
On Using an I/O Model for Creating an Abductive Diagnosis Model via
Combinatorial Exploration, Fault Injection, and Simulation

Ingo Pill1 and Franz Wotawa1

1Institute for Software Technology, TU Graz
Inffeldgasse 16b/2.Stock, 8010 Graz, Austria

{ipill, wotawa}@ist.tugraz.at

Abstract
In practice, we often lack a detailed diagnostic
model and also the data (or resources) to create
it. Obviously, this is quite a hurdle for deploy-
ing automated diagnostic reasoning. In order to
overcome it, we proposed in recent work to em-
ploy a combinatorial behavior exploration con-
cept for automatically generating an abductive di-
agnosis model. In the proposed approach, we ba-
sically compare correct and faulty behavior that
we derive by drawing on fault injection and sim-
ulation techniques. We then aggregate data about
which specific sets of faults would lead to these
or those deviations in the behavior, and finally en-
code them in an abductive diagnosis model. Since
the behavioral space as resulting from the individ-
ual domains for the various inputs, system param-
eters, and injected faults tends to be rather huge,
we proposed first concepts to explore it combina-
torially. In this manuscript, we delve deeper into
the question of how to efficiently explore sequen-
tial system behavior in such an approach. That
is, while we initially assumed that a user creates
a finite alphabet of representative sequences to be
covered, in this paper we investigate the use of
an abstract input or I/O model to derive such an
alphabet, and discuss resulting opportunities and
ramifications for the concept.

1 Introduction
Model-based diagnosis [1; 2; 3] is a very powerful and
well structured approach to isolating explanations for en-
countered problems. The derived diagnoses tell us which
components (or faults in general) could be responsible in
their union for the encountered issue. Via the required di-
agnostic model we take the known system structure and
expected behavior into consideration, exhaustively explore
the entire behavioral space described in it, and come up
with a complete set of explanations considering the expla-
nations’ ramifications for the entire behavior. Despite the
basic processes and techniques being available for quite
some time, adoption in practice is often limited, since we
might not have the detailed data or resources available that
we would need for creating the required diagnostic model.
The first could be related to closed third party compo-
nents, the latter to cost pressure or the lack of the ap-
propriate personnel. Statistical approaches like SFL [4;

5] offer solutions to this problem in that they consider ex-
ecution data from failing and correct behavior and, based on
their involvement in the individual execution, aim to rank
system components according to their suspiciousness of be-
ing responsible for the observed issue(s). The underlying
reasoning concept is based on abstract data about which
components have been involved in the individual executions
though, rather than on a detailed model. Extensions like
SENDYS [6] augment the statistical reasoning with struc-
tural information in order to improve preciseness by draw-
ing on readily available structural information like slices [7].

As a prospective alternative, we have been discussing the
option of automatically constructing an abductive diagno-
sis model via simulation and fault injection [8; 9]. Such an
abductive model would contain rules similar to FMEA [10]
data that engineers are familiar with, in that it aggregates
cause-and-effect rules describing under which assumptions
a fault would lead to which symptoms (in other words "de-
viations") in the behavior. From encountered symptoms and
given system parameters, we can then reason backwards via
these rules in order to identify the desired set of explana-
tions. The underlying idea of the proposed concept was to
simulate correct as well as faulty behavior, where we would
trigger faults via fault injection techniques. In principle, iso-
lating the deviations would allow us to come up with a list of
rules of the type fault x under assumptions Y would lead to
symptoms Z (with Y and Z being sets), where these rules then
represent the basis for the abductive diagnosis model [8].

The rather simple and intuitive concept has some intri-
cacies though, which we need to address for being able to
effectively deploy the concept in practice. So it is apparent
that the behavioral space to be covered by the simulations
would be infinite even for a simple example where a sin-
gle system input variable has a continuous domain. And
there is, e.g., also the question of how to concretely im-
plement the comparison of behavior. Like which margin
we would allow when considering variables in a continu-
ous domain—both in terms of the absolute signal values
themselves, and also regarding a time delay. A first basic
concept was proposed in [8], and in [9] we extended the
approach by suggesting to use a combinatorial exploration
concept that allowed us to consider also sets of faults in-
stead of single faults only. That is, while it is easily seen
that exhaustively covering all combinations of system pa-
rameters, input signal scenarios and fault combinations is
infeasible in practice, the local exhaustiveness of a combi-
natorial exploration concept would support us in coming up
with a necessarily incomplete, but structural approach at ex-

ploring the combinations. In particular this means that for
some combinatorial strength s, every combination of val-
ues for every variable subset of size s serves as (partial)
input for at least one simulation. The aim then is to over-
lay these partial variable assignments in such a way that
we would need as few simulations as possible. As pro-
posed in [9], we can derive a corresponding set of simula-
tion configurations via the generation of mixed-level cover-
ing arrays (MCAs) as used also in combinatorial testing [11;
12]. Continuous variable domains have to be abstracted us-
ing, e.g., techniques as proposed in [13]. While we will
rehearse the overall concept briefly in the next section, we
would like to refer the interested reader to [9] for deeper
discussions of several questions in this respect—like how to
treat the variable space and the resulting ramifications.

A proposal we made in [9] is that the individual variable
groups (like health state variables or input variables) should
be treated individually when creating the MCA. This would
allow us a more fine grained control of the activation of
faults, for instance, since we might want to consider the fault
strength in isolation from the combinatorial strength when
creating an MCA. Another suggestion was to establish finite
alphabets also for sequential behavior such that some input
sequence for an input signal would be represented by a sin-
gle letter in the alphabet for this input. This allowed us to
show that, in principle, we can use the combinatorial explo-
ration concept for creating an abductive diagnosis model.

In our discussions in [9], we mused that such limitations
might not be ideal though, and there would still be the open
question of how to handle the compatibility of the various
sequences chosen for the individual input signals. One so-
lution where we would tackle the latter is to derive an alpha-
bet of input scenarios covering more (or all) input signals,
which is obviously not a trivial task by itself. In this pa-
per, we investigate exactly this task and related issues. That
is, we propose to use an input model, either derived from an
I/O representation of the desired system behavior, or defined
directly. In particular, we investigate how we could create
and use such a model in order to support creating the data
for the MCA generation step. At least the data for the input
model would be needed also when designing the system and
deciding which components shall interact in which way, so
that they should be available in a more or less formal form.

2 The Problem and Preliminaries
Let us briefly rehearse our basic definitions and the com-
binatorial exploration concept as proposed in [9]. Aggre-
gating several definitions of [8], we define a system model
such that it allows us to simulate a system’s behavior when
given (a) the desired input scenario, and (b) the desired fault
scenario. This means that compared to a model describing
only the nominal behavior, we need the system model to
consider a set MODES of fault modes that the individual
components can feature, and which we can activate individ-
ually for the various system components. Via the concepts
of mutations [14] and fault injection [15], we can create
such models easily, e.g., for Simulink1 models with tools
like SIMULTATE [16]. Please note that we assume discrete
time, where the finite set TIME of time steps is usually de-
termined by the simulation scope ranging from t = 0 to end
time te, and the simulator’s sampling frequency.

1https://www.mathworks.com/products/
simulink.html

Definition 1. [9] A system model is a tuple S =
(COMP,MODES, µ, ρ, I, O,M) such that COMP is a finite
set of system components, {ok} ⊆ MODES is the nominal
(correct) mode in a finite set of modes that components can
have, µ is a function mapping components ci ∈ COMP to
their individual sets MODES′ ⊆ MODES, I is a finite set
of input signals and input variables, O is a finite set of ob-
servable output signals and output variables, and M is a
simulation model that allows us to simulate the system’s be-
havior for a finite set TIME of discrete points in time with
a simulation function sim as of Definition 2, taking into ac-
count also mode assignments ρ as of Definition 3.
Definition 2. [9] Let us assume that we have a system model
S = (COMP,MODES, µ, ρ, I, O,M) as of Definition 1, a
test case τ defining the input values for all i ∈ I over time,
a mode assignment ρ as of Definition 3 defining the modes
for all ci ∈ COMP over time, and an end time te. A sim-
ulation function sim(S, τ, ρ, te) computes via M the values
of all variables o ∈ O over time (between 0 and te) consid-
ering (a) the test case τ for inputs i ∈ I , and (b) the mode
assignment ρ for the components’ modes.
Definition 3. [9] Let TIME be a finite set of points in time.
A mode assignment ρ is a set of functions ρi(t) which de-
fine for the ci ∈ COMP the component’s mode for all time
stamps t ∈ TIME.

A simulation model M ∈ S allows us to derive a sys-
tem’s output (values for all o ∈ O for all t ∈ TIME) if
we provide an input scenario and in our case also a fault
scenario. That is, if and only if all input signals and (fault)
variables, i.e., everything aside the outputs, are given. When
reasoning with a diagnostic model on the other hand, inputs
and observed outputs are the basis to reason about viable so-
lutions in terms of the individual components’ fault modes
(health state variables, or AB predicates in [2]). These diag-
noses then shall offer explanations about which components
could have behaved erroneously in order to explain the ob-
served, faulty output behavior. As we discussed in [8], this
difference in the models is one of the reasons why usually
one cannot perform diagnosis in a simulator directly, that is,
without adoptions like proposed in [17] for Modelica2.

In [8], we proposed an automated workflow that would al-
low us to automatically create an abductive diagnosis model
from a system model as described in Def. 1. The underly-
ing idea is to take given input scenarios and after injecting
single faults we would isolate the individual faults’ effects
on the simulated behavior, in order to come up with cause-
and-effect rules relating faults and symptoms. Aggregating
the rules in an abductive diagnosis model then allows us to
automatically reason about diagnoses. In principle, we for-
mulate such an abductive diagnosis model as a knowledge
base (see [18] for more knowledge-base definitions):
Definition 4. [9] A knowledge base is a tuple KB =
(P,HYP,TH) where P is a set of propositional variables,
HYP ⊆ P is a set of hypotheses, and TH is a set of Horn
clause sentences over P .

A reader might now wonder why we would use proposi-
tional variables when reasoning with simulation models that
most likely feature continuous signals. The reason is that
even for a single continuous variable, the simulation space
would be infinite if we’d like to exhaustively cover all pos-
sible values. In practice the actual variable values are often

2https://www.modelica.org/

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.modelica.org/

limited though, and the propositions are used to describe
a signal’s finite set of possible values, or a comparison to
constants such as to digitize the value via a qualitative ab-
straction. For a discussion of how to identify an appropriate
task dependent qualitative abstraction and a corresponding
automated approach, we refer the interested reader to [13].

In our case, the hypotheses in the knowledge base cor-
respond directly to the possible causes of an encountered
issue. That is, the elements of a diagnosis, or in other
words the possible faults. Solving the following proposi-
tional Horn clause abduction problem thus allows us to de-
rive possible explanations for the observed behavior.

Definition 5. [9] Given a knowledge base KB =
(P,HYP,TH) and a set of observations OBS ⊆ P , the tuple
(P,HYP,TH,OBS) describes a propositional Horn clause
abduction problem (PHCAP). A set ∆ ⊆ HYP is a solution
to a PHCAP, if and only if ∆∪TH |= OBS and ∆∪TH 6|= ⊥.
A solution ∆ is parsimonious or subset-minimal, if and only
if no set ∆′ such that ∆′ ⊂ ∆ is a solution.

Formally, a solution ∆ of a PHCAP is a set of hypotheses
that allows to derive the given observations via TH. Con-
sequently, ∆ is indeed an explanation of the given observa-
tions and we thus refer to ∆ also as abductive diagnosis or
simply as diagnosis. Please note that in practice, we are of-
ten only interested in subset-minimal diagnoses, so that in
the literature, like in [2], we often find that a diagnosis has
to be subset-minimal by definition.

“Determining whether a hypothesis is included in a min-
imal diagnosis is NP-complete” [18], where we would like
to refer the interested reader to [20] for a comprehensive
complexity analysis of logic-based abduction. If the set of
hypotheses is not too large, we can compute the solutions
efficiently though. Such an approach might use de Kleer’s
Assumption-based Truth Maintenance System (ATMS) [21;
22] and a newly generated proposition σ, encoding the ob-
servations as a single rule o1 ∧ . . .∧ ok → σ for k = |OBS|.
The label of σ’s node then is an abductive diagnosis for the
observations, where the rules for the node labels ensure that
the solution is minimal, sound, complete, and consistent.
For more information we refer the interested reader to [23].

In the initial concept proposed in [8], we used only single
fault activations. While this has the advantage of limiting
the simulations to (|MODES| − 1) ∗ |COMP|+ 1 per input
scenario (a test case as of Definition 1) in the worst case, it
also means that fault interactions would not be considered in
the abductive diagnosis model. Covering all combinations
exhaustively would mean (|MODES| − 1)|COMP| + 1 sim-
ulations per input scenario though, which is infeasible in
practice. That is, let us assume that we have 20 components
with 10 modes, and 100 input scenarios—which is not much
since even for non-sequential behavior 10 variables with 10
possible values would result in 100 combinations. Then we
would need 1020 ∗ 100 = 1022 simulations, which would
take about 3.17 ∗ 1011 years to conduct if a single simulta-
tion takes about 1 millisecond (which is quite optimistic).

Inspired by the success of combinatorial testing, and its
successful adaption to testing self-adaptive systems (and
thus, in principle, the diagnosis engine underlying the adap-
tion mechanism) as investigated by Wotawa in [24], we pro-
posed in [9] the use of a combinatorial approach at conquer-
ing the parameter and signal/variable space for the individ-
ual simulations. While global exhaustiveness is not within
reach, there the exhaustiveness focuses on the local interac-

tions between variables. In particular, if we desire a com-
binatorial strength of s, this means that every s-way inter-
action between variables shall be considered in at least one
simulation (or a test case in the context of combinatorial
testing and Def. 1). Thus for every variable subset of size s,
we have that every combination of values that we can assign
to these variables is indeed part of at least one simulation.
If s is equal to the number of variables this would translate
to global exhaustiveness, but usually we have s << n or at
least s < n. The resulting scalability improvements allowed
us to consider also injecting multiple faults in [9].

In the following table we briefly illustrate the concept
for 3 Boolean health state variables hi (one nominal mode,
one fault mode), where we can easily see that simulations
1 to 4 would achieve a combinatorial strength of 2. Adding
simulation 5, despite introducing a new value combination
and thus increasing coverage in principle, is unnecessary to
achieve s = 2. Furthermore, we could not retain s = 2
when replacing any of the simulations 1 to 4 with simula-
tion 5. That is, when replacing simulation 1, h2 = h3 = ⊥
would be missing, and when replacing simulations 2,3, or 4,
h1 = ⊥/h2 = >, h1 = h3 = >, or h1 = h2 = > would be
missing. Together with simulations 6 to 8, simulation 5 can
achieve a combinatorial strength of 2 though.

h1 h2 h3

simulation 1 ⊥ ⊥ ⊥
simulation 2 ⊥ > >
simulation 3 > ⊥ >
simulation 4 > > ⊥
simulation 5 ⊥ ⊥ >
simulation 6 ⊥ > ⊥
simulation 7 > ⊥ ⊥
simulation 8 > > >

The optimization potential that we exploit in a combina-
torial approach is that we can cover more than one individ-
ual s-way interaction in a single simulation, which allows
us to reduce the total number of required simulations. In
our table above, a single simulation covers three two-way
interactions for the three variable subsets of size s = 2. As
we showed, the way how we overlay the various two-way
interactions is crucial though, in order to achieve some de-
sired strength with as few simulations as possible.

When deploying the technique, an immediate question is
which strength we would need to target in practice. Kuhn
and colleagues showed in [25] that 6-way strength might
suffice to reveal all faults in a testing context, where for
some domains the limit was even lower. Limiting the
strength’s scope to fault combinations, this would match the
practice that we often limit the search for diagnoses in terms
of cardinality (e.g. stop the search for triple-faults) under the
assumption that it is unlikely that more than x components
fail simultaneously. For the input signals and system pa-
rameters, it is less clear which strength would be needed for
our task. So while there are several questions to be explored
via empirical experiments in this respect, we surmised in [9]
that the strength s = 6 identified by Kuhn et al. for testing
might be an interesting starting point also for our diagnos-
tic setting. That is, both settings are motivated by the aim
to explore the behavior/exercise the system. The coverage
achieved for software programs when using combinatorial
testing shows also promising results in this respect [26].

If we have variables with varying domains, we can use
mixed-level covering arrays (MCAs) to derive simulation
settings as offered in the table for Boolean variables. It al-
lows us to consider variable sets with individual domains
(relating to the alphabets in our context) for each variable.
Definition 6. A mixed-level covering array
MCA(V, (A1, . . . , Ak), s) of strength s for k = |V |
variables with their individual finite alphabets Ai is a
two-dimensional k × n array such that for any V ′ ⊆ V
such that |V ′| = s we have that every combination in the
cross product of the individual alphabets of the variables in
V ′ appears in at least one of the n rows.

When deploying an MCA algorithm we have to follow a
three step process. First, we have to describe the set of vari-
ables V and the variables’ individual alphabets Ai. These
alphabets might contain a set of exemplary values (for a dis-
cussion of task-dependent qualitative abstraction see [13]),
or a set of exemplary sequences for sequential behavior as
we mused in [9]. In the context of combinatorial testing, this
first step is coined input parameter modeling and we refer
the interested reader to [19] for an introduction. The second
step is to invoke a combinatorial decision procedure [27;
28], e.g., using a combinatorial test generation tool like
ACTS [29], in order to generate an MCA as of Definition 6.
In the third and final step, we take each individual row in the
MCA and consider it as the input data for a simulation.

As we reasoned in [9], a combinatorial exploration con-
cept might allow us thus to structurally (but necessarily in-
complete in a global sense) attempt to representatively cover
a system’s correct and faulty behavior in our simulations.
While we suggested to provide an alphabet of individual
scenarios for the various input signals (variables) or a to-
tal alphabet of scenarios for the entire system, the task was
left to the user. In this paper we investigate the automation
of this step, which we start in the next section by discussing
an appropriate input model.

3 Modeling the Input Signal Scenarios
In our definition of a system model (see Definition 1), we
assumed that we have a simulation model available. This
model allows us to simulate the system’s behavior for a fi-
nite set of points in time, if the system’s input signals as well
as the desired fault modes are specified. Our aim is now to
generate an MCA as of Definition 6 where the rows will de-
fine the individual simulation configurations (input signals,
system parameters, fault modes) that will allow us to come
up with an abductive diagnosis model as of Definition 5 via
the algorithm described in [9].

In [9] we suggested that a user should define for each in-
put signal a finite set of sequential behavior scenarios in or-
der to represent the system’s temporal behavior in a finite
alphabet. This way one can handle input signals like stan-
dard variables when creating the MCA. Incompatibilities
between the individual alphabets could pose problems when
using the MCA generation tool though. That is, some sim-
ulations could be impossible as outlined in the introduction,
which could either be a problem in the tool (if this is checked
- see our later discussion of constraints), or if unchecked
would result in a degraded combinatorial strength since the
derived strength considered the entire set of simulations and
not only the viable ones that we can indeed conduct. As
an alternative solution, we thus suggested to define com-
plete input scenarios (with a corresponding alphabet). This

is certainly not an easy task by itself, and especially so, if
we would like an approach to it to follow the local variable
coverage idea behind the combinatorial exploration concept.

Let us start by defining a model that would enable us to
automatically construct such an alphabet.
Definition 7. Let I be a set of input signals, P be a set of
system parameters, and O be a set of output signals. Each
signal i ∈ I and o ∈ O, as well as each p ∈ P has its
own finite alphabetAi,Ao, orAp respectively. An I/O model
of a system is a tuple Φ = (Σ, Q, q0, ρ) such that Σ is a
finite alphabet defined as the cross-product of the individual
alphabets for all i ∈ I , o ∈ O, and p ∈ P , Q is a finite set
of states, q0 ∈ Q is the initial state, and ρ : Q×Σ→ Q is a
deterministic transition function that gives us the next state
when reading some letter σ ∈ Σ in some state qi ∈ Q.

It is obvious that our definition follows the concept of
finite state machines (automata / symbolic transition sys-
tems), but we do not define any acceptance condition (finite
or infinite). Viable transitions are defined by a function re-
turning a single state, so that there is no non-determinism
or alternation (the latter would allow to proceed to multiple
states simultaneously). Since we do not require an infinite
acceptance condition (we could assume a finite acceptance
condition and that all states are accepting), simple subset-
construction would allow us to translate any alternating def-
inition to a deterministic one as of Def. 8 though, so that we
can take advantage of the simpler deterministic definition
without loosing generality.

In principle, this model implements a designers’ temporal
(sequential) reasoning about the system’s interfaces, where
we often use such models for a digital circuit’s sequential
behavior. Abstraction, as described before, allows us to use
this concept also for the more general systems as allowed
by Def. 1. In our simulation configurations, i.e., the test
cases as of Def. 1, we do not consider any outputs. In or-
der to obtain the system’s input language (see Def. 9), we
could thus ignore the values for all outputs in O for the I/O
model’s language as defined by the model’s set of finite or
infinite sequences. In terms of our model, simply removing
these parts of σ ∈ Σ for the "edge labels" could however re-
sult in non-determinism in the transitions. That is, the labels
of two outgoing edges for some state q might differ only in
the output signals. Technically, subset construction could be
used to obtain a deterministic transition function automati-
cally. From a system designer’s perspective, we’d like to
note though that this would describe a situation such that the
system output would be determined non-deterministically—
which might not have been the designer’s intent.

Whether we construct the following input model defining
a system’s input language directly, or derive it from Φ might
be different for each project. Nevertheless, we have that the
two are obviously connected and that the necessary infor-
mation to come up with it should be available in a design
process. That is, the system interface has to be defined for
a description how to use it (the input part at the least), and
when developers decide which components should interact
which way in order to implement the desired functionality,
also the component interface data should be available.
Definition 8. Let I be a set of input signals, and P be
a set of system parameters. Each input signal i ∈ I , as
well as each p ∈ P has its own finite alphabet Ai or
Ap respectively. An input model of a system is a tuple
ΦI = (ΣI , QI , q0, ρI) such that ΣI is a finite alphabet de-

Figure 1: An input model with two SCCs for Boolean sig-
nals {a, b, c, d, f}, where ā denotes "not a", and edge label
a means that we take this if a is true for σ ∈ ΣI .

fined as the cross-product of the individual alphabets for all
i ∈ I and p ∈ P , QI is a finite set of states, q0 ∈ QI is
the initial state, and ρI : QI × ΣI → QI is a deterministic
transition function that gives us the next state when reading
some letter σ ∈ ΣI in some state qi ∈ QI .

Definition 9. A system’s finite or infinite input language is
the set of possible finite or infinite sequences of letters σ ∈
ΣI , such that starting from the initial node q0 there is always
a transition from the current node q ∈ QI to another node
q′ ∈ QI defined by ρI for the current letter (the ith one) in
the sequence, when considering the sequence letter by letter.

An input model as of Def. 8 consists of the input se-
quences allowed by a system. Interpreting it as an automa-
ton with a finite acceptance condition such that the set of
final states is equal to QI , we can formally derive a corre-
sponding finite input language as of Def. 9. Such language
data can be of advantage when creating the MCA, since we
then could avoid constructing impossible simulation config-
urations without sacrificing the internal reasoning regarding
the combinatorial exploration (see also Section 4).

When we consider an input model’s properties in detail,
there arise several further questions of interest. For in-
stance whether we could exploit the input model’s structure
in the MCA generation. That is, not only the language it-
self, but also the model’s structure. So, if we discover an
input model’s strongly connected components (SCCs, see
Def. 10), we basically can determine language fragments
that in their possible sequences define the input language.
This might unveil that several variable combinations can be
achieved only in certain SCCs and might thus be incompat-
ible with others. Considering reachability in terms of these
SCCs would then allow us to identify necessary chronology
(like when we have to go through SCC A when aiming for
a specific combination present only in SCC B), or mutual
exclusiveness (when we cannot visit SCCs D and F in the
same simulation). Obviously, all these data could help in
the process of creating the MCA.

Definition 10. Let ΦI be an input model as of Def. 8. A
strongly connected component in ΦI is a maximal set of
states Q′ ⊆ Qi such that for any two qi, qj ∈ Q′ there is a
(possibly empty) sequence of individual letters σ ∈ ΣI such
that we can reach qj from qi via ρI and this input sequence.

4 Covering the Input Behavior
Instantiating the signals for each time step and thus estab-
lishing individual variables certainly allows us to use an
MCA for covering temporal behavior. As we surmised in
the last section, we should however also think about variable
value incompatibilities implementing, for instance, physical
impossibilities. Luckily enough, MCA tools like ACTS [29]
allow us to specify constraints that the individual combina-
tions must adhere to. Thus, in principle, we can indeed ac-
commodate such reasoning by feeding corresponding con-
straints derived from our input model to the tool. In prin-
ciple we would have to unroll the input model ΦI for the
desired simulation length and encode it in constraints. Con-
straint support is limited to selected algorithms though, like
to IPOG and IPOG-F for ACTS version 2.92. While, e.g.,
IPOG [27] uses internally a combination enumeration in
its greedy strategy—where we can then restrict also these
enumerations—for algorithms like IPOG-D [27] it is less
clear how to effectively implement such a reasoning step.
Simply creating solutions to be tested and possibly dis-
carded afterwards is not ideal, since we’re likely to have a
lot of constraints and discarding a solution might affect the
currently achieved strength also for other variable subsets.

The temporal unrolling principle is similar to how we
would unroll a formal property when creating a satisfiabil-
ity encoding for a test oracle as outlined in [30], or that for
bounded model-checking proposed in [31]. It is important
to note though, that we have to prevent sequences that do
not strictly follow ρ. This means that we have to prohibit
transitions from any state qi with some letter σ ∈ ΣI , for
which qi has no outgoing transition specified. A relaxed
encoding would only encode constraints implementing for-
ward reasoning, that is, expressing that if we are in state
qi and read letter σ we move to state qj . This can how-
ever result in the encoding allowing also other transitions
simultaneously, like it is possible in an alternating transition
relation. In some applications this might help, like when
we could reduce the length of counterexamples for our ex-
periments with symbolic implementations of alternating au-
tomata in [32]. In our case it would be counterproductive
though. In order to address this, it suffices to state that we
proceed to qj only, since we require ρ to be deterministic.
How to encode this exactly will depend on the actual encod-
ing, but it is apparent that we would require some ”current
state information” for each time step. This could mean to
use an additional variable per time step with the domain of
QI . Strictness would be ensured, since then the presence in
states q ∈ QI would be mutually exclusive by default. For
an alternating transition relation/function, and/or individual
state variables, this would be more complicated.

In a more direct approach that takes the input model
as further input, we could avoid state variables for QI in
the MCA. As suggested in the last section, we could then
also exploit the various SCCs’ language fragments (and
thus the structure of ΦI ’s input language) when identifying
new combinations in the combinatorial exploration. This
requires the development of a new MCA engine though.
While we are indeed currently investigating options to do
this in the context of algorithms like IPOG, such a solution
is currently not available (nor is some internal prototype).
Such a dedicated solution would have also other advantages
over an off-the-shelf MCA solution, like that we would not
need to formally translate ΦI to a constraint representation.

In respect of advantages, let us briefly consider the scope
of the local exhaustiveness concept. When considering tem-
poral behavior, in general we have that variable values might
interact with each other independent from the time when
they are assigned. Of course they can also be completely in-
dependent from each other. Some of the information about
such interactions is contained in the I/O model (edge-labels,
SCC strucure, etc.). While we already might lose some in-
formation about this in ΦI (vs. Φ), the individual SCCs like
in Figure 1, for instance, still tell us that the variables la-
beling its edges do interact. Please note that the edge label
format chosen for Fig. 1 is not only more succinct (possi-
bly exponentially) than creating an individual edge for each
single letter, but it also shows us the important variables for
the individual transitions. That is, all variables not in the
edge label are ignored for this transition (can be assigned
any value). Such "free" variables for a transition certainly
offer a lot of potential for overlaying other variable interac-
tions, but it is questionable what information is gained then.
That is, they are meaningless for this transition, and might
be meaningless also in terms of the system at this point in
time or the whole execution. If we consider, e.g., some edge
labeled ā and combine it with the combination dc, for s = 2
the MCA generation algorithm would consider dc to be cov-
ered and would not require it to reappear again. The prob-
lem is however that taking an edge labeled dc might reveal
more problems, as could some sequence where we assign d
at one time step and c at another one (but they do interact).
This simple example shows us several things:

• While the input model highlights some variable inter-
actions that we should check, some are not visible (e.g.
data dependencies). Still, we should take any available
data into consideration when generating the MCA, ide-
ally via an interface for optional input data.

• The temporal scope of the MCA algorithm’s consider-
ations might not always be the one we aim at. Some-
times we might prefer interactions between SCCs,
sometimes within an SCC (but at different time steps),
sometimes at a specific time step. In practice, a com-
bination might be called for, where different strengths
might suffice and would allow us to restrict the search.

From a more formal perspective, the MCA will feature
|I| ∗ |TIME| columns, one for each input signal i for time
step t ∈ TIME. A combinatorial approach with strength 2
will not only try to cover each variable value combination
for each time step and variable subset of size 2, but will try
to do so also for variable subsets such that the individual
variables belong to different time steps. If we assume that
all variables have the same domain withm (abstract) values,
the simulations would have to cover

(|I|∗|TIME|
s

)
∗ ms indi-

vidual combinations for the various variable subsets (if they
are allowed by the input model). For |I| = 20 input signals
with m = 10, a sampling rate of 1 kHz and te = 1 s, this
would mean about 8.88 ∗ 1028 combinations, to be heavily
filtered by the constraints as defined by the input model.

Let us now think about focusing the combinatorial ex-
ploration on a single time step. Instead of covering all
m|I| = |ΣI | = 1020 letters in the input alphabet, this
would mean to cover

(|I|
s

)
∗ms partial assignments, where

this number is 1.14 ∗ 106 for a combinatorial strength of 3
and the example of above. If |I|/s ≥ 2.0, we can indeed
overlay also some of these partial combinations in a single

simulation, and we would like to note that again we have
that the input model might allow to decrease this number
significantly. If we would like to have all possible partial
letters simulated for each time step, then some upper bound
we can derive is the product of the given number and the
number of time steps, if we would naively create one simu-
lation for a single partial assignment and time step ignoring
the optimization potential (which would depend on the input
language to some extent).

So far, we have been assuming that we would know how
long a simulation should be. A simple lower bound for this
length could be determined via the following definition of
minLen(Σ) and could help to avoid unfortunate guesses.

Definition 11. Let ΦI be an input model as of Def. 8 and
let L(ΦI) be its input language as of Def. 9. The minimal
length of a simulation that is able to produce some letter σ ∈
ΣI , coined minLen(σ), is the length of the shortest sequence
of letters in L(Φ) s.t. its last letter is σ. The minimal length
of a simulation to possibly produce any σ ∈ ΣI , coined
minLen(ΣI) is the maximum of minLen(σ) over ΣI .

A more complex variant of this definition might not fo-
cus on letters, but variable assignments within letters. Other
procedures to compute the minimal length (which is directly
related to the breadth of the MCA) could consider SCC in-
teractions and other aspects. Please note that it is important
to compute such a minimal length, since when guessing it,
the constraints from the input model might just prohibit the
MCA algorithm from creating a variable combination (if the
value combination is impossible to achieve within the limits,
i.e., in the reachable part of the input model). In particular,
we would not get the feedback that it would be possible to
have this combination when considering longer sequences.

Since in practice the available resources are limited, it
might not always be necessary, and in our interest, to create
simulations of the same length. For single simulations, we
might require only some shorter versions in order to achieve
the same desired strengths. If we focused on covering vari-
able assignments not individually for each time step, a post
processing step could optimize the simulations as suggested
by the MCA to some degree by shortening them taking this
into account. Obviously, this is another reason why a dedi-
cated MCA generation algorithm, or a combinatorial explo-
ration algorithm tailored for our cause could be quite attrac-
tive, i.e., when we accommodate options in its interface to
consider such aspects.

Summarizing, we can see that, in principle, we can indeed
apply a combinatorial exploration approach based on stan-
dard techniques to cover also the input space, based on an
input model as defined in Def. 8. We showed in our discus-
sions though, that a solution tailored towards our task could
offer various advantages in respect of performance and con-
trol over the search. We also showed that, while a combi-
natorial exploration is in principle an uneducated approach,
we can exploit structural data in order to optimize the result.
This concerns, for instance, the construction of single simu-
lation configurations where we could consider the reachabil-
ity and language fragments of an input model’s SCCs. Some
discussed optimizations could also improve the meaning of
overlaid variable interactions, when taking do-not-care sit-
uations and varying temporal scopes of the combinatorial
idea into account. As mentioned, this might include also the
use of varying strengths for different variable subsets (or in
the scope of different SCCs).

|ΣS | = 100
k = 3 k = 6

n = 20 n = 50 n = 20 n = 50
ts 1 ms 1 s 1 min 1 ms 1 s 1 min 1 ms 1 s 1 min 1 ms 1 s 1 min
tt 31.7 h 3.62 y 217 y 123 y 123 ∗ 103 y 7.37 ∗ 106 y 22.7 d 62.2 y 3.72 ∗ 103 y 5.04 ∗ 104 y 5.04 ∗ 107 y 3.02 ∗ 109 y

Table 1: The total runtime for the simulations as estimated by Def. 12 in hours (h) days (d) or years (y).

Especially the latter is of interest for our decision of
whether we would like to generate the input scenario alpha-
bet first and use the concept proposed in [9], or whether we
would prefer a single MCA algorithm invocation consider-
ing all variables (input, mode assignment, parameters) con-
currently. If we construct ΣS first, we can approximate the
time to run all simulations as follows:

Definition 12. Given a system with n components with m
modes each, a set ΣS of input scenarios, a maximum diag-
nosis cardinality k, and the average simulation time ts of
a single simulation, we can estimate the time tt to simulate
each input scenario for each fault scenario allowed by k
with the formula tt =

(
n
k

)
∗mk ∗ ts.

For the example from Section 2 with n = 20, m = 10,
and |ΣS | = 100, let us assume that we limit our exploration
to diagnoses (fault combinations) of up to size k = 3. Let
us also investigate n = 50 for a larger (but still small) sys-
tem, and k = 6 in order to match the comb. strength sug-
gested by Kuhn et al. . In Table 1 we can see tt for ts ∈
{1ms, 1s, 1min}. From these figures, it becomes clear that
we might be able to come up with the necessary resources
for some projects (31.7 hours for n = 20, k = 3, ts = 1
ms), but not for all (tt becomes 123 years even if just chang-
ing n to 50). Thus we might need to cover also the fault
space with an isolated combinatorial approach, or use a sin-
gle MCA algorithm invocation considering the whole vari-
able space. Of course this will affect the diagnostic accu-
racy of the resulting diagnostic model [9]. That we can con-
sider multiple strengths also with current tools like ACTS,
provides the necessary background to explore such options
and their compromises in respect of the resulting abductive
model’s efficiency and the resources needed to create it.

5 Related Work and Discussion
Most of the techniques we draw on have been available
for some time and have been used in other contexts. This
includes the input model in the form of some finite state
machine, like, e.g., used in model-checking [31]. Also
there, SCC analyses might be exploited in one or the other
way [33]. Combinatorial exploration [11; 12; 19] and algo-
rithms like IPOG and IPOG-D [27] for creating MCAs have
been proposed in the context of combinatorial testing. The
contributions of this paper thus do not lie in the basic tech-
niques themselves, but in the concept that draws on them for
creating an abductive diagnosis model.

To the best of our knowledge, there has not been much
work with such a focus (see [8; 9]). Nevertheless, and as
has been discussed, we can profit from a lot of research in
the context of combinatorial testing, which is a very active
research area. Aside technical improvements like new algo-
rithms or surveys [28], also recent investigations like [26]
are of interest, since they focus on establishing a connection
between traditional coverage methods like Modified Condi-
tion/Decision Coverage (MC/DC) and combinatorial (test-
ing) concepts. The consideration of such connections will

allow us to make more educated guesses about our compu-
tations’ efficiency, the parameters we have to consider, the
impact additional (secondary, structural) data might have, as
well as the efficiency of the resulting diagnostic model. So
far, the findings offered by related work support the validity
of our idea. Future research and experiments with various
implementation options as discussed in the paper, will have
to confirm practical viability though.

6 Conclusions

In this paper we proposed the basis for covering the in-
put signal behavior in the context of creating an abductive
diagnosis model via a workflow based on fault injection,
simulation, and combinatorial exploration that we initially
proposed in [9]. We proposed a corresponding model, dis-
cussed several arising issues specific to the coverage of tem-
poral input behavior, offered options for considering auxil-
iary data in order to improve the computation and the re-
sult, and showed that we can, in general, indeed use a model
to automatically derive the desired input scenario coverage
with available techniques and tools.

We also showed though that a dedicated solution could
offer significant advantages, and explored some correspond-
ing directions for future research. That is, in our discussions
we unveiled potential options to flexibly consider also sec-
ondary data (if available), allowing us to offer options for a
flexible fine-tuning of the result and its computation.

In the context of our earlier work, the research in progress
as described in this paper provides ample room for future
work. That is, we will explore implementations of the pro-
posed concepts, and corresponding experiments shall inves-
tigate the effects of all the individual parameters. While our
discussions offer a variety of future research directions, they
also showed that the needed efforts might be well spent due
to the potentially achievable results that could certainly help
with the adoption of diagnostic reasoning in practice.

Acknowledgments

Parts of this work were created in the ENABLE-S3 project
that has been receiving funding from the ECSEL Joint Un-
dertaking under grant agreement No 692455. This joint
undertaking receives support from the European Union’s
HORIZON 2020 research and innovation program and
Austria, Denmark, Germany, Finland, Czech Republic,
Italy, Spain, Portugal, Poland, Ireland, Belgium, France,
Netherlands, United Kingdom, Slovakia, and Norway.
ENABLE-S3 is funded by the Aus-
trian Federal Ministry of Trans-
port, Innovation and Technology
(BMVIT) under the program “ICT of the Future” between
May 2016 and April 2019. More information is available at
https://iktderzukunft.at/en/.

https://iktderzukunft.at/en/

References
[1] R. Davis. Diagnostic reasoning based on structure and

behavior. Artificial Intelligence, 24:347–410, 1984.
[2] R. Reiter. A theory of diagnosis from first principles.

Artificial Intelligence, 32(1):57–95, 1987.
[3] J. de Kleer and B. C. Williams. Diagnosing multiple

faults. Artificial Intelligence, 32(1):97–130, 1987.
[4] J. A. Jones, M. J. Harrold, and J. Stasko. Visual-

ization of test information to assist fault localization.
In International Conference on Software Engineering
(ICSE’02), pages 467–477, 2002.

[5] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund.
Spectrum-based multiple fault localization. In 2009
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 88–99, Nov 2009.

[6] B. Hofer and F. Wotawa. Spectrum enhanced dynamic
slicing for better fault localization. In European Con-
ference on Artificial Intelligence (ECAI’12), volume
242 of ECAI, pages 420–425, 2012.

[7] M. Weiser. Programmers use slices when debugging.
Comm. of the ACM, 25(7):446–452, July 1982.

[8] B. Peischl, I. Pill, and F. Wotawa. Abductive diag-
nosis based on Modelica models. In 27th Int. Work-
shop on Principles of Diagnosis (DX), 2016. http:
//dx-16.org/papers/DX-2016_5.pdf.

[9] I. Pill and F. Wotawa. Model-based diagnosis meets
combinatorial testing for generating an abductive di-
agnosis model. In 28th International Workshop on
Principles of Diagnosis (DX’17), volume 4 of Kalpa
Publications in Computing, pages 248–263, 2018.

[10] P. G. Hawkins and D. J. Woollons. Failure modes and
effects analysis of complex engineering systems using
functional models. Artificial Intelligence in Engineer-
ing, 12:375–397, 1998.

[11] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: An approach to testing
based on combinatorial design. IEEE Trans. Softw.
Eng., 23(7):437–444, July 1997.

[12] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei.
Sp 800-142. Practical combinatorial testing.
Technical report, 2010. available via http://
nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-142.pdf.

[13] M. Sachenbacher and P. Struss. Automated qualitative
domain abstraction. In International Joint Conference
on Artificial Intelligence, pages 382–387, 2003.

[14] Timothy Budd, R. DeMillo, R. Lipton, and F. Say-
ward. Theoretical and empirical studies on using pro-
gram mutation to test the functional correctness of pro-
grams. In Proc. Seventh ACM Symp. on Princ. of Prog.
Lang. (POPL). ACM, January 1980.

[15] J. Voas and G. McGraw. Software fault injection: in-
oculating programs against errors. Software Testing,
Verification and Reliability, 9(1):75–76, 1999.

[16] I. Pill, I. Rubil, F. Wotawa, and M. Nica. SIMUL-
TATE: A toolset for fault injection and mutation test-
ing of simulink models. In IEEE International Confer-
ence on Software Testing, Verification and Validation
(ICST) Workshops, pages 168–173, 2016.

[17] K. Lunde. Object oriented modeling in model based
diagnosis. In Modelica Workshop 2000 Proceedings,
pages 111–118, 2000.

[18] G. Friedrich, G. Gottlob, and W. Nejdl. Hypothesis
classification, abductive diagnosis and therapy. In First
International Workshop on Principles of Diagnosis,
1990. Also appeared in Proc. of the Int. Workshop on
Expert Systems in Engineering, LNAI Vol.462, 1990.

[19] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. In-
troduction to Combinatorial Testing. Chapman &
Hall/CRC, 1st edition, 2013.

[20] Th. Eiter and G. Gottlob. The complexity of logic-
based abduction. Journal of the ACM, 42(1):3–42, Jan-
uary 1995.

[21] Johan de Kleer. An assumption-based TMS. Artificial
Intelligence, 28:127–162, 1986.

[22] Johan de Kleer. A general labeling algorithm for
assumption-based truth maintenance. In Proceedings
AAAI, pages 188–192, 1988.

[23] Franz Wotawa. Failure mode and effect analysis for
abductive diagnosis. In Proc. Intl. Workshop on De-
feasible and Ampliative Reasoning (DARe-14), 2014.

[24] F. Wotawa. Testing self-adaptive systems using fault
injection and combinatorial testing. In IEEE Int. Conf.
on Software Quality, Reliability and Security Compan-
ion (QRS-C), pages 305–310, 2016.

[25] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter. Combina-
torial software testing. Computer, 42(8):94–96, 2009.

[26] D. Li, L. Hu, R. Gao, W. E. Wong, D. R. Kuhn, and
R. N. Kacker. Improving MC/DC and fault detec-
tion strength using combinatorial testing. In IEEE
Int. Conf. on Software Quality, Reliability and Secu-
rity Companion (QRS-C), pages 297–303, 2017.

[27] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and
J. Lawrence. IPOG-IPOG-D: Efficient test generation
for multi-way combinatorial testing. Software Testing,
Verification, & Reliability, 18(3):125–148, 2008.

[28] Victor Kuliamin and Alexander Petukhov. Covering
arrays generation methods survey. In Leveraging Ap-
plications of Formal Methods, Verification, and Vali-
dation, pages 382–396, 2010.

[29] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn. ACTS: A
combinatorial test generation tool. In 2013 IEEE Sixth
International Conference on Software Testing, Verifi-
cation and Validation, pages 370–375, March 2013.

[30] I. Pill and F. Wotawa. Automated generation of (F)LTL
oracles for testing and debugging. Journal of Systems
and Software, 139:124 – 141, 2018.

[31] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. In Tools and Alg. for
the Construction and Analysis of Systems, pages 193–
207, 1999.

[32] R. Bloem, A. Cimatti, I. Pill, and M. Roveri. Sym-
bolic implementation of alternating automata. Int. J. of
Foundations of Comp. Science, 18(04):727–743, 2007.

[33] Orna Kupferman and Moshe Y. Vardi. Weak alternat-
ing automata are not that weak. ACM Trans. Comput.
Logic, 2(3):408–429, July 2001.

http://dx-16.org/papers/DX-2016_5.pdf
http://dx-16.org/papers/DX-2016_5.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf

	Introduction
	The Problem and Preliminaries
	Modeling the Input Signal Scenarios
	Covering the Input Behavior
	Related Work and Discussion
	Conclusions

