCV ,

xs2 ≤ xX ,
xs2 ≤ xCV I ,

xs3 ≤ xX ,
xs3 ≤ xPs,

xs4 ≤ xPs,

xs4 ≤ xCV ,

xs5 ≤ xPs,

xs5 ≤ xCV I , (13)
xD2,1

≤ xs3 ,
xD3,1 ≤ xs3 ,
xD5,1

≤ xs3 ,
xD6,1 ≤ xs3 ,
xD1,4

≤ xs1 + xs2 ,

xD2,4 ≤ xs1 + xs2 + xs3 ,

xD3,4
≤ xs1 + xs2 + xs3 ,

xD5,4 ≤ xs1 + xs2 + xs3 ,

xD6,4
≤ xs1 + xs2 + xs3 ,

xCV , xCV I , xX , xPs, xsj ,xDk,m
∈ {0, 1},

k,m = 1 . . . 6, j = 1 . . . 5.

To ensure that all faults are detectable the following con-
straints should be added:

f1 : xs1 + xs2 + xs4 + xs5 ≥ 1,

f2 : xs1 + xs2 + xs3 + xs4 + xs5 ≥ 1,

f3 : xs1 + xs2 + xs3 + xs4 + xs5 ≥ 1,

f4 : xs4 + xs5 ≥ 1,

f5 : xs1 + xs2 + xs3 + xs4 + xs5 ≥ 1,

f6 : xs1 + xs2 + xs3 + xs4 + xs5 ≥ 1.

(14)

The problem (13) with (14) was solved using a Coin–
or branch–and–cut (Cbc) solver and a PuLP modeler. The
following solution was returned by the solver: xCV =
1.0, xCV I = 0.0, xPs = 1.0, xX = 1.0. Consequently,
the optimal sensor set for given constraints is {CV, Ps,X}
and the resulting BDM is presented in Tab. 5. All of the con-

Table 5: Optimal BDM for the electro–pneumatic actuator.
f1 f2 f3 f4 f5 f6

s1 1 1 1 1 1
s3 1 1 1 1
s4 1 1 1 1 1 1

sidered faults are detectable and the value of the isolability
measure is ψ = 0.3.



6 Conclusion
In this paper, the sensor placement problem was addressed
for an electro–pneumatic actuator. A key contribution of this
work is the introduction of a new measure of fault isolabil-
ity as an objective function or constraint to Linear Program-
ming problem. It distinguishes weak and unidirectionally
strong isolability. A strategy of introducing new variables
which allow obtaining BILP problem was presented. This
strategy makes it possible to use efficient tools to find opti-
mal sensors sets.

In this paper, the method was applied to a Binary Diag-
nostic Matrix, but the proposed measure of fault isolability
can describe multi-valued systems such as Fault Information
Systems (FIS).
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