
QR-Augmented Spectrum-based Fault Localization*

Alexandre Perez1, Rui Abreu2

1 University of Porto and HASLab, INESC-TEC, Portugal
2 IST, University of Lisbon and INESC-ID, Portugal

alexandre.perez@fe.up.pt, rui@computer.org

Abstract
Spectrum-based fault localization (SFL) corre-
lates a system’s components with observed fail-
ures. By reasoning about coverage, SFL allows
for a lightweight way of pinpointing faults. This
abstraction comes at the cost of missing certain
faults, such as errors of omission, and failing to
provide enough contextual information to explain
why components are considered suspicious. We
propose an approach, named Q-SFL, that lever-
ages qualitative reasoning to augment the infor-
mation made available to SFL techniques. It qual-
itatively partitions system components, and treats
each qualitative state as a new SFL component to
be used when diagnosing. Our empirical evalua-
tion shows that augmenting SFL with qualitative
components can improve diagnostic accuracy in
54% of the considered real-world subjects.

In Memoriam: Danny Bobrow.

1 Introduction
SFL [1] was shown to be a lightweight, yet effective, tech-
nique for locating faults in a system. It consists of keeping
a record of which components are involved in each system
execution and subsequently ranking those components ac-
cording to their similarity to failing executions. The intu-
ition being that a faulty component is very likely to be in-
volved in failing executions and not as likely to be covered
in nominal ones. Over the years, many extensions were pro-
posed to improve SFL’s applicability and effectiveness, such
as exploring which similarity coefficients yield better fault
localization results [2] and handling multiple or intermittent
faults [3].

Despite the developments and achievements in SFL re-
search, we are unable to find many accounts of successful
transitions of this technology into the industry at large. We
argue that this is motivated largely by the issues raised by 4
in their 4 user study of automated debugging techniques [4;
5]. Namely, the authors found that there is significant inter-
est drop-off after users inspect a small number of compo-
nents from the ranked list of potential faults. This issue is
exacerbated as the scale of the system increases. Another

*This is a preliminary version of the paper titled “Leveraging
Qualitative Reasoning to Improve SFL”, to be presented at IJCAI-
ECAI 2018.

issue pointed out by 4 is the fact that many SFL studies as-
sume perfect fault understanding — that is, these studies
expect that once users inspect a faulty component, they will
correctly identify it as such —, which does not always hold
in practice [6].

This paper proposes an approach that inspects the state
of system components, with the intent of augmenting re-
ports generated by SFL techniques and hence providing
more diagnostic information. Recording the state of indi-
vidual components in each execution quickly becomes in-
tractable, even for a lightweight approach as SFL. There-
fore, we leverage Qualitative Reasoning (QR), which pro-
vides a way of describing a set of values by their discrete,
behavioral qualities, to enable the reasoning about a sys-
tem’s behavior without exact quantitative information [7;
8]. Precise numerical quantities are avoided and replaced
by qualitative descriptions — such as, for instance: high,
low, zero, increasing or decreasing.

We apply QR to the SFL analysis, in an approach named
Q-SFL, enabling the introduction of quantitative landmarks
that will partition the domains of relevant components into
a set of qualitative descriptions, and insert new SFL com-
ponents for each of these descriptions. As behavioral qual-
ities are now considered as components, their involvement
in system executions is therefore recorded and ranked ac-
cording to their similarity to observed failures, enriching the
SFL report as a result. This can have benefits in fault com-
prehension — because qualitative properties are considered
besides merely recording involvement — and even improve
diagnostic report accuracy — whenever a qualitative state
is more correlated with failing behavior than its enclosing
system component.

We perform an empirical evaluation of Q-SFL with real-
world faults from the Defects4J [9] catalog of faulty soft-
ware programs. Results show that Q-SFL has the potential
to improve the accuracy of SFL reports —with 54% of con-
sidered subjects exhibiting a lower effort to diagnose faults.
Although the results are promising, we discuss several mat-
ters that need further research —namely, uncovering a land-
marking strategy that exhibits consistently better results and
studying to what extent fault comprehension is improved.

This paper’s contributions are:
• An approach, named Q-SFL, inspired by qualitative

reasoning (QR) research, to augment program spectra
used by SFL techniques by partitioning system compo-
nents into a set of qualitative states which are treated as
SFL components.

• Empirical evidence that QR-enhanced spectra can re-

duce the effort to diagnose real software bugs in 54%
of considered subjects.

2 Background
This section briefly summarizes the concepts upon which
our approach is based on.

2.1 Spectrum-based Fault Localization (SFL)
In SFL, the following is given:

• A finite set C = {c1, ..., cM} of M system compo-
nents;

• A finite set T = {t1, ..., tN} of N transactions, which
can be seen as records of a system execution;

• An error vector e = {e1, ..., eN} of transaction out-
comes, where ei = 1 if ti failed, ei = 0 otherwise;

• A M ×N activity matrixA, whereAij = 1 if compo-
nent cj is involved in transaction ti,Aij = 0 otherwise.

The goal of SFL is to pinpoint which (sets of) components
are more likely to have caused the system to fail. Earlier ap-
proaches to SFL measure the similarity between a compo-
nent’s involvement in transactions and the error vector [1;
2]. Later on, spectrum-based reasoning (SR) was intro-
duced [3], leveraging a Bayesian reasoning framework to di-
agnose, even when multiple, intermittent faults are present.
The two main steps of SR are candidate generation and can-
didate ranking:

Candidate Generation
The first step in SR is to generate a set D = {d1, ..., dk}
of diagnosis candidates. A diagnosis candidate dk ⊆ C is
valid if every failed transaction involved at least one com-
ponent from dk. Candidate dk is minimal if no valid can-
didate is contained in dk. We are only interested in min-
imal candidates, as they can subsume all others. Heuris-
tic approaches to finding these minimal hitting sets include
STACCATO [10], SAFARI [11] and MHS2 [12].

Candidate Ranking
For each candidate dk, their fault probability is calculated
using the Naïve Bayes rule1 [13]

Pr(dk | (A, e)) = Pr(dk) ·
∏

i ∈ 1..N

Pr((Ai, ei) | dk)

Pr(Ai)
(1)

Let Ai be short for {Aij |1 ∈ 1..M}, representing compo-
nent activity in ith transaction. Pr(Ai) is a normalizing term
that is identical for all candidates. Let pl denote the prior
probability2 that a component cl is at fault. The prior prob-
ability for a candidate dk is given by

Pr(dk) =
∏

l ∈ dk

pl ·
∏

l ∈ C\dk

(1− pl) (2)

Pr(Ai, ei | dk) is used to bias the prior probability taking
observations into account. Let gl (referred to as component
goodness) denote the probability that cl performs nominally

Pr((Ai, ei) | dk) =

∏

l ∈ (dk∩Ai)

gl if ei = 0

1−
∏

l ∈ (dk∩Ai)

gl otherwise
(3)

1Probabilities are calculated assuming conditional indepen-
dence throughout the process.

2In the case of software diagnosis, one can approximate pl as
1/1000, i.e., 1 fault for each 1000 lines of code [14].

Q1: Solid Q2: Liquid Q3: Gas

Landmark L1:
T = -273.15°C

Absolute zero

Landmark L2:
T = 0°C

Freezing/Melting
Point

Landmark L3:
T = 100°C

Landmark L4:
T = +∞°C

InfinityBoiling/Condensation
Point

Q1- Q2- Q3-

Q1+ Q2+ Q3+

Figure 1: Example of a possible qualitative discretization of water
temperature.

In cases where values for gl are not available, they can be
estimated by maximizing Pr((A, e) | dk) under parameters
{gl | l ∈ dk} [13].

To measure the accuracy of SFL approaches, the cost of
diagnosis (Cd) metric is often used [4]. It measures the
number of candidates to be inspected until the real fault is
reached, assuming candidates are inspected by descending
order of probability. A Cd of 0 indicates an ideal diagnosis
where the real fault is at the top of the ranked list of candi-
dates.

2.2 Qualitative Reasoning (QR)
QR creates a discrete representation of the continuous
world [7; 8; 15], enabling the reasoning of space, time, and
quantity with merely a small amount of information. It is
motivated by the fact that humans are able to draw conclu-
sions about the physical world around them with limited in-
formation, without the need of solving complex differential
equations.

Figure 1 provides an example of a potential discretization
of the water temperature into three qualitative values: Q1,
Q2 and Q3. Our representation resolution — the granular-
ity of the information detail — coincides with that of the
three physical states of matter that water can assume: solid,
liquid, and gas. Note that the established resolution will ul-
timately define the granularity of the conclusions one can
draw from QR. To define the qualitative states, one needs
to establish landmarks. Landmarks are constant quantita-
tive values that establish a point of comparison [16]. In
this example, we know that if the water is in the liquid
state (Q2), then its temperature is somewhere between land-
mark L2 — corresponding to 0°C, the freezing point of wa-
ter — and landmark L3 — 100°C, its boiling point. Sim-
ilarly, we can derive that ice (Q1) temperature assumes a
value between the absolute zero (L1) and the melting point
(L2); and that water vapor (Q3) ranges between the conden-
sation point (L3) and positive infinity (L4).

QR also supports the representation of derivatives be-
tween two quantities. They are usually represented with
’+’ and ’-’ signs, denoting value increases and decreases,
respectively. This enables the use of sign algebra to rea-
son about direct influence and proportionality between two
qualitative values. Derivatives also enable envisionments.
An envisionment establishes a set of transitions between
qualitative states [15], essentially modeling the abstracted
world. A possible transition in our example’s envisionment
is the following: given that we observe Q2+ — that is, we
observe that the liquid water’s temperature is rising —, then
we know that the only possible following states are Q2 (con-
tinues in the liquid state) and Q3 (condensates into vapor),
but never Q1 (freezes into ice).

Summarily, with a QR framework, we establish a way to

(i) represent quantities through discrete states, (ii) provide
a way to compare values between these states, (iii) enable
derivations and sign algebra, and (iv) model envisionments
detailing possible transitions between states. With such a
framework, we can model, plan, simulate and reason about
a multitude of intricate problems in an abstract way.

3 Approach
This section motivates the need to augment standard
spectrum-based fault localization approaches with more
contextual information, and details our Q-SFL approach to
achieve it by qualitatively partitioning SFL components.

3.1 Limitations of Spectrum-based Analyses
SFL faces several issues preventing it from widespread
adoption and use. Not the least of which is the lack of con-
textual information, essential for understanding why diag-
nostic candidates are considered suspicious. This has been
pointed out in the software fault localization literature [4].
As SFL reasons about failures at the spectrum level, it only
has access to whether a component was involved or not
in each system transaction. While this enables a flexible,
lightweight analysis, the necessary abstraction can impose
a tradeoff both in accuracy and comprehension. Although
there have been efforts to incorporate more data into the di-
agnostic process — by modeling component behavior that
considers the system’s state and previous diagnoses [17]; or
by leveraging prediction models trained from issue track-
ing data [18] — they were focused on conditioning the fault
probability of existing diagnostic candidates, increasing ac-
curacy but not necessarily increasing the ability to compre-
hend the diagnostic report.

Aside from comprehension, and because SFL only rea-
sons about component involvement in failing transactions,
omission errors — such as bound checks — also become
difficult to diagnose [19]. The abstract nature of the spec-
tra that is fed into current SFL frameworks also leads to
the formation of ambiguity groups and facilitates the occur-
rence of coincidental correctness. An ambiguity group is a
group of components with identical involvement in all trans-
actions [20]. Since they exhibit the same coverage pattern,
no component within an ambiguity group can be uniquely
identified as the root cause of failure, potentially hindering
accuracy. Coincidental correctness refers to the event when
no failure is detected, even though a fault has been executed
[21]. Depending on the component granularity selected for
the analysis, coincidental correctness can happen at a fre-
quent rate. In particular, when two tests share the same cov-
erage path, but produce different outcomes, it becomes sig-
nificantly harder to distinguish them without further contex-
tual information. Coincidental correctness can potentially
lead to exonerating real faults as they are observed to be-
have nominally.

3.2 Q-SFL
We argue that all of the issues described above can be at least
attenuated if we supplement the SFL framework with more
contextual information about the system under analysis to
perform the diagnosis. Our Q-SFL approach consists of par-
titioning several SFL components into multiple, meaning-
ful, qualitatively distinct subcomponents, to be used in the
fault localization. We leverage the QR concept of domain

A t1 t2 t3 t4
c1 1 1 1 1
c2 0 0 1 1
c3 1 1 1 0
c4 0 0 1 0
e 1 1 0 0
(a) Regular spectrum.

Pr({c1}|(A, e)) = 0.30
Pr({c3}|(A, e)) = 0.70

A′ t1 t2 t3 t4
c1 1 1 1 1
c′1 0 0 1 1
c′′1 1 1 0 0
c2 0 0 1 1
c3 1 1 1 0
c′3 1 0 0 0
c′′3 0 1 1 0
c4 0 0 1 0
e′ 1 1 0 0

(b) QR-augmented spectrum.
Pr({c1}|(A′, e′)) = 0.05
Pr({c′′1}|(A′, e′)) = 0.82
Pr({c3}|(A′, e′)) = 0.12

Pr({c′3, c′′3}|(A′, e′)) = 0.01

Figure 2: Example of coverage partitioning via QR.

partitioning to inspect existing components during each sys-
tem execution and assign them a qualitative state. Each of
these qualitative states is then considered as a separate SFL
component whose involvement per transaction is recorded
and fed into the SFL framework for diagnosis. Note that
we use software diagnosis to help describe Q-SFL and, later
on, to evaluate it. Despite this, the Q-SFL concept applies
to other SFL use cases where one can inspect the state of
components, as is the case of electronic circuit diagnosis,
and others.

Figure 2 depicts how QR can be employed to enhance
program spectra. Figure 2a shows a 4 transaction by 4
component spectrum, along with resulting diagnostic scores
from applying reasoning-based SFL. Candidate generation,
following the methodology described in Section 2.1 yields
two candidate diagnoses — components c1 and c3 can in-
dependently explain the observed failures as both cover all
failing test cases. For this example, suppose that c1 is the
faulty component. Since c1 is involved in more passing
transactions, the SFL framework will assign it a lower fault
probability than c3. To improve the accuracy of the SFL
framework, one needs more contextual information about
component executions.

We envision three different types of landmarking strate-
gies that can be employed to define qualitative state bound-
aries: (i) manual landmarking, where the system’s develop-
ers manually define what are the possible qualitative states
for a given component; (ii) static landmarking, where land-
marks depend on the type of a component; and (iii) dynamic
landmarking, where a component’s value is inspected at
runtime, and partitioned into a set of categories. Examples
of dynamic strategies will be presented in Section 4.

Figure 2b depicts the QR-augmented spectrum, where
components representing qualitative partitions of both c1
and c3 are added to the original spectrum. An example of
such partitioning using static landmarking: if c1 represents
a software procedure that contains a numeric parameter i,
we can create two qualitative components c′1 and c′′1 that
represent invocations of c1 with i ≥ 0 and i < 0, respec-
tively. This is a sign-based static partitioning strategy. Note
that the original components c1 and c3 are not removed from
the QR-augmented spectrum, as partitions may not provide
further fault isolation.

If we are to diagnose the new spectrum from Figure 2b,
component c′′1 is now the top-ranked diagnostic candidate.
This QR-augmented spectrum avoids spurious inspections

of component c3, and provides additional contextual infor-
mation about the fault, namely that i < 0 is often observed
in failing transactions.

By landmarking data units associated with SFL compo-
nents so that they are assigned a qualitative state at runtime,
we are providing more context to the diagnostic process, and
in some cases, consequently reducing the diagnostic effort.
Such partitioning is also of crucial importance towards mini-
mizing the impact and frequency of ambiguity grouping and
coincidental correctness, as new, distinct components are
added to the system’s spectrum.

4 Evaluation
To evaluate our approach, we compare the cost of diagnos-
ing a collection of faulty software programs using regular
spectra against using QR-augmented spectra.

4.1 Methodology
We have sourced experimental subjects from the Defects4J3

(D4J) database. D4J is a catalog of 395 real, reproducible
software bugs from 6 open-source projects — namely
JFreeChart, Google Closure compiler, Apache Commons
Lang, Apache Commons Math, Mockito, and Joda-Time.
For each bug, a developer-written, fault-revealing test suite
is made available.

We run the fault-revealing test suite of each buggy D4J
subject, gathering method-level coverage and test outcomes,
to construct its spectrum. Besides coverage, we also record
the value of all primitive-type arguments and return values
for every method call. This enables us to experiment with
different qualitative partitioning strategies in an offline man-
ner.

Using the recorded argument and return value data, we
create multiple (automated) partitioning models resulting in
several Q-SFL variants. A static partitioning variant using
automated sign partitioning based on the variable’s type, as
described in Section 3.2, was considered. For dynamic par-
titioning, several clustering and classification algorithms4

were considered: k-NN, linear classification, logistic regres-
sion, decision trees, random forest, and x-means clustering
Test outcomes are used as the class labels in the case of
supervised models. Note that we are not using the afore-
mentioned models for prediction, but rather as a partitioning
scheme based on observed values. Hence, we do not break
our data into training and test sets, as is customary in pre-
diction scenarios. Because we use automated, domain inde-
pendent partitioning, only primitive types are considered in
the evaluation.

To evaluate a QR-enhanced spectrum against its respec-
tive original spectrum, we first reduce the Q-SFL diagnos-
tic report to method components. This reduction is done
by considering the highest fault probability of any subcom-
ponent belonging to each method, to effectively be able to
compare method-level diagnostic effort between the two ap-
proaches. A change in diagnostic effort is measured using

∆Cd = Cd(Original)− Cd(QR-Enhanced) (4)

3Defects4J 1.1.0 is available at https://github.com/
rjust/defects4j (accessed June 2018).

4We chose popular classification algorithms implemented in
the Scikit-learn package. X-means, as implemented in the
pyclustering package, was selected as it can automatically
decide the optimal number of clusters to use [22].

where Cd is the cost of diagnosis, as explained in Sec-
tion 2.1. A positive ∆Cd means that the faulty component
has risen in the ranking reported by SFL techniques when
QR is used, yielding a lowered cost of diagnosing.

4.2 Results and Discussion
We were able to automatically partition the faulty method
in 167 D4J subjects. The remaining D4J subjects were dis-
carded because (i) the faulty method does not contain pa-
rameters nor does it return a value; because (ii) the faulty
method only contains non-primitive, non-null, complex-
typed parameters, which cannot be handled by the set of
partitioning strategies described in Section 4.1; or because
(iii) the aforementioned partitioning strategies were unable
to create qualitative states whose coverage differs from their
enclosing method.

Our first research question is

RQ1: Does augmenting spectra with qualitative com-
ponents improve their diagnosability?

In RQ1, we are concerned with finding if there exist. qual-
itative partitionings able to improve the fault localization
ranking to the extent that faulty components are inspected
earlier — thus decreasing developer wasted effort in a de-
bugging task. Hence, for each D4J subject, we choose
as the landmarking strategy to consider in the evaluation
the one that is able to create the largest set of distinct,
non-ambiguous qualitative components out of the faulty
method(s). The breakdown of selected partitioning strate-
gies per subject is as follows: Sign partitioning: 102 (61%
of subjects); X-means: 25 (15%); k-NN: 8 (5%); Linear
Regression: 1 (1%); Logistic Regression: 4 (2%); De-
cision Tree: 11 (7%); Random Forest: 16 (10%). Our
sign-partitioning default strategy was used to qualitatively
enhance the majority of considered subjects, while other
strategies such as linear classification and logistic regres-
sion were rarely selected. We believe the reason that su-
pervised learning approaches — which were fed test case
outcomes as the target class label — only exhibited superior
performance in 40 subjects (24%) is due to the fact that the
number of failing tests in test suites is often much smaller
than the amount of passing tests, weakening the resulting
partitioning model.

Figure 3 shows a scatter plot with the ∆Cd of all subjects
under analysis. Shown in a red background are the 15 sub-
jects (9%) with a negative ∆Cd — meaning that the report
has suffered a decrease in accuracy after augmenting the
spectra. The majority of these subjects belong to the Clo-
sure project. The 62 subjects (37%) with ∆Cd = 0, where
the faulty component has remained in the same position of
the ranking, are shown in a white background. Lastly, 90
subjects (54%) that exhibited a positive ∆Cd — cases where
QR-enhanced spectra improved diagnosability — are shown
in green. All in all, Q-SFL is at least as effective as the orig-
inal approach in 92% of scenarios.

Table 1 presents statistics computed to assess whether the
observed metrics yield statistically significant results. QR-
enhanced spectra exhibits an overall lower effort to diagnose
when compared to the original spectra, with less variance.
To assess significance, we first performed the Shapiro-Wilk
test for normality of effort data in both the original spec-
tra case and QR case. With 99% confidence, the test’s re-

0 20 40 60 80 100 120 140 160
Subject Number

−102

−101

−100

0

100

101

102

103
ΔC

d

ΔCd ≥ 0
ΔCd < 0

ΔCd > 0
ΔCd ≤ 0

Closure
Commons Lang
Commons Math
JFreeChart
JodaTime
Mockito

Figure 3: Difference in Cd between original and QR-enhanced spectra per sub-
ject.

Sign X-means k-NN Linear Logistic Tree Forest
Strategies

0

20

40

60

80

100

120

140

Su

bj
ec

ts

ΔCd < 0
ΔCd = 0
ΔCd > 0

Figure 4: Breakdown of diagnostic performance per par-
titioning strategy.

Table 1: Statistical tests.

Original QR-enhanced
Spectra Spectra

Mean Cd 60.28 37.56

Median Cd 6.00 2.50

Cd Variance 2.10×104 1.56×104

W = 0.46 W = 0.32
Shapiro-Wilk

p-value = 2.20×10−22 p-value = 1.10×10−24
Wilcoxon Z = 5.45

Signed-rank p-value = 5.10×10−10

sults tell us that the distributions are not normal. Given
that Cd is not normally distributed and that each observation
is paired, we use the non-parametrical statistical hypothesis
test Wilcoxon signed-rank. Our null-hypothesis is that the
median difference between the two observations (i.e., ∆Cd)
is zero. The fifth row from Table 1 shows the resulting Z
statistic and p-value of Wilcoxon’s test. With 99% confi-
dence, we refute the null-hypothesis.

RQ1? Yes, augmenting faulty spectra with new compo-
nents resulting from qualitative landmarking of method pa-
rameter (and method return) values yields a statistically sig-
nificant improved diagnostic report.

To be able to answer RQ1, we have selected for each sub-
ject the strategy with the highest number of qualitative parti-
tions targeting the faulty method, as we were only concerned
with the existence of a partitioning strategy that would im-
prove diagnosability. However, in practice, it is not realistic
to know a-priori what the faulty method is5. Hence, our
second research question is

RQ2: Is there a particular automated landmarking
strategy that consistently shows improved diagnosabil-
ity?

Figure 4 shows a breakdown of the number of subjects
that fall into the ∆Cd < 0, ∆Cd = 0 and ∆Cd > 0 cate-

5Although some effort has been put forth to hierarchically de-
bug programs using SFL [23].

gories for every partitioning strategy considered in this eval-
uation. This bar plot tells us that no single strategy achieves
the same number of positive ∆Cd scenarios as the partition
cardinality selection scheme employed to answer RQ1 and
to produce Figure 3. Furthermore, strategies that were of-
ten picked by that criterion (namely, sign partitioning and
X-means strategies) also show an increased number of neg-
ative ∆Cd scenarios when compared to others. This leads us
to conclude that no single strategy (out of the ones that were
analyzed) is able to consistently show improved diagnoses.

RQ2? No, at least for the automated landmarking strate-
gies considered in the evaluation, there is no evidence that
a single automated strategy can consistently outperform the
original spectra. However, since Q-SFL can improve diag-
nosability, as per the answer to RQ1, we presume that man-
ual or more complex, context-aware, automated white-box
strategies — which can perform static and dynamic source
code analysis — are much more suited to outperform the
original spectra due to more effective and more informed
partitioning.

5 Related Work
There have been previous forays into enhancing the diag-
nostic report of automated fault localization techniques to
either improve their accuracy or comprehension of the fail-
ing component.

SFL approaches to debugging typically present their re-
port to users as a list of suspicious components that is sorted
according to the likelihood of being faulty. 1 have proposed
a visual way of depicting the results of a similarity-based
software SFL diagnosis, color-coding each component ac-
cording to their suspiciousness score [1]. 24 expand on the
visual concept by leveraging tree-based visualizations that
innately exploit the tree-like structure of Java code, natu-
rally aggregating neighboring components and aiding explo-
ration of suspicious code regions [24]. Another approach to
improve the comprehension of faults was proposed by 25,
called Whyline, which allows the users to obtain evidence
about the program’s execution before forming an explana-
tion of the cause by providing the ability to ask “why did”
and “why didn’t” questions about program output [25].

26 have proposed an extension to SFL to improve com-
prehension. It uses integration coverage data, by way of
capturing method invocation pairs, to guide the fault local-

ization process. By calculating the fault likelihood of com-
ponent pairs, the authors are able to generate roadmaps for
component investigation, guiding users through likely faulty
paths and increasing the amount of contextual cues [26].

Advancements in bug prediction [27] have enabled its
use within automated fault localization processes. 28 pro-
pose an ensemble approach to fault localization that exploits
information from versioning systems, bug tracking reposi-
tories and structured information retrieval from the source
code [28]. 17 rely on kernel density estimation models of
component behavior and previous diagnoses to better esti-
mate the component goodness parameter in spectrum-based
reasoning [17]. 18 also modify the traditional spectrum-
based reasoning framework by leveraging a fault prediction
model trained with historical information from the project’s
versioning system and bug tracker to compute the prior
probability distribution of diagnostic candidates [18].

Augmenting fault-localization via slicing has also been
proposed. 29 have proposed the use of dynamic backward
slices — comprised of statements that directly or indirectly
effect the computation of the output value through data- or
control-dependency chains — as components in similarity-
based SFL [29]. 30 propose an approach that leverages a
model-based slicing-hitting-set-computation — which com-
putes the dynamic slices of all faulty variables in all failed
test cases, derives minimal diagnostic candidates from the
slices and computes fault probabilities for each statement
based on number of the diagnoses that contain it [30].

6 Conclusion
This paper proposes a new approach to spectrum-based fault
localization that leverages qualitative reasoning (QR). The
Q-SFL approach splits components form the software sys-
tem under analysis into a set of qualitative states through
the creation of qualitative landmarks that partition a com-
ponent’s domain. These qualitative states are then consid-
ered as SFL components to be ranked using traditional fault-
localization methodologies. Since we treat these qualitative
states as components, our diagnostic reports not only rec-
ommend likely fault locations, but also provide an insight
on what behaviors the faulty components assume when fail-
ures are detected, facilitating the comprehension of the fault.

We evaluate the approach on subjects from the Defects4J
catalog of real faults from medium and large-sized open
source software projects. Results show that spectra which
were augmented using qualitative partitioning of method pa-
rameters shows a (statistically significant) improvement in
the diagnostic accuracy in 54% of scenarios. However, we
also found no evidence of automated partitioning strategies
that were consistently better than the original spectra, mean-
ing that more intricate, context-aware partitioning strategies
will likely be necessary for practical applications of the ap-
proach.

This work lays the first stone in a series of efforts to
more deeply integrate reasoning-based AI approaches into
spectrum-based fault localization. It paves the way for fur-
ther efforts by the fault localization research community,
namely by:

1. Improving automated landmarking by expanding its
application to complex non-primitive objects and by
exploring ensembles of multiple strategies.

2. Conducting a systematic user study investigating the

extent that qualitative domain partitioning aids fault
understanding.

Acknowledgments
This material is based upon work supported by the scholar-
ship number SFRH/BD/95339/2013 from Fundação para a
Ciência e Tecnologia (FCT).

References
[1] James A. Jones, Mary Jean Harrold, and John T.

Stasko. Visualization of test information to assist fault
localization. In ICSE’02, pages 467–477, 2002.

[2] Lucia, David Lo, Lingxiao Jiang, Ferdian Thung, and
Aditya Budi. Extended comprehensive study of asso-
ciation measures for fault localization. Journal of Soft-
ware: Evolution and Process, 26(2):172–219, 2014.

[3] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van
Gemund. Spectrum-based multiple fault localization.
In ASE’09, pages 88–99, 2009.

[4] Chris Parnin and Alessandro Orso. Are automated de-
bugging techniques actually helping programmers? In
ISSTA’11, pages 199–209, 2011.

[5] Aaron Ang, Alexandre Perez, Arie van Deursen, and
Rui Abreu. Revisiting the practical use of automated
software fault localization techniques. In IWPD’17,
pages 175–182, 2017.

[6] Carlos Gouveia, José Campos, and Rui Abreu. Using
HTML5 visualizations in software fault localization.
In VISSOFT’13, pages 1–10, 2013.

[7] Kenneth D. Forbus. Qualitative reasoning. In The
Computer Science and Engineering Handbook, pages
715–733. 1997.

[8] Brian C. Williams and Johan de Kleer. Qualitative rea-
soning about physical systems: A return to roots. Ar-
tificial Intelligence, 51(1-3):1–9, 1991.

[9] René Just, Darioush Jalali, and Michael D. Ernst. De-
fects4j: a database of existing faults to enable con-
trolled testing studies for java programs. In ISSTA’14,
pages 437–440, 2014.

[10] Rui Abreu and Arjan J. C. van Gemund. A low-cost
approximate minimal hitting set algorithm and its ap-
plication to model-based diagnosis. In SARA’09, 2009.

[11] Alexander Feldman, Gregory M. Provan, and Arjan
J. C. van Gemund. Computing minimal diagnoses by
greedy stochastic search. In AAAI’08, pages 911–918,
2008.

[12] Nuno Cardoso and Rui Abreu. MHS2: A map-reduce
heuristic-driven minimal hitting set search algorithm.
In MUSEPAT’13, pages 25–36, 2013.

[13] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van
Gemund. A new bayesian approach to multiple inter-
mittent fault diagnosis. In IJCAI’09, pages 653–658,
2009.

[14] John Carey, Neil Gross, Marcia Stepanek, and Otis
Port. Software hell. In Business Week, pages 391–411,
1999.

[15] Johan de Kleer. Multiple representations of knowledge
in a mechanics problem-solver. In IJCAI’77, pages
299–304, 1977.

[16] Benjamin Kuipers. Qualitative simulation. Artificial
Intelligence, 29(3):289–338, 1986.

[17] Nuno Cardoso and Rui Abreu. A kernel density
estimate-based approach to component goodness mod-
eling. In AAAI’13, 2013.

[18] Amir Elmishali, Roni Stern, and Meir Kalech. Data-
augmented software diagnosis. In AAAI’16, pages
4003–4009, 2016.

[19] Xiaofeng Xu, Vidroha Debroy, W. Eric Wong, and
Donghui Guo. Ties within fault localization rankings:
Exposing and addressing the problem. International
Journal of Software Engineering and Knowledge En-
gineering, 21(6):803–827, 2011.

[20] G. N. Stenbakken, T. M. Souders, and G. W. Stewart.
Ambiguity groups and testability. IEEE Transactions
on Instrumentation and Measurement, 38(5):941–947,
1989.

[21] Debra J. Richardson and Margaret C. Thompson. An
analysis of test data selection criteria using the RE-
LAY model of fault detection. IEEE Transactions on
Software Engineering, 19(6):533–553, 1993.

[22] Dan Pelleg and Andrew W. Moore. X-means: Extend-
ing k-means with efficient estimation of the number of
clusters. In ICML’00, pages 727–734, 2000.

[23] Alexandre Perez, Rui Abreu, and André Riboira. A
dynamic code coverage approach to maximize fault lo-
calization efficiency. Journal of Systems and Software,
90:18–28, 2014.

[24] José Campos, André Riboira, Alexandre Perez, and
Rui Abreu. GZoltar: an eclipse plug-in for testing and
debugging. In ASE’12, pages 378–381, 2012.

[25] Andrew Jensen Ko and Brad A. Myers. Designing the
whyline: a debugging interface for asking questions
about program behavior. In CHI’04, pages 151–158,
2004.

[26] Higor Amario de Souza and Marcos Lordello Chaim.
Adding context to fault localization with integration
coverage. In ASE’13, pages 628–633, 2013.

[27] Marco D’Ambros, Michele Lanza, and Romain
Robbes. An extensive comparison of bug prediction
approaches. In MSR’10, pages 31–41, 2010.

[28] Shaowei Wang and David Lo. Version history, simi-
lar report, and structure: putting them together for im-
proved bug localization. In ICPC’14, pages 53–63,
2014.

[29] Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and
Chengsong Wang. Slice-based statistical fault local-
ization. Journal of Systems and Software, 89:51–62,
2014.

[30] Birgit Hofer and Franz Wotawa. Spectrum enhanced
dynamic slicing for better fault localization. In
ECAI’12, pages 420–425, 2012.

