Updating Views Over Recursive XML

Ming Jiang, Ling Wang, Murali Mani, and Elke Rundensteiner

Worcester Polytechnic Institute, 100 Institute Road, \Weter MA 01609, USA
{jiangmllingw|mmanijrundens}@cs.wpi.edu

Abstract. We study the problem of updating XML views defined over XML
documents. A view update is performed by finding tese updatesver the
underlying data sources that achieve the desired view eptiatich base updates
do not exist, the view update is said to etranslatableand rejected. In SQL,
determining whether a view update is translatable is peréor usingschema
level analysiswhere the view definition and the base schema are used. XML
schemas are more complex than SQL schemas, and can specifgive types
and cardinality constraints. In this paper, we propose atisol based on schema
level analysis for determining whether an update over XMtwis is translatable
and for finding the translation if one exists, while considgrthe features of
XML schemas.

1 Introduction . .
In databases systems, a user sees a portion of the base liedaacaiew. Therefore

he/she may need to update base data through these viewsupates). Especially

in shared databases, it is essential to provide the capac#ypport view updates. In
the relational scenario, there have been many studies enndieing whether a view
update igranslatable[5]. A common semantics used for determining whether a view
update is translatable 8de-effect free semantids this semantics, a view update is
said to be translatable if there exists base updates thiavacthe desired view update
without affecting any other portion of the view. Currentatdnal/SQL systems use
schema level analysfser determining whether a view update is translatable, wiiee
view definition and the base schemas are used.

Nowadays, as XML is becoming the standard format for dathanxge, database
community is exploring its ability to store data. In factewi updates become more
common as many XML databases are available on the intenmeta éarge number of
users have access to such databases. In this paper, we stutty perform XML view
updates over XML data sources, using schema level anallsis.problem is much
harder than for relational schemas because of the compéenrés in XML schema,
such as recursive types and cardinality constraints.

Let us consider an example XML document with its schema asgar€ 1. Note
the base schema elememnturse is recursive, as a course may have a child element
pre, which stands for pre-requisite for thisurse, andpre in turn can haveourse
elements as its children. Similarly, the base elemeais also recursive. Now consider
two queries oveD, as shown in Figure 2 and Figure 3.

In Figure 2, (a) is the XQuery statement which defines the v{gyis the view
schema tree that corresponds to the XQuery. (c) is the vistanice tree generated by
the XQuery and XML documer. The same goes with Figure .

! The subscripts, b, ¢ in Figure 1 andL,2,3 in Figure 2(c) and Figure 3(c) are for illustration
purpose only. They do not appear in the actual documentsarsvi

<IDocType root]

[<course,> <result>
<IElement root(institute*)> @
<IElement institute (name, department+)> <name> Database </name> { result
<IElement department (name, professor+, <prea>
course+)> <coursev> FOR Scourse IN Document(base.xm) fcourse, Egcﬁuﬁul?;!ixm\ s
<IElement professor(name, student*)> <name> !
<IElement student(name)> Algorith RETURN <course> course
<IElement course(name, pre?)> gorithm Scousel
<IElement pre(course+)> </name> { Scourselname }
<IElement name(#PCDATA)>]> <preb> <Jeourse> (a) (b) courselname
<root> . <coursec> It
<institute> <name> } (C) resul
<name> WP| </name>
<department> Data Structure <Jresult>
<name> CS</name> </name>
<pr0fessor>H . <Jcourse> coursg ~ colrsg CO‘ 15§
<name> Henry </name>
<student,> Y <lpre> (a) view query ‘ ‘
2 name name
<name,>John </name> <lcourse> (b) view schema tree ST, name
</student> <lpre> View
<student,> <[course> (¢) view instance tree
<name,> Joe </name> </department> Databas Algorithm Data Structur
</student> <finstitute>
<Iprofessor> </root>

Fig. 1. XML documentD with Schema(D)

Fig. 2. Query@; and correspond-
ing view

<result> { <IDocType roof]
C " result <IElement root(institute)>
FOR $pre IN Document(‘base.xmr") ffpre FOR $pre IN <IElement institute (name, department)>
RETURN * o pre " Vi <IElement department (name, professor,
<pre> | ocument(*base.xml") //pre course+)> <esult>
pre <IElement professor(name, student*)>
FOR $course IN $preflcourse | o scourse IN <IElement student(name)> { FOR $prof IN_ Document
RETURN $pre /lcourse <IElement course(name, pre?)> (“base.xml’) /fprofessor,
<IElement pre(course+)>
<course> course <IElement name(#PCDATA)]> $student IN Document
{$course/name } @ (b)courSe/name (a) base schema (‘base.xml’)student
<[course> result RETURN <prof-student>
}<lpre> © result « { $profiname,
} <Iresult> € re profstudent $studentiname }
<Iprof-student> }
coTrsg coursg coursg
(8 view query name name n‘me s>
(b) view schema tree ST,y,,, 1 T $profiname $studentiname (c) query statement Q
(c) view instance tree Algorithm Data Structur Data Structur

Fig. 3. Query@, and corresponding view

(b) view schema tree ST,

Fig. 4. QueryQs

A user may want to delet@urse; in Figure 2(c). If we deleteourse, in D, this
update would causeourses, courses and their descendants to be removed in Fig-
ure 2(c). This is a side-effect and therefore it is not a airb@nslation. Now let us
consider Figure 3(c) and try to deleteurses. We can achieve this by deleting the base
elementourse. which has thewame child. However, doing so will also deleteurses
in the view and therefore it is also not a correct translation

Intuitively, recursive base schemas and queries causétvearoblems. However,
are the above two scenarios the only cases that recursiohavayside-effects? If not,
how can we effectively check out all such side-effects? Hhablem has not been
studied, to the best of our knowledge.

There are also other XML features that need to be consideredNIL view up-
date problems, such as cardinality constraints in the basensa. Will these features
make the problem different from the relational scenariotlisdake a look at the query
in Figure 4(c). It indicates that eaghofessor element in the base will join with ev-
ery student element. Therefore eaghofessor andstudent may be used more than
once and we cannot deleieo f-student view element. However, let us reconsider this
query, given the base schema as shown in Figure 4(a). ltatetichat there is only one
professor in the base. We now know that eagtudent will be used only once and we
can delete a certaimrof-student by deleting the correspondingudent in the base
XML document. From this example, we can observe that utifiziardinality informa-

tion provided in the base schema may give a better translfdidhe view update. How
to fully handle cardinality is also discussed in this paper.

Our main technical contributions include: we study howtieas in XML schemas,
such as recursive types and cardinality constraints, ibthacXML view update prob-
lem. We propose an algorithm for determining whether a vipdate over XML data
sources is translatable and for finding the translationéf@xists, based on schema level
analysis. Our algorithm is sound (a translation returneduayalgorithm is guaranteed
to not cause side-effects) and complete (a translationdsagtieed to be returned by our
algorithm if there exists one). We believe these results tgng way towards under-
standing the XML view update problem and provide the capaoiefficiently update
XML views.

Outline. The rest of the paper is organized as follows. Section 2 defifev update
translatability and then defines the scope of the problemomsider. Section 3 intro-
duces notations and background. Section 4 discusses haantieehunique features in
XML schemas when solving the view update problem over XMLadsturces. Sec-
tion 5 proposes our three-step checking algorithm and @e6tgives a conclusion and
discusses the future work.

2 Related Work

There are many studies on view updates in relational sagrsarch as [6,5,9,4]. [6]
introduces the concept of a complementary view. The auirgrge that when changing
the data in the base corresponding to the updates on thethiewest of the database
that is not in the view should remain unchanged. This sahutiemds to be too strict,
as many view updates are not translatable by this theorf]|riHe authors argue that
we can perform a view update by deleting base tuples thatibate to the existence
of this view element. Also such base tuples are requiredmnodmtribute to other view
elements to avoid side-effects. Similarly, in [9], Kelleoposes an algorithm to check
whether 1-1 mapping exists between a set of base tuples aidésew tuples. This
mapping indicates that a certain view element can be deletbdut side-effects.

While [6,5, 9] study the view update problem on the schemel)ekere are other
works such as [4] that study the problem on the instance.l@&harefore in [4], more
updates can be performed without side-effects. Howeveause of the large size of
the database, such data-centric algorithms tend to be inoeeconsuming.

In order to utilize the maturity of relational database td@ghes and also adapt to
the current required web applications, people tend to BXNL views over relational
databases, such as [12,13]. There are some research thaterofML views as com-
positions of flat relational views, such as [7], for the pupaf querying relational
databases. Some other work further study the updatabfliML views over rela-
tional databases. In [15], the authors discuss how to chidekedfects for updating
XML view elements over a relational database. In [3] the argluse the nested rela-
tional algebra as the formalism for an XML view of a relatibdatabase to study the
problem of when such views are updatable. However, givenldh ¥ew over XML
data, how to check the updatability of the view elements amthér give the correct,
efficient translation of this view update remains unsolved.

Language for updating XML documents is being studied by [[] discusses
updates in XML scenarios. [14] presents some interestindgplpms in XML view
updates. [10] considers virtual updatable views for a gleerguage addressing native

XML databases, including information about intents of updédnto view definitions.
[11] studies type checking in XML view updates.

3 View Update Translatability and Problem Scope
3.1 View Update Translatability Definition
A view update operationcan be a delete, an insert or a replacement. The corresgpndin
update on the XML base is said to be the translation of the vietlate.
Definition 1. Let D be an XML document and V a view definedbyF" over D. An
XML document update sequenté® is a correct translation of a view update" if
uV(DEFV(D))=DEFV (UR(D)).

This definition is depicted in Figure 5. The update is corikttte diagram in Fig-
ure 5 commutes.

y—@u vy
(D @
DEFY DEFY
D—— URD
BED (D)

Fig. 5. Rectangle rule

3.2 Problem Scope

Update Operations ConsideredAs we introduced above, a view update operation can
be a delete, an insert or a replacement. Deletions are tiypicansidered to be different
from insertions. For instance, consider an SQL view defirseal jain betweenrtudent
table ancrofessor table, where atudent row joins with at most ongro f essor row.
The SQL standard [8] supports deleting a row in this view bietileg a corresponding
student row, whereas inserts are rejected as they might need tot iméerstudent
table, orprofessor table or even both, which is more complex and hard to decide. A
the first work considering view updates over XML data souraegsconsider only dele-
tions and inserts are out of our scope. Further, we studyesirigw element deletion,
as opposed to deleting a set of view elements. In additiordawsot use a view update
language. As we focus on updates of a single view element,thewiew element is
specified (by the view update language) is not significant.

Base Schema LanguagélNe use DTD (Document Type Definition) as schema lan-
guage to describe the underlying databases. DTD is a vemessige and complex
language. The two most significant features in DTD that wesittar are recursion and
cardinality. The cardinality information is obtained frdime content model in DTD,
which uses ™", "+","?" " " or " |". We will not consider other features in XML schema
languages, for doing so will make the algorithm extremelypticated and hard to un-
derstand. More specifically, we will not consider ID/IDRE&nstraints in DTD, and
sub-typing and key/foreign key constraints in XML schema.

View Definition Language We will use a subset of XQuery as the view definition
language described as follows:

1. The XQuery we consider could have FOR, WHERE and RETURNseésa and
dirElemConstructor [1] in the statement.

2. In each FOR clause, there can be multiple variable binstisigments.

3. In an XPath expression, multiple "//” andl 'tan exist. Further, a node test [1] can
be specified as a wildcard.

4. RETURN can contain nested XQuery statements.

Even though we consider WHERE clause, the predicates sgeeaifithe WHERE
clause are not used to determine whether a view update &Eatahle. Though consid-
ering such predicates might result in more view updatesgogamslatable, it can be
handled similarly as in relational scenario and we want tu$oon the unique XML
features. Also, the LET clause is not considered as an XQiumatyuses LET can be
rewritten into one without the LET clause. Similar to SQLwans, we do not con-
sider aggregation, user-defined functions and Orderbyeku

Restrictions on Translations Considered There are various strategies for translat-
ing view updates. For those base XML elements corresponditiige view element
to be deleted, we can set its value to null, or delete it bupkeedescendants, etc.
However, we consider only the translations where we deletXML view element
by deleting the corresponding base elements and also tlkermtants. This keeps the
problem tractable, and is similar to existing solutions @L%elational scenarios. Now
the problem we study can be described as:

Problem Statement:Let Schema(D) be an XML schema an@ a view query over
Schema(D). Given a view schema node n € @, does there exist a translation for
deleting a view element whose view schema nodetlsat is correct for every instance
of Schema(D)?

Note that we study the problem with schema level analysigwtitilizes the view
definition and the schema of the base XML data sources. Irr etbeds, we do not
examine the base data to determine whether there existaigatian. Such schema
level analysis is similar to the approach in relational sec&rs [5, 9]; data level analysis
for the view update problem has been studied in [4].

4 Notations
In this section we first introduce some concepts and notatidnich are the founda-
tion of later discussions. A summary of them can be found inld4 2. Let D be an
XML document(base XML data sources) with scheftdema(D). Schema(D) can
be represented as a tree called the base schema tree, desStEgl,s.. The STpse
of the XML Document in Figure 1 is shown in Figure’6

The XML view is defined as a quei§ over Schema(D). The corresponding in-
stance is denoted d8.) specifies a view schema tree, denotedbd¥;,,, such as
Figure 2(b), Figure 3(b) and Figure 4(b).

ve; IS a view element itV that is to be deleted. The node$f .., corresponding
to ve; is called the view schema nodewf;, denoted a$ Ny .., (ve;). Let us consider
the view elementourse; in Figure 2(c),S Ny e (coursey) is the nodecourse in
Figure 2(b).

2 SNview Stands for View Schema Node as@y ;.., stands for View Schema TrefNpase
andSTgaqse are analogously defined for the base XML document.

% Note there is some information not captured$¥s... such as order of elements. We only
capture those information that will be utilized by our aifam, such as cardinality constraints
and recursive types.

Semantic Meaninig Semantic Meaning
Notations Notations
D XML data sources Q XQuery Statement defining
the view
Schema(D) XML schema ofD \Y view instance defined b@

STaase | SChema tree of XML data ST, |Schema tree d®
sources

SN;uee | @node irST;,, SNjew | @ node irST,,
bg a base element in ve a view element itV

source(vg | a base element that sources(vg| All base elements that
contribute to the existenge contribute to the existence df
of vg ve

Source(vg | a SNy, that contributes | Sources(vg all the SN, .that contribute
to the existence ofgin V to the existence ofg

des(source) The set of base elements Des(Source)The set of schema nodes th
that are the descendants of are the descendants®durce
sourceandsourceitself andSourceitself

Table 1.concepts and notations summary

Let us examine the view elemetiturse; in Figure 3(c) again. It exists in the view
only when the following two conditions are both satisfied:

1. In the base XML document, there exists gne element, demonstrated ase,,,
and onecourse element, denoted asursey,.
2. Thecourse, element is a descendant of the:, element.

coursey in Figure 3(c) exists becausepafe, andcourse;, in base XML Document.
Deleting any one of these base elements will lead to deletingse;. Therefore, these
base elements are considered as candidates for deletinge,. Let us now define
those candidates

Given aS Ny e (ve;) In STy ey, €VEry XPath expression that appears on the path
from the root till S Ny ;e (ve;) In STy e, COrresponds to a base schema node, which
is called aSource and denoted aSource(ve;). The name indicates that it is a way to
delete the view element. The set of all such XPath expres&atenoted aSources(ve;).

For example, in Figure 7(c), let us consider the view elememnte;. According
to Figure 7(b), There are four path expressions fromrihwe till name;, which are
Document(”base.xml”)//department, $dept//professor, $prof/student,
$student/name. Therefore Sources(name;) = {department, professor, student,
NAMEstudent }-

For eachSource(ve;), there exists a set of base elemehtSource(ve;)) in D
corresponding to it. I (Source(ve;)), there exists one base element contributing to
the existence ofe; and we call this &ource, denoted asource(ve;). For example, in
Figure 7(c)sources(namey) is {department, professor, student,, nameg}.

Note while we can delete a source to delete its correspondavg element, it is
possible that some other view elements got unexpectedigtafl because of this up-
date, which are normally called side-effects. There arekinds of side-effects. The
first kind of side-effects is a descendantsefurce(ve;) is a source of another view
element. For example, we may want to deleterse, in Figure 1 to deleteourse;

4 In fact, deleting an ancestor of any of these base elementbeaonsidered as a candidate
for deletingcourse; also. Doing this, however, will delete some base elemenrtsate not
required to get updated. Further this does not affect ta¢asility. Therefore, we do notinclude
them in our candidates.

<result> result

root FOR $dept IN N
Document(“base.xml”)//department,
. - $prof IN $dept/professor protessor
institute RETURN <professor> Sprof lna@ .
Ny $profiname, stydent
FOR $student IN $prof/student(b)
name department RETURN <student> $student/nan
+ $student/name result
st </student> (a) T
professor * </professor> © professor
name R courderl <Iresult> %
student . Henry styflent studeng
name (a) view query ‘
name (b) view schema tree ST, name nlmg
name gent (c) view instance tree Johr 3¢
Fig. 6.base schema dp Fig. 7. Query Q4 and correspond-
INng view

in Figure 3(c), asourse, is a source otourse;. However,coursep, which is a de-
scendant otourse,, is the source ofourse, in Figure 2(c). Therefore, such update
will cause side-effects over view elemetiturses,as one of its sources get deleted.
The second kind isource(ve;) is also a source of another view element. For example,
coursey in Figure 1 is the source eburses in Figure 3(c). However, it is also a source
of courses. If we want to delete:ourse;, to deletecourses, there will be side-effects
overcourses, as one of its sources get deleted.

Our goal is to find, given a view element;, whether there exists a non-empty
subset ofsources(ve;) such that deleting any soureeurce(ve;) in this subset will
deleteve; without affecting any other non-descendant view elementegf Deleting
source(ve;) does not affecte; if des(source(ve;)) N sources(ve;) = (). Based on
the above concepts, the definition of correctly translatiregdeletion of a view element
problem can be refined as:

Problem Statement:Let Schema(D) be an XML schema an@ a view query over
it. Given a view schema node does the following condition hold for every instance
of Schema(D) whose corresponding view instancé/is For any elemente;, whose
schema node is, does there existource(ve;) such tha¥ ve; € V, ve; # ve; andve;
is not descendant afe;, where des{ource(ve;)) N sources(ve;) = 0.

5 Algorithm Analysis

5.1 A Naive Algorithm

Using the above concepts, we can observe the following.i@endeleting a view ele-
mentve; by deleting a certain base elementrce(ve;). Let this element correspond
to the base schema nodeurce(ve;). Consider all base schema nodes that could be
descendants dfource(ve;), basicallyDes(Source(ve;)). If none of these nodes form
aSource(ve;), then deletingource(ve;) will not affectve;. This is stated below.

Lemma 1. Deleting asource(ve;) will not affect view elemente;, if Des(Source(ve;))
N Sources(ve;) = 0.

For example, consideturses andcourses in Figure 3(c). Suppose we want to
deletecourses. As course in Figure 1 is aSource(courses), Des(course) N Sources
(courses) = {course, pre} which is not empty. This implies if we delet@urses,
some base elements contributing to the existeneew®fse; may also get deleted and
therefore there may exist side-effects@nrses, which gives the same result as in our
previous analysis.

Using Lemma 1, we can come up with a naive algorithm. &ew be the union
of Sources of every non-descendant view element, of ve;, ve; # ve;. If there
existsSource(ve;), such thatDes(Source(ve;)) N sum =0, Source(ve;) is a correct
translation of deletinge;.

However, this algorithm cannot be applied for all view elemse Consider view
elements whose view schema nodes are the saiig;.., (ve;), such astudent; and
students in Figure 7(c). If we want to deleteudent,, it is easy to observe that we can
delete thestudent, element in the base document, corresponding to the basmache
nodestudent in Figure 1. However, according to the above lemibas(student) N
Sources (students) # 0 and thusstudent; cannot be updated.

Also, Lemma 1 cannot be applied to detect side-effects ow elements whose
schema nodes are descendantS ¥, .., (ve;). Because for such a view element;,
we haveSources(ve;) C Sources(ve;), as all the base schema nodes that contribute
to the existence afe;, also contribute to the existence of every view elementithisiie
descendant afe;. For the above two cases, we need other strategies.

Though Lemma 1 cannot be applied to the above two types of #ilements, it can
still be applied to detect side-effects on nodes whose samemes are non-descendants
of Source(ve;).

Fig. 8. Schema Tree Structure

We therefore partition the view schema tree into three pagtshown in Figure 8.
Letn = SNyew(ve;) be the view schema node foe;. The first group, marked as 1,
is view schema nodes that are non-descendant @¥e can apply Lemma 1 to detect
side-effects on view elements whose schema nodes are grthip. The second group,
marked as 2, is view schema nadgself. We discuss how to detect side-effects on view
elements whose schema node is in this group in Section 5ehiitdl group, marked as
3, is schema nodes that are descendants @fe discuss how to detect side-effects on
view elements whose schema nodes are in this group in SécBor\so, these three
groups cover all schema nodes without any overlap. Thus wekcall view elements
for side-effects effectively, and a correct translatioreisirned if there exists one.

5.2 Detecting Side-Effects in Group 2
Here we check view elements that share the same view schemesasoe;, the view

element to be updated. This is similar to the relational vigdate problem, and we
can utilize the solutions from the relational scenario.

Updating Relational Views In [9], Keller proposes an algorithm to check whether
there is a 1-1 mapping between the set of tuples in the raeldtidew and the set of
tuples in a base relation. This algorithm can be used to ciwbelther we can delete a
tuple in the view without side-effects in the relational sago. We use Keller’s algo-
rithm as the basis for studying view updates in XML scenasiwvall. Therefore, in this
section, we will introduce and discuss this algorithm.

Keller's Algorithm : Given a relational databade and a relational view’, in order to
find all possible relations;, o, . . ., r; such that there is a 1-1 mapping between the set
of tuples inV and the set of tuples in every, 1 < p < 4, construct a directed graph,
also called as &race graph, as:

1. every relation used by the view forms a node in the grappp8se there are nodes
r1,T2,..., Ty, inthe graph.

2. letr;,r; be two nodesi # ;). There is an edge; — r; iff there is a join
condition of the formr;.a =r;.k (r;.k is the key for;. If there is ar;.k = r;.k join,
then there are two edges— r; and alsar; — 7;.).

If there is any node which can reach all other nodes, then there is a 1-1 mapping
from tuples inV to tuples in the relation which is denoted by node |

Adapting Keller’s Algorithm to XML scenario In Keller's Algorithm, an edge; —

r; represents that a tupleif joins with at most one tuple in;. The same intuition can
be applied to XML scenario. Given view elemerat, its trace graph hasmaot element
and one node for evetyource(ve;). Let Source;, Source; € Sources(ve;). We draw
an edge fromSource; to Source; if the XPath expression dfource; starts with the
variable representingource;. We draw an edge fromfource; to root if the XPath
expression ofSource; starts withDocument(”base.xml”). Let us consider element
student in Figure 7(b);Sources(student) = {department, professor, student}.
The corresponding XPath expressions Bx@ument(”base”)/ /department, $dept
//professor, $prof /student respectively. Everyrofessor will join with at most
one department. Similarly, everystudent is guaranteed to join with at most one
professor. According to Keller’s algorithm, there are four nodes ie thace graph:
root, department, professor and student. We can draw an edge frogtudent to
professor, one fromprofessor to department and one fronmdepartment to root.
student can reach all the other nodes. This implies we can deleteeliemventstudent;
by deleting base elemesntudent; in D, as analyzed before.

However there are differences between relational and XMinatos. For instance,
a node in the trace graph that does not reach all other nodestitdoe a correct trans-
lation. Consider view schema nogeo f-student in Figure 4(b). A view element of
prof-student hasSources = {professor, student}, without any edge between them
in the trace graph. However, as base schema in Figure 4(&gsipat there is only one
professor elementin the base, any view element whose schema npdefisstudent
can be deleted by deleting a base element whose schema nwdédst. So cardinal-
ity constraints should be considered to determine whethgmeace can be a correct
translation.

On the other hand, a node in the trace graph that reacheswtties might not be a
correcttranslation. Considesurse; in Figure 3(c) Sources(coursey) = {pre, course}.
In the trace graph there is an edge froourse to pre. However,course; cannot be
deleted by deletingourse, in Figure 1. This is becaus@urse. is a descendant of
coursey, and issource of both courses and courses. Also courses in Figure 3(c)
cannot be deleted because it shares the same souteoarags. Both of these occur
because of recursive types in XML.

In the rest of the section, we study how we can extend Kelidgerithm to handle
cardinality constraints and recursive types in XML.

10

I'l
e o [o (AN
[R=1 t
|t | Nt |t |
............ fi-t Nt
"_,_—-’ r it | ot |
"""""""" L it | .
Q N Nt ot | it | N
. < > ot t | . |/ L e e
{ ™~ % ™. j»v
O" ————— HEL S N I I It
)i e

-
(a) trace graph generated from rt t _ i i
Keller's Algorithm RN

O\: “\\ (b) situation when cardinality information
e L . Ny for each table is not revealed ><
N AN T
r

. oty | oty |

i

S nt | gt | oo
(c) situation when cardinality for each '™ L 7 D T
table is revealed .t t, | e

------------ ©)

Fig. 9. Keller's algorithm and cardinality constraints

Handling Cardinality Constraints How cardinality information impacts the trans-
latability of view updates in relational scenario is illkeged in Figure 9, where; and
r; can reach all other nodes except each other. Without anynedityl information, a
view tuple cannot be deleted either fromor r;, as there can be side-effects shown
in Figure 9(b). However, if we know the cardinality inforraat that there is only one
tuple inr; °, then view tuples can be deleted fram shown in Figure 9(c).

While such cardinality information cannot be specified lgarirelational schema,
it does exist in XML schema, as we mentioned in section 3.20Whg capture cardi-
nality constraints *, 1 and 0. Note XML schema can specify exaymplex cardinality
constraints such as MaxOccurs and MinOccurs. However theyotlaffect whether a
view element can be updated or not. So we ignore them in tipisrpa

Given two base schema nodeandt,, which are of ancestor-descendant relation-
ship, however, what is the cardinality between them? Hergiveethe formal definition:

Definition 2. Lett/aq :: t1/az2 = ta/ ... /ay, == t, be a path expression between two
nodest andt, in the base schema, wheve;,1 < ¢ < n, can be child, descendant-
or-self, or attribute. The cardinalitgard(t, t,) betweert andt,,, which can also be
denoted agard(t, /ay :: t1/ag :: ta/ ... /ay = ty,), is defined as:

1. ifn>1,card(t, /ay :: t1/ag i ta/ ... [an 2 ty) = card(t, [ay = t1)xcard(ty, [as
to) X ... x card(tn—1, /an :: t,). For the multiplication, please refer to Figure 10.
2. ifn=1:
(a) if ay is descendant-or-selfard(t, /a1 :: t1) =*.
(b) if ay is attribute,card(t, /ay :: t1) = 1.
(c) if ay is child, and the content model ¢fis re. Thencard(t, /a1 :: t1) =
cardRE(t1,re). cardRE(t1, re) is defined as follows:
i. if re= (rey,res), cardRE(t,re) = cardRE(t1,re1)+ cardRE(t1,1e3).
ii. if re = (ret | re2), cardRE(ti,re) = max{
cardRE(t1,re1), cardRE(t1,res)}.
iii. if re = (re1)*, cardRE(t,re) = cardRE(t1,re1) X *.
iv. if re =t;:
A. ift; = t1, thencardRE(t1,re) = 1.
B. ift; # t1, thencardRE(t1,re) = 0.

11

X 1 |0 |[* +1(1 |0 |* $prof
root
0 |* 1 |+ 1 |*
0 |0 |0 |0 0 |1 |0 |* S
* * 0 * * * * *

$student

Cardinality Multiplication Cardinality Addition
Table Table Fig.11. trace graph of prof-

student in Figure 4(b) with

cardinalities
Consider Figure 6, cardinality betweesot anddepartment can be computed as

card(root, /child :: institute/child :: department) = card(root, [child :: institute)
xcard(institute, [child :: department) = .

Our proposition below uses the cardinality informationhie base schema for de-
ciding whether a base element is a correct translation ddtidgl the required view
element.

Proposition 1. Given Sources(ve;), draw the trace graph according to Keller's al-
gorithm. Suppose there are n 0-indegree nodes in the tragaphgrsayry, o, . .., 7.
AmongSources(ve;), find one that is the lowest common ancestor of all O-indegree
nodes, denoted aSN,,cestor- FOr €achr;, card(S Nancestor, 1) 1S called the relative
cardinality ofr;. Let the number of relative cardinalities whose value is 1.be

Fig. 10.cardinality tables

1. if I = n, we can deletee; from anysource(ve;) whose corresponding node in
trace graph has 0-indegree.

2. ifl = n — 1, we can deletee; by deleting thesource whose base schema node is
the O-indegree node with cardinality as "™".

3. ifI < n — 2, there is no correct translation.

Let us consider the query in Figure 4 again. Figure 11 is theetgraph oprof-
student in Figure 4(b). With Definition 1, card(result,
professor)=1,card(result, student) =*. Therefore, to delete the view element whose
view schema node igrof-student, we can delete from Sourgeéudent.

Handling Recursive Type Let us first consider the side-effects wheteirce(ve;) €
des(source(ve;)), ve; andve; share the same view schema node. Considerse; in
Figure 2(c). Deleting it will have side-effects because saascendants of its source,
source,, also contribute to the existence of other view elementsh s$courses. To
identify such side-effects, we definecursive Sourcas below.

Definition 3. Let Schema be an XML schema an@ a view query defined over this
schema. Leb be aSource for a view element whose view schema node iS is said
to be a recursive Source #D, an XML Document confirming t8chema, where the
conditions below are all satisfied:
1. there exist two view elementI{ D), ve; andve;, suchthat # j butSNy e, (ve;)
= SNyiew(vej) = n.
2. I(S) containsbe; andbe;, be; andbe; is source of ve; andve; respectively, and
they have ancestor-descendant relationship.

5 This is a quite strict requirement, which will be relaxedatelr discussions.

12

One might think that if a path expression for a Source hasdpération, then the
Source is recursive. However, this need not be the case asliolthe XPath expression
Document(”base.xml”)//department/course. To identifyrecursive Sourceve de-
fine Absolute X Path below.

Definition 4. The path in the trace graph frolource to root is called a branch, de-
noted adranchsource- The XPath expression obtained by concatenating all thetXPa
expressions ibranchgoyrce is called the absolute XPath Shurce.

To identify whether a Source is recursive, we check its aliesoXPath. If the abso-
lute XPath retrieves two base elements that have ancessoeddant relationship, then
the Source is recursive.

Proposition 2. Let P be the absolute XPath of$ource(ve;) for view elemente;. We

call Source(ve;) as recursive iff the following two conditions are both sfigid:
1. Pis of the form/ Py //be,./ P> /be;, whereP;, P, are path expressions and,.,

be; are base schema nodes.

2. the last base elemebt; in P can havebe,. as its descendant.
Proposition 2 is illustrated in Figure 13(a). Here both bhgs satisfy P and have

ancestor-descendant relationship. Baerce, student, for astudent view elementin
Figure 7 has the absolute XPdlwcument(” base.xml”)/ /department/ /professor
/student, which does not match Proposition 2, therefetadent is not recursive.
However theSource, course, for a course view element in Figure 2 has the abso-
lute XPathDocument(”base.xml”)//course. This matches Proposition 2 wheRe

is Document(”base.xml”), Py is empty andbe,. = be; = course, and course has
course as descendant.

ok

a Q P

; a (a) base schema tree
SToase bey

)
. (b) base instance \O b, P,
% (c) view query ay
be,

(d) view instance tree

(a) ® ¢, \O be,
b,

root)

0. © P,
a, VAR a, E(EEE;’\IINQDSCumem(“basel.xm\“)Ila (gbe‘
O\ FOR $c IN $alc,
(5 O i Feswre?ﬁh ;: s (@) Proposition 2 (b) Proposition 3
by b, b, o <la>
Fig.12.5T}, .., QueryQ. Fig. 13. lllustrating Proposition 2

and Proposition 3
Now let us consider the second type of side-effects, whetece(ve;) is also

source(ve;). Consider the query in Figure 3(ajourse. in Figure 1 contributes to
two view elementsgourses andcourses, in Figure 3(c). A more general example is
shown in Figure 12. Figure 12(a) is the base schema and Fidi{l is one possible
instance. Based on the query in Figure 12(c), we have the ivistance tree shown in
Figure 12(d). Specified by the queby,joins with a; andas and thus appears multiple
times in the view. Deleting any of them may cause side-effecer other appearances
of bo. For such situations we have the following proposition:

13

Proposition 3. Consider the trace graph of a view element whose view scheaa@ n
is n. Let Source; and Sources be two Sources in this trace graph, with an edge from
Sources t0 Source;. I(Sources) may contain a base element that is the source of two
view elementgje; andwes, iff all the following conditions below are satisfied:

1. The absolute XPath dfource; is of the formP,//z/P,/y. Lety be the variable
that Source; binds to andSource; is marked as recursive using Proposition 2.

2. The absolute XPath &fources is of the form$y/Ps//x// P.

3. z € Des(x).

Figure 13(b) illustrates Proposition 3. Here, there are wew elements where
Sourcey binds to the rightmosP,, and whereSource; binds to the two differeng’s.

Actually this scenario implies a much stronger conditidrere exists no correct
translation for deleting the view element. Let us examing thirst of all, noSource;
that can reackbource,; can be a correct translation, as an instanc&@irce; can
be the source of two different view elements. Now, considéfoarce; that cannot
reachSources. Since this node cannot readlources, we must consider cardinality
constraints. LeSources; be a 0-indegree that rea®ources. As the lowest common
ancestor of all 0-indegree NodeSN ., ccstor, MUSt be a node in the path from root
to Sourcey, card(SNancestor, Sourcesr) = *. Thus Source; can never be a correct
translation. This is stated in the corollary below:
Corollary 1. Consider the trace graph of view elemerat. If 3Source;, Sources in
this graph that satisfy Proposition 3, there is no correetrislation for deletinge;.

With Proposition 1, Proposition 2 and Proposition 3, we catedt all the possi-
ble side-effects on view elements whose schema node is inpgG2owhen deleting
Source(ve;). Please refer to Section 6 for how to integrate them.

5.3 Detecting Side-Effects in Group 3

In this section, we will discuss how to detect side-effeatsview elements whose
schema nodes are descendants.olNote view elements that are descendants«f
will get deleted withve;, according to the hierarchial structure of XML view. There-
fore, we focus on whether any view element,, that are descendants of siblings of
ve;, gets affected when deletingurce(ve;).

(a) base schema tree

w a a bcC
a/C) O (b) base instance aO %
Cc
b O O
(a) bb

(c) view query
) (d) view instance tree b

(b)

O (d) (©
<root>

a, 2z FOR $a IN Document(“basel.xml")//a
RETURN <a>
Document(“basel.xml")//b,
Document(“basel.xml")//c

Par bor Ca Doz Bz €2 | <iroot>

Fig.14.5T}, .., Query Qs
Figure 14 illustrates side-effects on Group 3. If we deletén Figure 14(d) by
deletinga, in Figure 14(b), then the view elemeby,, the descendant af, in Fig-
ure 14(d) is deleted. This is a side-effect. This happenaumview elemerit,> has

14

a source, by, which is the descendant eburce(a;). On the other hand, there is no
side-effects on view element,.

We identify such side-effects as follows. Let; be a descendant of sibling view
element ofve;. If Source(ve;) is not a descendant dfource(ve;), we need not con-
sider it as it will never get affected. Consides in Figure 14(d) age; anda; aswve;.
As cis Source(ve;) ¢ Sources(ve;) and alsoc is not a descendant Sfource(ve;),

a, no side-effect on view element, will appear.

On the other hand, ifource(ve;) is descendant afource (ve;) or itself, source
(vej) must contribute to at most one view element that must be aeddsnt ofve;.
This implies there should need an edge fr8murce(ve;) to Source(ve;) in the trace
graph ofve;. Conside,, asve; anda; asve;. As Source(ve;), b, is a descendant of
Source(ay), there needs to be an edge frémo « in the trace graph afe;, which actu-
ally does not exist. Therefore, there may be side-effects,errhe above conclusions

are formalized in the following lemma:]
Lemma 2. For every descendant elemeft; of S Ny,.., (ve;), getits trace graph. Sup-

pose there are n 0-indegree nodes that cannot regetrce(ve;), sayri, ra, ..., rn.

For somevey, if 3 r; such thatS Np,sc(r;) € Des(SNpase(Source(ve;))), Source

(ve;) cannot be the correct translation of deleting;. _

6 Algorithm for Correctly Deleting Single View Element in XM L
Scenario

In this section, we will present the three-step algorithmfifading the correct transla-

tion of deleting a view element;.

StepQ |

0. Candidates = Sources(ve;)

Ste . .
1. pLetSources’ be the union ofSources of all non-descendant view elementsuef.

2. For everySource(ve;) € Candidates, if Des(Source(ve;)) N Sources’ # 0,

Candidates = Candidates — Source(ve;).
. If. Candidates =), the algorithm terminates; else go to Step 2.

4. Draw the trace graph ak; and letSourcesk.e be the set of 0-indegree nodes.

5. Use Proposition 1 to checkourcesgkeyer- L€t be the number of nodes whose
relative cardinality is "1".

(@) ifl =n—1, Sourceskelier = {SNyest}, WhereSN,..: is the only schema
node inSources ke Whose relative cardinality is ™.
(b) if I < n —2, Candidates = (J; the algorithm terminates.

6. Use Proposition 2 to check Bource(ve;) is recursive. If soCandidates =
Candidates — Source(ve;).

7. For every branch of the trace graph, find two consecutive s that satisfy the
condition in Proposition 3. If there exists such two Souycasdidates = 0; the
algorithm terminates.

8. Candidates = Candidates N Sourcesgeyer. If Candidates = 0, the algorithm

terminates; otherwise go to Step 3.
Step 3
9. pFor everySource € Candidates, if deletingSource has side-effects on a descen-

dant according to Lemma Zjandidates = Candidates — Source.
10. The algorithm terminates. fandidates = 0, there is no correct translation of

The SRR 19 % e IS BA0 St S0l drte 5 S @ SRR R Ns un-
translatable. Otherwise deletingsource € sources’(ve;) is a correct translation of
deletingue;.

15

7 Conclusion

In this paper we presented an algorithm for correctly trativgd the deletion of an XML
view element as deleting an element in the underlying XMLeb&ur algorithm uses
a schema-level analysis to efficiently find a correct traistaand it is based on the
previous work for updating relational views, extendingsthiith recursive types and
cardinality constraints in XML, and "//" operator in XQuer@ur algorithm is sound
and complete.

This paper forms a first major step in studying view updateshtL. scenario. Fu-
ture work needs to consider incorporating other updateatipers such as insert, replace
and XML specific operations and considering updating migtgdements. Further, we
need to consider more semantics both in XML Schema and X(aiatgments.

References

-

. http:/lwww.w3.org/xml/query/. 2006.
. S. Abiteboul. On views and xmPODS 1999.

3. V. Braganholo, S. Davidson, and C. Heuser. the updatalofixml views over relational
databases, June 2003.

4. Y. Cui and J. Widom. Lineage tracing for general data waueb transformations. [fhe
VLDB Journal pages 471-480, 2001.

5. U. Dayal and P. A. Bernstein. On the Correct Translatiodpdate Operations on Relational
Views. INACM Transactions on Database Systeamdume 7(3), pages 381-416, Sept 1982.

6. F.Bancilhon and N. Spyratos. Update Semantics of Relatiiews. ACM Transactions on
Database Systems (TOD®nges 557-575, 1981.

7. M. Fernandez, W. Tan, and D. Suciu. SilkRoute: Tradingvbeh Relations and XML.
http://www.www9.org/w9cdrom/202/202.html, May 2000.

8. International Organization for Standardization (ISOf\&erican National Standards Insti-
tute (ANSI).

9. A. M. Keller. Algorithms for Translating View Updates tcalabase Updates for View In-
volving Selections, Projections and Joins Fourth ACM SIGACT-SIGMOD Symposium on
Principles of Database Systenmages 154-163, 1985.

10. H. Kozankiewicz, J. Leszczyowski, and K. Subieta. Ul xml views. Advances in
Databases and Information Systemages 381-399, September 2003.

11. P. Lehti and P. Fankhauser. Towards type safe updates doery
http://www.ipsi.fhg.de/ lehti/Typing

12. Oracle Technologies Network. Using XML in Oracle DatabaApplications.
http://technet.oracle.com/tech/xml/htdocs/abotdcle xmLproducts.htm, November 1999.

13. M. Rys. Bringing the Internet to Your Database: Using S@kver 2000 and XML to Build
Loosely-Coupled Systems.\\hDB, pages 465472, 2001.

14. R. Vercammen. Updating xml view4d.DB PhD Workshop page 6t10, 2005.

15. L. Wang, E. A. Rundensteiner, and M. Mani. UFilter: A Ihgéight XML View Update

Checker. INCDE, poster pape006.

N

