
Pratisyenlerin Yazılım Mimarisi Bakış Açıları
Üzerine Bilgi ve Tecrübelerini Anlamaya Yönelik

Bir Anket Çalışması

Mert Ozkaya

Yeditepe University, Atasehir, Istanbul
mozkaya@cse.yeditepe.edu.tr

Özet. Yazılım mimarisi bakış açıları yazılım mimarilerinin değişik bakış açıları
cinsinden modüler bir şekilde kısımlara bölünmesini ve her bir kısımın o bakış
açısı ile ilgili tasarım kararlarına odaklanmasını hedefler. Bu bildiride, yazılım-
cıların değişik bakış açıları üzerine olan bilgi ve tecrübelerini anlamaya yöne-
lik farklı endüstrilerde çalışan 20 farklı ülkeden 56 pratisyenin katıldığı bir an-
ket düzenlenmiştir. Anket, pratisyenler tarafından sıklıkla kullanıldığı düşünülen
farklı yazılım mimarisi bakış açılarına odaklanmıştır: mantıksal, davranış, eşza-
manlılık, fiziksel, ve dağıtım bakış açıları. Anketten çıkan sonuçların bazı il-
ginç olanları şöyledir: (i) mantıksal, davranış, fiziksel, ve dağıtım bakış açıları
bir hayli ilgi görürken, eşzamanlılık bakış açısı pratisyenler tarafından fazla
ilgi görmemiştir; (ii) mantıksal bileşenlerin tasarımında en çok tercih edilen
yapısal birim harici arayüzler olurken, en az tercih edilen ise içsel hesaplama
birimi olmuştur; (iii) en çok tercih edilen mantıksal konektör tipi asenkron
event konektörleri olarak belirlenmiştir; (iv) kompleks konektör tipleri (adap-
tör, dağıtıcı, arabulucu gibi) pek ilgi görmemektedir; (v) yazılım mimarilerini
değişik bakış açılarından modellemede en çok tercih edilen notasyonlar kutucuk-
lar ve çizgiler notasyonu ile doğal diller (İngilizce gibi) olurken, yazılım mimarisi
modelleme dilleri ve biçimsel diller pek kullanılmamaktadır; (vi) yazılım sis-
temlerinin farklı bakış açıları kullanarak tasarlamada pratisyenlerin en büyük
motivasyonu farklı tasarım kararlarının dokümantasyonu ve iletişimi olarak be-
lirlenmiştir; (vii) bileşenlerin etkileşim davranışlarının tasarımı bir hayli ilgi
görmektedir; (viii) değişik bakış açılarındaki modellerin birbirleri arasındaki
ilişkilerinin tasarımının, modelleme notasyonlarının eksikliklerinden dolayı her
zaman başarılamadığı gözlemlenmiştir; ve son olarak, (ix) pratisyenlerin sistem-
lerinin davranışsal tasarımlarında en çok önem verdiği kalite özellikleri ölçek-
lenebilirlik, performans, ve güvenlik olarak gözlemlenirken, dağıtım tasarımları
için ise ölçeklenebilirlik ve kullanılabilirlik özelliklerinin öne çıktığı gözlemlen-
miştir.
Anahtar Kelimeler. Yazılım Mimarileri, mimari bakış açıları, anket, yazılım
modelleme dilleri, pratisyenler



Towards Understanding Practitioners’ Knowledge
and Experiences on the Software Architecture

Viewpoints: A Survey

Mert Ozkaya

Yeditepe University, Atasehir, Istanbul
mozkaya@cse.yeditepe.edu.tr

Abstract. Architecture viewpoints promote separating software archi-
tectures into different viewpoints that each address the particular aspect
of a software system. This paper discusses a survey conducted among
56 practitioners from 20 different countries who are involved in software
development and aims at understanding their knowledge and experience
about five important architectural viewpoints – i.e., logical, behaviour,
concurrency, physical, and deployment. Some of the interesting survey
results are as follows: (i) while the logical, behaviour, physical, and de-
ployment viewpoints are widely used, the concurrency viewpoint is not
so; (ii) the top-preferred structural unit for a logical component is the ex-
ternal interfaces and the least-preferred is the internal computation unit.
(iii) the top-preferred simple connector type is the asynchronous events;
(iv) the complex connectors (e.g., adaptor and arbitrator) are not as pop-
ular as simple connectors; (v) boxes and lines diagram and natural lan-
guages (e.g., English) are the top-preferred software modelling notations
for each viewpoint considered, while architectural languages, and formal
specification languages are never used by many; (vi) documenting design
decisions and their communication is the main source of motivation for
each viewpoint; (vii) the specifications of the interaction behaviours of
components are highly desired by practitioners; (viii) mapping between
different viewpoints cannot always be achieved due to the inadequate
software modelling notations; and (ix) scalability, performance, and se-
curity are the top-considered quality properties for the behaviour view-
point, while scalability and availability are the top-considered ones for
the deployment viewpoint.

Keywords: Software architectures, architectural viewpoints, survey, software
modelling languages, practitioners

1 Introduction

Software architecture is considered as the blueprint of a software system to be
built, in which the low-level details of the system are abstracted and the high-
level important aspects that play key roles in meeting the functional and non-
functional requirements of the system are focused on [5, 32]. To facilitate the



Practitioners’ Knowledge and Experiences on the Architecture Viewpoints 3

specifications of software architectures, architectural viewpoints have been pro-
posed, which basically promote the separation of concerns and modularise the
software architecture designs into separate perspectives that each addresses the
design decisions about a particular aspect [15,34,38]. To model software systems
from different architecture viewpoints, practitioners may use different sorts of
notations. These notations can simply be boxes and lines diagram or any natural
languages (e.g., English) through which practitioners can graphically or textu-
ally specify their design decisions and communicate them with others. Practi-
tioners may also use the software modelling languages with concrete syntax and
well-defined semantics, which enable the processing of the architectural mod-
els for purposes, e.g., analysis, simulation, and code-generation. Indeed, there
are different types of languages, including the architectural languages (ALs)
with architecture-oriented notation sets (i.e., components and connectors) [23],
Business Process Modelling Langages (BPMLs) [39], domain-specific languages
(DSLs) [7], formal specification languages (e.g., pi-calculus [26] and CSP [11])
with formally defined semantics, and Unified Modeling Language (UML) [35]
and its extensions.

However, the current literature does not really aid in understanding prac-
titioners’ perspectives towards different architecture viewpoints. Indeed, many
issues, such as the notations preferred by practitioners for different viewpoints,
practitioners’ expectations from modeling software architectures in different view-
points, practitioners’ main motivations of modeling in different viewpoints, still
remain ambiguous. Therefore, in this study, a survey has been conducted among
a set of practitioners from different industries to understand their knowledge and
experience about the architectural viewpoints. The survey focuses on the five key
architectural viewpoints that have been proposed by Taylor et al. [38] and are
believed to be highly used by the practitioners who are involved in software devel-
opment. These are the logical, physical, deployment, behaviour, and concurrency
viewpoints. The logical viewpoint deals with the decompositions of software sys-
tems into software components and connectors. The physical viewpoint focuses
on the physical components in which the logical components will be allocated
and the physical communication links. The deployment viewpoint focuses on
how the logical components should be mapped into the physical components.
The behaviour viewpoint deals with the component and connector behaviours.
The component behaviours can be considered either as the interface behaviours
or the internal behaviours. The connector behaviours can be considered as the
complex interaction mechanisms that control the interactions of the components.
Lastly, the concurrency viewpoint deals with the concurrency-related issues of
software components such as the synchronous/asynchronous communications,
the parallel compositions, the use of threads and processes, and the common
concurrency problems (e.g., deadlock and race-condition).

2 Survey Methodology

The survey consists of 38 different questions, which have been determined af-
ter several iterations of reviews. Among the 38 questions, just 9 questions use



4 Mert Ozkaya

single-choice answers. 2 of them provide numeric (i.e., integer) answers in which
the participants are requested to choose one of the ranges of numbers (e.g.,
0-10, 11-50, 51-100, and 100+). The rest of the 7 questions are essentially the
yes/no questions. However, to maximise the precision of the survey results, those
questions each provide a rating answer, which offers the following options: al-
ways (100%), much of the time (≥75%), often (≥50%), sometimes (<50%), and
never (0%). The rest of the questions offer multiple-choice answers and allow
practitioners to choose as many of the answers as they wish. Note that each
multiple-choice answer also include a "free-text" area in which practitioners can
type any answers that are not existing in the list of the multiple-choice answer.

The survey has been designed for the software industry and intended for the
practitioners who hold software related positions such as software architect, de-
signer, developer, software engineer, programmer, and software project manager.
To reach as many practitioners as possible, the social media platforms have been
tried initially, including facebook, linkedin, google and yahoo groups, and some
popular software development forums (e.g., stack overflow). Also, the existing ar-
chitectural languages that support the viewpoints considered in the survey have
been searched and any scientists with industry background who contributed to
the development of those languages have been contacted via e-mail. Moreover,
the mailing lists of the widely-known computing societies (i.e., ACM and IEEE)
have been used. Lastly, the author’s personal contacts working in software indus-
try have been requested to participate in the survey too. So, the survey received
56 different responses from practitioners all over the world.

3 Survey Results

In this part, the answers given to the survey questions are analysed. To facilitate
understandability, the answers of the questions are considered in six different
sections: one for the profile questions and a separate section for each viewpoint
considered (i.e., logical, physical deployment, behaviour, and concurrency). For
each section, the answers given to each relevant question are discussed separately.

3.1 Profile of the Practitioners

Practitioners country of work (Q1). The survey attracted practitioners from
20 different countries, given as follows: USA, Colombia, Austria, Latvia, Chile,
Indonesia, Ukraine, Australia, Belgium, Finland, France, Germany, India, Por-
tugal, Russia, Spain, Sweden, the Netherlands, Turkey, and UK. The top partic-
ipating country is USA (22%), which is followed by Turkey (13%), UK (11%),
and France (9%).

Practitioners’ highest academic degrees and university subjects (Q2 and Q3).
76% of the practitioners hold postgraduate degrees, where 47% hold MSc or MA
degrees and 29% hold PhD degrees. 22% of the practitioners hold undergraduate
BSc or BS degrees. Lastly, 2% of the practitioners hold college degrees. Many of



Practitioners’ Knowledge and Experiences on the Architecture Viewpoints 5

the practitioners (63%) have studied the computer science/engineering subject.
Concerning the rest of the practitioners, 9% of the practitioners have studied
software engineering, 7% studied information technology, 6% studied electrical
and electronics engineering, and the other subjects (e.g., physics, maths, history,
and management) have been studied by 2-4%.

Practitioners’ job positions (Q4). The software architect position is the top-
selected one, held by 48% of the practitioners, which is followed by the software
developer/programmer (29%) and consultant (29%) positions. The system engi-
neer position (14%) and the high-level manager positions are held by 11-14% of
the practitioners.

Practitioners’ years of experience on the software architecture modelling (Q5).
More than half of the practitioners (52%) have more than 10 years of experience.
21% of the practitioners have 6-10 years of experience, 13% of the practitioners
just have 2-5 years of experience, and 9% have less than 2 years of experience.
Note that 5% of the practitioners do not have any experience on the architecture
modelling at all. These practitioners with no experience are directed to submit
the survey form without answering the rest of the survey questions.

Practitioners’ work industries (Q6). IT and telecommunications is the top in-
dustry that is selected by 47% of the practitioners. This is followed by the fi-
nance and accounting (27%), automative and transportation (22%), government
(20%), defense/military aviation (16%) and healthcare and biomedical (12%)
industries. 8% of the practitioners work in the software outsourcing industry.

Practitioners’ software project types (Q7). The top software project type devel-
oped by practitioners is the business applications software (63%), which is fol-
lowed by the web applications (57%) and mobile applications (51%). The systems
software, scientific/engineering applications, and safety-critical and mission-critical
software have been selected by 27-35% of the practitioners. The cloud applica-
tions and telecommunications software are the least selected software project
types.

3.2 Logical Viewpoint

The practitioners who model software architectures from the logical viewpoint
(Q8). Practitioners frequently model their software architectures from the logi-
cal viewpoint. Indeed, 36% of the practitioners always (100%) do so, 31% of the
practitioners do so much of the time (>=75%), and 13% do so often (>=50%).
Just 12% of the practitioners sometimes (<50%) model their software architec-
tures from the logical viewpoint. 8% of the practitioners never (0%) model their
software architectures from the logical viewpoint.

The structural units preferred for the logical components (Q9). As shown in
Fig. 1, most of the practitioners (84%) consider components in terms of their
external interfaces for sending/receiving services. Half of the practitioners also
wish to specify composite components (i.e., the unit of configuration), which



6 Mert Ozkaya

Fig. 1: The structural units preferred by practitioners for the logical components
may structurally be composed of some other component and connector instances.
Some practitioners (48%) wish to specify the component state descriptions for
purposes such as the behaviour specifications (i.e., how the services impact on
the state). Lastly, the internal computation unit for specifying the internal be-
haviours of components has been shown the least interest, selected by 30% of
the practitioners.

Fig. 2: The types of logical connectors that are preferred by practitioners

The types of logical connectors preferred by practitioners (Q10). In this survey,
the connector types proposed by Mehta et al. [24] have been considered. As
shown in Fig. 2, the top preferred connector types are the asynchronous event
connectors (74%) and simple link connectors (60%). 47% of the practitioners
wish to use adaptor connectors, which enable the successful composition of a set
of interacting components that are incompatible and cannot communicate other-
wise. The shared-data access, procedure call, and stream connectors are preferred
by 37-44% of the practitioners. Arbitrators and distributors are rarely used by
practitioners (19-26%), where the former represent the connectors for dealing
with the quality properties (e.g., schedulability, performance, and security) and
the latter represent the connectors for handling the distributed communication
issues of distributed components.

Fig. 3: The software modelling notations used by practitioners for modeling from
the logical viewpoint

The software modelling notations used by practitioners for modeling software
architectures from the logical viewpoint (Q11, Q12, Q13). As shown in Fig. 3,



Practitioners’ Knowledge and Experiences on the Architecture Viewpoints 7

the boxes and lines diagram is the top used modelling notation, which is followed
by UML and natural languages (e.g., English). Many practitioners never use the
BPMLs, DSLs, and UML extensions. Only a few practitioners stated that they
use ALs for modeling their software architectures from the logical viewpoint.
The ALs they prefer are AADL [9], Acme [10], and Archimate [1]. Besides,
practitioners have also indicated to use some other software modelling notations,
including pseudocode, formal specification languages (e.g., Z [36], CSP [11], and
CCS [25]), Unified Architecture Framework (UAF) [28], and Structured Analysis
and Design Technique (SADT) [20].

Practitioners’ motivations for modeling software architectures from the logical
viewpoint (Q14). Almost all the practitioners are motivated by the abilities of
(i) documenting and communicating the component structures (91%) and (ii)
decomposing a large and complex problem into manageable and understand-
able components (86%). Also, many practitioners (64%) are interested in (i)
documenting and communicating the types of connectors for the component in-
teractions and (ii) analysing the static aspects of systems (e.g., inconsistencies,
incompatibilities, and incompleteness). Surprisingly, generating software code
from the logical view specifications or the languages’ distinguishing features (e.g.,
large-view management, graphical support, and extensibility) are not among the
popular reasons, chosen by 25-30% of the practitioners.

3.3 Behaviour Viewpoint

The practitioners who model software architectures from the behaviour viewpoint
(Q15). Half of the practitioners frequently (>=75%) model their software archi-
tectures from the behaviour viewpoint (19% chose always and 33% chose much
of the time). 11% of the practitioners often (>=50%) do so and 25% of the
practitioners sometimes (<50%) do so. 12% of the practitioners never software
architectures from the behaviour viewpoint.

Fig. 4: The component behavioural units preferred by practitioners

The component behavioural units preferred by practitioners (Q16, Q17). As
shown in Fig. 4, practitioners are most interested in specifying the interaction
behaviours of components (81%) and their external interface behaviours (72%).
63% of the practitioners are interested in specifying the internal behaviours of
components. Lastly, 53% of the practitioners are interested in considering the
non-functional requirements (e.g., performance, security, and reliability) as part
of their component behaviour specifications.



8 Mert Ozkaya

Fig. 5: The non-functional properties that practitioners are interested in

The non-functional properties that practitioners are interested in (Q18). As
shown in Fig. 5, scalability, performance, and security are the top-preferred
non-functional properties (70-76%), which are followed by the availability and
reliability properties (62-65%). However, schedulability is preferred by just 14%
of the practitioners.

Fig. 6: The software modelling notations used by practitioners for modeling soft-
ware architectures from the behaviour viewpoint

The software modelling notations used by practitioners for modeling software
architectures from the behaviour viewpoint (Q19, Q20). As shown in Fig. 6, the
boxes and lines diagram are the top-used notation for specifying the behaviour
views of software architectures, which is followed by UML’s sequence diagram,
UML’s state diagram, and the natural languages (e.g., English). Surprisingly,
DSLs, BPMLs, formal specification languages, and ALs are the least-preferred
modelling notations by practitioners in specifying the behaviour views.

Fig. 7: The formal specification languages used by practitioners for formally mod-
eling software architectures from the behaviour viewpoint



Practitioners’ Knowledge and Experiences on the Architecture Viewpoints 9

The formal specification languages used by practitioners for formally modeling
software architectures from the behaviour viewpoint (Q21). While most of the
practitioners never use formal specification languages as revealed in the previous
questions, a few of those stated that they use some formal notations. These
are Petri nets [27], Java Modelling Language (JML) [4], UPPAAL [16], state
transition systems, pi-calculus [26], CSP [11], and Alloy [13].

The architectural languages used by practitioners for modeling software architec-
tures from the behaviour viewpoint (Q22). Only a few number of practitioners
stated that they frequently use the ALs for modeling the software architectures
from the behaviour viewpoint. So, AADL is practitioners’ top choice, followed
by the Rapide [18] and Darwin [19] ALs.

Practitioners’ motivations for modeling software architectures from the behaviour
viewpoint (Q23). Documenting and communicating the high-level system be-
haviours has been selected by almost all the practitioners (90%). The capabilitiy
of making the optimal design decisions about the component behaviours and in-
teractions is also found motivating by more than half of the practitioners (55%).
Some practitioners (30-40%) stated that they are motivated by the abilities of
(i) specifying the non-functional properties for the component behaviours and
interactions and (ii) utilising from the modelling languages’ capabilities (e.g.,
precision, complex view management, extensibility, etc.). However, most practi-
tioners do not see the generation of software code and the exhaustive (i.e., formal)
analysis as the motivating reasons for the behaviour viewpoint modeling.

3.4 Concurrency Viewpoint

The practitioners who use the concurrency viewpoint (Q24) Most of the prac-
titioners do not model their software architectures from the concurrency view-
point. Indeed, while 38% sometimes (<50%) do so, another 38% never do so
really. Note that just 8% of the practitioners always model software architec-
tures from the concurrency viewpoint.

Fig. 8: The software modelling notations used by practitioners for modeling soft-
ware architectures from the concurrency viewpoint

The software modelling notations used by practitioners for modeling software
architectures from the concurrency viewpoint (Q25, Q26). As shown in Fig. 8,
the boxes and lines diagram is the top preferred notation, followed by the natural



10 Mert Ozkaya

languages (e.g., English). A few practitioners use their own (in-house) DSLs for
modeling software architectures from the concurrency viewpoint. ALs, BPMLs,
DSLs, formal specification languages, and UML extensions are rarely used.

Fig. 9: The formal specification languages used by practitioners for formally mod-
eling software architectures from the concurrency viewpoint

The formal specification languages used by practitioners for formally modeling
software architectures from the concurrency viewpoint (Q27). As indicated in
the previous question, the formal specification languages are rarely used for the
concurrency viewpoint modeling, Fig. 9 shows the formal languages used by a
few practitioners. So apparently, Petri nets, JML, and CSP that are shown in
Fig. 9 are preferred relatively more than any other languages by the practitioners
who use formal languages (20-30%). Some of those practitioners also stated that
they use some other formal languages that include Event-B [2], state transition
systems, ProMeLa [12], pi-calculus, and Alloy.

The architectural languages used by practitioners for formally modeling software
architectures from the concurrency viewpoint (Q28) Like the formal specification
languages, a few practitioners stated that they use ALs for modeling software
architectures from the concurrency viewpoint. Among the four popular ALs con-
sidered for modeling concurrency (Darwin, Rapide, AADL, and Wright), Darwin
seems to be the top popular AL among practitioners. Some participants stated
that they use their own ALs that they developed (indicated as other).

The software modelling notation(s) used for mapping the logical components into
the concurrency components (Q29). Most of the practitioners (85%) who model
software architectures from the concurrency viewpoint are also interested in map-
ping their logical components to the concurrency components. Those practition-
ers mainly prefer the natural languages (e.g., English) and simple boxes and
lines diagram. A few practitioners prefer the software modelling languages, such
as the ALs, BPMLs, DSLs, and UML’s extensions.

Practitioners’ motivations for modeling software architectures from the concur-
rency viewpoint (Q30). Almost all the practitioners (81%) are motivated by the



Practitioners’ Knowledge and Experiences on the Architecture Viewpoints 11

ability for documenting and communicating the concurrency issues of their soft-
ware systems. Many practitioners (59%) wish to specify the design decisions for
avoiding the concurrency issues such as deadlock, livelock, and race-conditions.
Some (30-37%) wish to meet the domain requirements of their concurrent sys-
tems. Surprisingly, only a few practitioners (22-26%) find the formal analysis of
the concurrent specifications and the mapping between the logical and concur-
rent components as motivating.

3.5 Physical and Deployment Viewpoints

The practitioners who use the physical and deployment viewpoints (Q31). More
than half of the practitioners (52%) frequently model their software architectures
from the physical and deployment viewpoints (i.e., always or much of the time).
While 16% of the practitioners often (>=50) do so, 22% of the practitioners
sometimes (<50) do so. Lastly, 10% of the practitioners never model software
architectures from the physical and deployment viewpoints.

Fig. 10: The software modelling notations used by practitioners for modeling
software architectures from the physical and deployment viewpoints

The software modelling notations used by practitioners for modeling software
architectures from the physical and deployment viewpoints (Q32, Q33). As shown
in Fig. 10, the boxes and lines diagram is the top-preferred notation, which is
followed by the natural languages (e.g., English) and UML. The ALs, BPMLs,
and DSLs, SysML are never used by most of the practitioners for the physical
and deployment viewpoint modeling. Lastly, some of the practitioners stated
that they use their own DSLs, and some use the UAF standard [28].

The architectural languages used by practitioners for modeling software architec-
tures from the physical and deployment viewpoints (Q34). AADL is the top-used
AL, which is followed by the Archimate language. Abacus [8], Meta-H [22], and
East-ADL [6] are the other languages used by practitioners.

The non-functional quality properties that practitioners consider for their de-
ployment viewpoint modeling (Q35). According to the survey results, 84% of the
practitioners who model software architectures from the physical & deployment
viewpoints also consider documenting the non-functional quality properties that
can then be used for analysing the deployment architectures. Among the four
non-functional properties considered (i.e., availability, performance, scalability,



12 Mert Ozkaya

and security), the availability (e.g., load balancing, redundancy, and failure situ-
ations) and scalability (e.g., the resource capacity for larger systems) properties
are shown the greatest interest (79%). 67-69% of the practitioners consider the
security (e.g., authentication and secure data transmission) and performance
(e.g., the number of CPU and memory estimates) properties. Note that a few
practitioners have chosen some other quality properties, i.e., maintainability,
developer & operations cooperation, and regulatory compliance.

The software modelling notation(s) that practitioners use for mapping the logical
components into the physical components (Q36). The survey results reveal that
80% of the practitioners who model their software architectures from the physical
& deployment viewpoints wish to map the logical components into the physical
components. The simple boxes and lines diagram (53%) and natural languages
(50%) are the top-popular techniques, followed by UML (40%). The rest of the
software modelling notations (i.e., ALs, UML’s extensions, SysML, BPML, and
DSLs) are shown a lack of interest, which are used by 10-15% of practitioners.

The software modelling notation(s) that practitioners use for mapping the con-
current components into the physical components (Q37). According to the survey
results, 60% of the practitioners who specify the physical & deployment views
are interesting in mapping the concurrent components into the physical compo-
nents. Practitioners prefer the simple boxes and lines diagram (42%) and natural
languages (45%), and UML (34%), as is the case for the mapping between the
logical and physical components discussed in Section 3.5.

Practitioners’ motivations for modeling software architectures from the physi-
cal and deployment viewpoints (Q38). According to the results, most of the
practitioners (86%) are motivated by documenting and communicating their
software systems’ physical components and their physical communications mo-
tivates them. 68% of the practitioners are motivated by the ability of analysing
the deployment view specifications for quality properties. More than half of the
practitioners (54%) are interested in mapping between the logical/concurrency
views and physical views. Lastly, the modelling languages with useful capabili-
ties (e.g., graphical support, formal analysis, tool support, etc.) and generating
executable software code are shown a lack of interest by practitioners (14-19%).

4 Related Work

The author has previously conducted some similar surveys on practitioners. How-
ever, none of them considered the architectural viewpoints from practitioners’
perspectives. In [29], the author aimed at learning practitioners’ understanding
of software architectures. In [31], the author aimed at learning the informal and
formal software modeling notations used by practitioners for the specifications
of software architectures and practitioners’ expectations and motivations for the
modeling notations. Likewise, in the rest of this section, some other similar sur-
veys have been discussed, which are not so useful in understanding practitioners’
knowledge and experience on different viewpoints.



Practitioners’ Knowledge and Experiences on the Architecture Viewpoints 13

May [21], for instance, analysed and compared five influential viewpoint mod-
els (e.g., Kruchten’s 4+1 model [15]) using a comparison framework that May
proposed. In his framework, May analysed the viewpoints supported by the view-
point models regarding their considerations for the architectural structures (e.g.,
layered, client-server, and abstraction), the types of the stakeholders, and the
functional/non-functional concerns. Smolander et al. [14] surveyed among three
different companies that work for the telecommunications industry, where one
is a system integrator, one is a mobile software company, and the other is a
telecommunication service provider. Smolander et al. analysed these three com-
panies so as to determine the viewpoints that are used by these organisations
in their software architecture designs. Tang et al. [37] focussed on a number
of viewpoint models (including Kruchten’s) and analysed their support for the
basic requirements of architecture design including the architecture definition,
analysis, evolution, the support for specifying design decisions, and the use of
repositories. Booch et al. [3] surveyed among a number of enterprise architecture
and technical architecture viewpoint models that promote the graphical specifi-
cations of the enterprise software architectures. Booch et al. grouped the view-
point models based on their domain (i.e., company-specific, government-specific,
defense-specific, and consulting) and analysed them to learn which viewpoints
are supported, the accessibility of any resources for the viewpoint model, and
their weakness and strengths relatively to other viewpoint models. Purhonen
et al. [33] analysed a set of architecture viewpoints (i.e., structure, behaviour,
deployment, and development) regarding their support for the digital signal pro-
cessing and middleware software architectures. Lastly, Lassing et al. [17] consider
four viewpoints, grouped as macro architecture level (i.e., the system level) and
micro level (i.e., the internal structure of the system). The macro viewpoints are
the context and technical infrastructure viewpoints, while the micro viewpoints
are the conceptual and development viewpoints. Lassing et al. analysed these
viewpoints for the modifiability of software architectures (i.e., how easily the
system functionality can be changed).

5 Discussions and Conclusions

In this study, a survey has been conducted on understanding practitioners’
knowledge and experience about the logical, behaviour, concurrency, physical
and deployment viewpoints. While the logical, behaviour, physical, and deploy-
ment viewpoints are used by many practitioners, the concurrency viewpoint for
the specifications of the concurrency issues are shown a lack of interest by prac-
titioners. For each viewpoint considered, practitioners stated that documenting
the design decisions and their communications with other stakeholders are their
main source of motivation. Also, practitioners prefer the boxes and lines diagram
and natural languages (e.g., English) for each viewpoint considered. However,
these notations do not offer any concrete syntax and semantics; so, the specifi-
cations may not be processed for purposes such as analysis and code generation.



14 Mert Ozkaya

Concerning the logical viewpoint, most practitioners view the logical com-
ponents structurally as the composition of external interfaces. Practitioners are
not so keen to specify the internal computations that are mainly concerned with
any internal actions operated on the component state. Practitioners are highly
interested in the event connectors, which may receive the asynchronous events
generated by a component and send it to all listening components. Complex
connectors such as arbitrators and distributors are rarely considered by prac-
titioners. This may be due to the lack of modeling languages that allow for
specifying complex connectors. Indeed, the event connectors are highly popu-
lar among the architecture modeling languages [30]. Concerning the behaviour
viewpoint, most practitioners are interested in specifying the interaction be-
haviours of the components (i.e., how the component state changes depending
on the interface operations performed). Practitioners use UML’s state and se-
quence diagrams for the behaviour specifications. However, other important be-
haviour modeling notations such as formal languages and some domain-specific
languages that could aid in the formal verification of the system behaviours are
rarely used. This is probably due to that those languages are found difficult to
learn and use compared with UML. Given practitioners’ reluctance towards the
concurrency viewpoint, practitioners main concerns have been observed to be
the software modelling notations that lack in the support for the concurrency
issues (e.g., synchronous/asynchronous communications, threads, and processes)
and the mapping between the logical and concurrent components. Even if the
languages support concurrency, they offer this via a process algebras, which are
found as difficult to learn and use. Lastly, concerning the physical and deploy-
ment viewpoints, while many practitioners are interested in specifying the scala-
bility and availability of the deployment architectures, there is a strong concern
about the languages’ tool support for modeling and analysing those properties.

In the future, the survey results are aimed to be used for the proposal of
a novel architecture description language that supports the logical, behaviour,
concurrency, physical, and deployment viewpoints in a way which addresses the
needs of practitioners determined from the survey.

References

1. The Open Group ArchiMate® 1.0 Specification. Technical Standard (Feb 2009)
2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, New York, NY, USA, 1st edn. (2010)
3. Booch, G., Mitra, T.: A survey of enterprise view models. Tech. Rep. RC25049,

IBM Research Report (2010)
4. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced spec-

ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P. (eds.) FMCO. Lecture Notes in Computer Science,
vol. 4111, pp. 342–363. Springer (2005)

5. Clements, P.C., Garlan, D., Little, R., Nord, R.L., Stafford, J.A.: Documenting
software architectures: Views and beyond. In: Clarke, L.A., Dillon, L., Tichy, W.F.
(eds.) ICSE. pp. 740–741. IEEE Computer Society (2003)



Practitioners’ Knowledge and Experiences on the Architecture Viewpoints 15

6. Cuenot, P., Frey, P., Johansson, R., Lönn, H., Reiser, M.O., Servat, D., Tavakoli Ko-
lagari, R., Chen, D.: Developing automotive products using the east-adl2 : an
autosar compliant architecture description language. Ingénieurs de l’Automobile
(Automobile Engineers) :793 (2008)

7. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages:
An annotated bibliography. SIGPLAN Not. 35(6), 26–36 (Jun 2000).
https://doi.org/10.1145/352029.352035, http://doi.acm.org/10.1145/352029.
352035

8. Dunsire, K., O’Neill, T., Denford, M., Leaney, J.: The abacus architectural ap-
proach to computer-based system and enterprise evolution. In: 12th IEEE Interna-
tional Conference and Workshops on the Engineering of Computer-Based Systems
(ECBS’05). pp. 62–69 (April 2005). https://doi.org/10.1109/ECBS.2005.66

9. Feiler, P.H., Lewis, B.A., Vestal, S.: The SAE architecture analysis & design lan-
guage (AADL): A standard for engineering performance critical systems. In: IEEE
Intl Symp. on Intell. Control. pp. 1206–1211 (Oct 2006)

10. Garlan, D., Monroe, R.T., Wile, D.: Acme: An architecture description interchange
language. In: Proceedings of CASCON’97. pp. 169–183. Toronto, Ontario (Novem-
ber 1997)

11. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

12. Holzmann, G.J.: The SPIN Model Checker - primer and reference manual. Addison-
Wesley (2004)

13. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

14. Kari Smolander, Kimmo Hoikka, J.I.M.K., Mkel, T.: What is included
in software architecture? a case study in three software organizations.
In: Proceedings Ninth Annual IEEE International Conference and Work-
shop on the Engineering of Computer-Based Systems. pp. 131–138 (2002).
https://doi.org/10.1109/ECBS.2002.999831

15. Kruchten, P.: The 4+1 view model of architecture. IEEE Software 12(6), 42–
50 (1995). https://doi.org/10.1109/52.469759, http://dx.doi.org/10.1109/52.
469759

16. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–
152 (1997)

17. Lassing, N.H., Rijsenbrij, D.B.B., van Vliet, J.C.: Viewpoints on modifiability.
International Journal of Software Engineering and Knowledge Engineering 11(4),
453–478 (2001)

18. Luckham, D.C., Kenney, J., Augustin, L., Verra, J., Bryan, D., Mann, W.: Spec-
ification and Analysis of System Architecture Using Rapide 21(4), 336–355 (Apr
1995)

19. Magee, J., Kramer, J.: Dynamic structure in software architectures. ACM SIG-
SOFT Software Engineering Notes 21(6), 3–14 (nov 1996)

20. Marca, D.A., McGowan, C.L.: SADT: Structured Analysis and Design Technique.
McGraw-Hill, Inc., New York, NY, USA (1987)

21. May, N.: A survey of software architecture viewpoint models. In: Proceedings of
the Sixth Australasian Workshop on Software and System Architectures. pp. 13–24
(May 2005)

22. McDuffie, J.H.: Using the architecture description language metah for designing
and prototyping an embedded reconfigurable sliding mode flight controller. In:
Proceedings of the 21st Digital Avionics Systems Conference. vol. 2, pp. 8B1–1–
8B1–17 vol.2 (2002). https://doi.org/10.1109/DASC.2002.1052937

https://doi.org/10.1145/352029.352035
http://doi.acm.org/10.1145/352029.352035
http://doi.acm.org/10.1145/352029.352035
https://doi.org/10.1109/ECBS.2005.66
https://doi.org/10.1109/ECBS.2002.999831
https://doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/52.469759
https://doi.org/10.1109/DASC.2002.1052937


16 Mert Ozkaya

23. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Software Eng. 26(1), 70–93
(2000)

24. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software con-
nectors. In: Proceedings of the 22Nd International Conference on Software Engi-
neering. pp. 178–187. ICSE ’00, ACM, New York, NY, USA (2000)

25. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA (1982)

26. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i. Inf. Comput.
100(1), 1–40 (1992)

27. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (Apr 1989). https://doi.org/10.1109/5.24143

28. OMG: Unified architecture framework profile (uafp). Specification dtc/17-05-08,
OMG (nov 2012), http://www.omg.org/spec/UAF/1.0/Beta2/PDF

29. Ozkaya, M.: What is software architecture to practitioners: A survey. In: Ham-
moudi, S., Pires, L.F., Selic, B., Desfray, P. (eds.) MODELSWARD 2016 -
Proceedings of the 4rd International Conference on Model-Driven Engineering
and Software Development, Rome, Italy, 19-21 February, 2016. pp. 677–686.
SciTePress (2016). https://doi.org/10.5220/0005826006770686, http://dx.doi.
org/10.5220/0005826006770686

30. Ozkaya, M.: Architectural languages’ connector support for modeling various com-
ponent interactions: A review. In: Fujita, H., Herrera-Viedma, E. (eds.) New
Trends in Intelligent Software Methodologies, Tools and Techniques - Proceed-
ings of the 17th International Conference SoMeT_18, Granada, Spain, 26-28
September 2018. Frontiers in Artificial Intelligence and Applications, vol. 303,
pp. 474–489. IOS Press (2018). https://doi.org/10.3233/978-1-61499-900-3-474,
https://doi.org/10.3233/978-1-61499-900-3-474

31. Ozkaya, M.: Do the informal & formal software modeling notations satisfy prac-
titioners for software architecture modeling? Information & Software Technology
95, 15–33 (2018). https://doi.org/10.1016/j.infsof.2017.10.008, https://doi.org/
10.1016/j.infsof.2017.10.008

32. Perry, D.E., Wolf, A.L.: Foundations for the study of software ar-
chitecture. SIGSOFT Softw. Eng. Notes 17(4), 40–52 (Oct 1992).
https://doi.org/10.1145/141874.141884, http://doi.acm.org/10.1145/141874.
141884

33. Purhonen, A., Niemelä, E., Matinlassi, M.: Viewpoints of dsp software and service
architectures. J. Syst. Softw. 69(1-2), 57–73 (Jan 2004)

34. Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stake-
holders Using Viewpoints and Perspectives. Addison-Wesley Professional, 2 edn.
(2011)

35. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, The (2Nd Edition). Pearson Higher Education (2004)

36. Spivey, J.M.: Z Notation - a reference manual (2. ed.). Prentice Hall International
Series in Computer Science, Prentice Hall (1992)

37. Tang, A., Han, J., Chen, P.: A comparative analysis of architecture frameworks. In:
11th Asia-Pacific Software Engineering Conference (APSEC 2004), 30 November -
3 December 2004, Busan, Korea. pp. 640–647. IEEE Computer Society (2004)

38. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture - Foundations,
Theory, and Practice. Wiley (2010)

39. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (2007)

https://doi.org/10.1109/5.24143
http://www.omg.org/spec/UAF/1.0/Beta2/PDF
https://doi.org/10.5220/0005826006770686
http://dx.doi.org/10.5220/0005826006770686
http://dx.doi.org/10.5220/0005826006770686
https://doi.org/10.3233/978-1-61499-900-3-474
https://doi.org/10.3233/978-1-61499-900-3-474
https://doi.org/10.1016/j.infsof.2017.10.008
https://doi.org/10.1016/j.infsof.2017.10.008
https://doi.org/10.1016/j.infsof.2017.10.008
https://doi.org/10.1145/141874.141884
http://doi.acm.org/10.1145/141874.141884
http://doi.acm.org/10.1145/141874.141884

	Pratisyenlerin Yazılım Mimarisi Bakıs Açıları Üzerine Bilgi ve Tecrübelerini Anlamaya Yönelik Bir Anket Çalısması
	Towards Understanding Practitioners' Knowledge and Experiences on the Software Architecture Viewpoints: A Survey

