
Modeling History Sensitivity and Orthogonally
Restricting Aspects

Nagehan Pala Er, Özgür Aydın Tekin, Ömer Köksal

Bilkent University, Department of Computer Engineering, Turkey

{nagehan, oatekin, omerkoksal}@cs.bilkent.edu.tr

Abstract. In this paper, we describe evolution problems of typical software,
concentrating on history sensitivity. We start with a basic Object-Oriented
design for a simple game. Then, history sensitivity problem is introduced
gradually as evolution scenarios. If two different history sensitivity concerns
are semantically related, the problem of orthogonally restricting aspects occurs.
We elaborate on several solution approaches, namely object-oriented design
approach, aspect-oriented design approach, and composition of events and
actions approach to tackle the history sensitivity evolution problems in a
modular and reusable manner.

Keywords: History sensitivity, Object-Oriented Design, Aspect-Oriented
Software Engineering, Evolution, Events, Actions, Composition, Modularity,
Reusability.

1 Introduction

Software systems are not static. They continuously evolve. In due time bugs are
corrected and new features are added. Software systems have to cope with evolution.
In order to cope with evolution various programming languages were introduced.
They provided mechanisms to provide several quality factors such as reusability,
reliability, maintainability, etc. For example, introducing “class” concept in object-
oriented programming (OOP) enabled higher reusability. The mechanisms like
inheritance and polymorphism in the object-oriented programming languages
provided higher reusability and maintainability. But, the usage of these languages for
years showed that existing mechanisms and hierarchy in the object-oriented
programming may cause some side effects that decrease the modularity of the
software systems.

The aim of evolution is to implement new changes. But, the new software may not

be final and may continue to evolve. During evolution process, many features might
be added to the current software due to new requirements. The new features to be
added may require changes in the design and can cause side effects. As the software
evolves the complexity of it grows unless there is a better solution available to solve
these issues.

Preserving design modularity is another important issue. It is preferable that
software is resilient to possible evolution. If the design is not modular, implementing
several quality factors such as reusability and maintainability might be difficult in the
evolution scenarios. In order to cope with evolution the system shall be decomposed
into proper modules. If the modularity is not proper than the complexity may increase
and evolution may require a lot of work.

Also, some features are difficult to add. For example: Adding history sensitivity.

Generally, adding history sensitivity results in redefinitions. Also it may cause
changes in software design. If you add several history sensitive objects the number of
redefinitions increases. The problem becomes even worse if multiple history sensitive
extensions somehow affect each other.

Usually, adding history sensitivity with OOP requires many redefinitions and

results in tangling and scattering. Then, reusability and maintenance of the software
becomes a problem in the future evolution scenarios.

Aspect Oriented Programming (AOP) languages can be used to implement history
sensitivity in evolution scenarios. Using the AOP one can try to overcome difficulties
faced within the object-oriented languages such as redefinitions. If the aspects can be
defined independently, AOP might be a modular solution. However, in the case of
semantically related (orthogonally restricting) aspects, AOP may also result in tangled
and scattered code.

Composition Filter Model (CFM) and Events, Actions, and Composition Model
(EACM) can be used to overcome tangling and scattering problem. EACM is an
extension to CFM. CFM aims to provide better modularization and composition
mechanisms with respect to object-oriented methodologies. In CFM method calls are
processed by filters which are grouped as filter modules. A superimposition selector
chooses a set of classes. A query language (such as Prolog) can be used to construct
special filters and these filters can be applied on modules.

EACM is an extension of CFM introducing event filters, action filters, and high-

level events. On contrary to event filters, action filters have side-effects on programs.
Both of these filters may trigger high-level events as the result of their computation.
Than these high level events can be processed by high-level filters. These mechanisms
provide a hierarchy of events and filters such that resulting filters and filter modules
are parametric.

In this paper we investigate the effects of adding history sensitivity to computer
software that is already developed with the object-oriented methodology. As the case
study we worked with a simplified computer game. We assumed that the computer
game does not have any history sensitive features initially. Our first evolution
scenario is adding history sensitive features to the current game. Then we assumed
that these history sensitive features affect each other. In both cases we tried to
investigate the effects of history sensitivity. We try to find solutions to avoid tangling
and scattering in the evolution scenarios at the same time trying to minimize the

number of redefinitions. We would like to evaluate modularization and composition
techniques to provide better concepts and mechanisms to separate concerns suitably.

The paper is organized as follows. Section 2 defines the object-oriented design of
our case without history sensitivity. In Section 3, the problem statement is given in
detail. We add history sensitivity to the object-oriented model and investigate the
effects of it. We first discuss the required redefinitions in the Object-Oriented model.
Then we investigate the problem when Aspect Oriented Programming is used
comparing the number of redefinitions. We discuss the orthogonally restricted aspects
if the aspects do affect each other. In Section 4, the notion of state machine design for
composing several concerns is given. In Section 5, our solution approach for
orthogonally restricting aspects problem is explained. We summarize the related work
in Section 6. In Section 7, we evaluate the presented design approaches. Finally,
section 8 concludes the paper.

2 An Illustrative Example

We defined a simplified computer game to illustrate the problems. The case study is a
war game consisting of vehicles, weapons, and buildings, each of which has specific
behavior to perform the scenarios given below.

 Player moves a vehicle.
 Player fires a weapon to destroy the buildings.
 Vehicle is destroyed if it hits a building.

Fig. 1. Object-oriented design of the initial version of the game.

Object-oriented design of the war game that realizes the above scenarios is given in
Fig. 1. For instance, Vehicle class shown in the figure encapsulates the following
behavior. Its move methods update the position of the Vehicle by updating xPosition

and yPosition attributes. When a Vehicle is shot, shot method is called and its isShot
attribute is set to true. We assume that after the Vehicle is shot, it cannot move. The
following code snippet shows an example implementation of Vehicle class.

public class Vehicle {
 private int xPosition = 0;
 private int yPosition = 0;
 private boolean isShot = false;

 public void moveUp() {
 if (isShot == false)
 // update position in the up direction
 }

 public void moveDown() {
 if (isShot == false)
 // update position in the down direction
 }

 public void moveLeft() {
 if (isShot == false)
 // update position in the left direction
 }

 public void moveRight() {
 if (isShot == false)
 // update position in the right direction
 }

 public void shot() {
 isShot = true;
 }
}

After the first version of the game is released, following evolution scenarios are

required to be implemented in the next versions of the game. According to evolution
scenarios, history sensitivity is added to the game for graceful degradation. Wear/tear
of systems is introduced as given below.

 Vehicle runs out of fuel (fuel history): When a vehicle moves, its fuel
level decreases. If there is no fuel, the vehicle cannot move.

 Vehicle is destroyed gracefully as it gets shot (damage history for
vehicle): Vehicle has a damage level and is destroyed gradually. If it
touches the buildings, the damage level of the vehicle increases. If the
damage level reaches its maximum value, its isShot attribute is set to true.

 Weapon runs out of battery (battery history): Weapon has a battery
and as long as the user fires the weapon, the battery level decreases. If
there is no energy left in the battery, weapon cannot fire.

 Building is destroyed gracefully as it gets shot (damage history for
building): Buildings have damage levels as well. If a building is shot, the
damage level increases. If damage level of the building reaches its
maximum value, its isShot attribute is set to true.

These evolution scenarios have consequences to the operational behavior of the
software. In the following section, the problems that arise due to reimplementation of
the initial design, realizing the evolution scenarios, are discussed.

3 The Problem Statement

In the next version of the game, it is required that history sensitivity information is
added to the game as described in the previous section. First, basic object-oriented
design techniques are used to update the initial design. Then, aspect-oriented design
approach is considered without changing the initial OO design. These approaches and
the problems of them are discussed in the sequel.

3.1 Object-Oriented Design

First, we investigate the object-oriented techniques for adding the history sensitivity
to our initial design. Generalization is one of the OO techniques that can be used to
evolve each of the related classes according to the given evolution scenarios. Fig. 2
shows the updated design.

Fig. 2. Object-oriented design of the second version of the game.

Although, existing classes of the initial OO design can be re-used by

generalization, most of the methods of the super class have to be redefined. For
instance, move methods of Vehicle class must be re-implemented by
VehicleWithFuelHistory class as shown in the following code snippet. Before related
move method of Vehicle class is called, fuel level must be controlled. If there is
enough fuel for movement, then the related move method of Vehicle is called.
Otherwise, (if there is no fuel) the related move method is not called.

public class VehicleWithFuelHistory extends Vehicle {
 // set the fuel level to its maximum
 private int fuelLevel = 100;

 public void moveUp() {
 if (fuelLevel > 0) {
 // call moveUp method of Vehicle
 super.moveUp();

 // decrease fuel level
 fuelLevel = fuelLevel – 1;
 }
 }

 public void moveDown(){…}

 public void moveLeft(){…}

 public void moveRight(){…}
}

Damage history can be added to vehicle in a similar way. A new class, called

VehicleWithDamageHistory is inherited from VehicleWithFuelHistory as shown in
Fig. 2. This inheritance has the same problem: in order to add damage history we
should redefine move methods of VehicleWithFuelHistory class and the shot method
of Vehicle class. Similarly, damage level must be controlled before the related move
method of VehicleWithFuelHistory class is called. If damage level is not equal to its
maximum then the related move method is called. Each shot increases the damage
level. While the damage level is less than its maximum, shot method of Vehicle class
is not called. If damage level reaches its maximum, shot method is called and isShot
attribute is set to true. After isShot attribute is set to true, vehicle cannot move. The
following code illustrates an example implementation of VehicleWithDamageHistory
class.

public class VehicleWithDamageHistory extends VehicleWithFuelHistory
 {

 private int damageLevel = 0;
 private static int MAX_DAMAGE_LEVEL = 10;

 public void moveUp() {
 if (damageLevel < MAX_DAMAGE_LEVEL) {
 // call moveUp method of VehicleWithFuelHistory
 super.moveUp();
 }
 }

 public void moveDown(){…}

 public void moveLeft(){…}

 public void moveRight(){…}

 public void shot() {
 if (damageLevel != MAX_DAMAGE_LEVEL) {
 // increase damage level
 damageLevel = damageLevel + 1;
 }
 else {
 // call shot method of Vehicle
 super.shot();
 }
 }
}

Redefinition problem also exists for WeaponWithBatteryHistory and

BuildingWithDamageHistory classes. fire and shot methods have to be redefined in
WeaponWithBatteryHistory and BuildingWithDamage classes, respectively. The
number of redefinitions introduced by the evolution scenarios in the OO design is
given in Table 1.

Table 1. Number of redefinitions of OO design.

 # of Method
Redefinitions

of Classes
Introduced

VehicleWithFuelHistory 4 1
VehicleWithDamageHistory 5 1
BuildingWithDamageHistory 1 1
WeaponWithBatteryHistory 1 1
TOTAL 11 4

Until now, we assumed that the introduced history sensitivity features do not affect

each other. Now, assume that some of the defined history sensitivity features are
semantically related. For instance, fuel and damage history can affect each other such
that damage level changes fuel consumption rate and fuel level changes damage rate.
Fuel consumption rate and damage rate are defined as 1 in the previous code snippets.
As an OO technique, multiple inheritance can be applied as stated in [1]. Vehicle
class can be inherited from both VehicleWithFuelHistory and
VehicleWithDamageHistory. However, multiple inheritance does not solve the
redefinition problem such that the methods of these two classes cannot be used
directly and should be redefined. Further, we should also consider that multiple
inheritance is not supported by all OOP languages.

3.2 Aspect-Oriented Design

In this section, aspect-oriented design techniques are investigated to solve the
redefinition problem. For each of the evolution scenarios, a new aspect is defined.
BuildingDamageAspect and VehicleDamageAspect are introduced to add damage
history to the Building and to the Vehicle classes of the base design, respectively.
VehicleFuelAspect is defined to add fuel history to the vehicle class and
WeaponBatteryAspect is defined to add battery history to the weapon class. These
aspects are illustrated in Fig. 3.

Fig. 3. Aspect-oriented design of the second version of the game.

VehicleDamageAspect and VehicleFuelAspect are defined in the following code

snippets. Moreover, OrderingAspect have to be defined to declare the precedence
ordering between these two aspects since both of them catch the same join points
which are calls to the move methods.

public aspect VehicleDamageAspect {
 private int damageLevel = 0;
 private int MAX_DAMAGE_LEVEL = 100;

 pointcut triggerShot(): call (* Vehicle.shot(..));

 void around(): triggerShot() {

 damageLevel = damageLevel + 1;
 if (damageLevel > MAX_DAMAGE_LEVEL) proceed();
 }

 pointcut triggerMove():
 call (* Vehicle.move*(..));

 void around():triggerMove () {
 if (damageLevel < MAX_DAMAGE_LEVEL) proceed();
 }
}

public aspect VehicleFuelAspect {
 private int fuelLevel = 100;
 private int MIN_FUEL_LEVEL = 0;

 pointcut triggerMove():
 call (* Vehicle.move*(..));

 void around():triggerMove () {
 fuelLevel = fuelLevel - 1;
 if (fuelLevel > MIN_FUEL_LEVEL) proceed();
 }
}

public aspect OrderingAspect {
 declare precedence: VehicleDamageAspect, VehicleFuelAspect;
}

Using aspect-oriented techniques instead of object-oriented techniques solves the

redefinition problem. Considering the aspects described above, the number of
redefinitions vanishes as given in Table 2. Note that, each aspect is considered as a
new class.

Table 2. Number of redefinitions of AO design

 # of Method
Redefinitions

of Classes
Introduced

VehicleFuelAspect 0 1
VehicleDamageAspect 0 2
BuildingDamageAspect 0 1
WeaponBatteryAspect 0 1
TOTAL 0 5

When the OO design and the AO design approaches are compared with respect to

the number of redefinitions, AO design seems superior. We see that AO approach
solves the redefinition problem if the aspects are semantically unrelated, where
aspects do not affect each other. However, AO approach may also have problems if
they are semantically related, or in other words, orthogonally restricting aspects, as
discussed in the following section.

3.3 Orthogonally Restricting Aspects Anomaly

If several aspects are defined independently and affect each other semantically, we
call this problem orthogonally restricting aspects anomaly. This definition is adopted
from orthogonally restricting specifications, which is defined in [1]. Initially, we
assume that the introduced history sensitivity features do not affect each other. For
instance, fuel history and damage history can be defined for Vehicle class
independently:

 If a vehicle has fuel, it can move. Otherwise, it cannot move. Each move
decreases fuel level by 1. (Fuel consumption rate is defined as constant and
its value is equal to 1 as shown in the previous code snippets.)

 If a vehicle is shot, its damage level increases. As long as its damage is less
than its maximum, the vehicle can move. After damage reaches to its
maximum, then the vehicle cannot move. (Damage rate is also defined as
constant and its value is equal to 1 as shown in the previous code snippets.)

 Then, assume that it is required that some of the defined history sensitivity features
should be semantically related. For instance, fuel and damage history of vehicle can
affect each other such that damage changes fuel consumption rate and fuel level
changes the damage rate:

 If damage is high, fuel consumption rate is also high. While damage
increases, fuel consumption rate also increases.

 If fuel level is high, damage rate is also high. While fuel level decreases,
damage rate also decreases.

According to this scenario, VehicleDamageAspect and VehicleFuelAspect affect

each other semantically. Fuel Level (FL) must be adjusted considering the Damage
Level (DL) of the vehicle, that is fuel consumption rate (FCR) increases
proportionally with damage level. Damage level of the vehicle is adjusted considering
the fuel level of the vehicle, that is Damage Rate (DR) increases as fuel level
increases. The interrelation between the two orthogonally restricting aspects are
shown in Table 3.

Table 3. Orthogonally restricting aspects

 Fuel Aspect Damage Aspect
Fuel Aspect - FL ↑ DR ↑
Damage Aspect DL ↑ FCR ↑ -

We can define only one aspect to control both damage and fuel. This aspect has

two new attributes for damage rate and fuel consumption rate. When fuel level is
updated, damage rate is also updated according to fuel level. Similarly, when damage
level is updated, fuel rate is also updated according to damage level. This approach
has three drawbacks. The first drawback is that, two different concerns (damage and
fuel) are defined in the same aspect so tangling occurs. The second one is that it does
not use previously defined two aspects so it is not a modular extension. The last

drawback is that, long if-else blocks are used to update fuel rate and damage rate as
shown in the following code snippet:

public aspect VehicleDamageFuelAspect {
 private int damageLevel = 0;
 private int MAX_DAMAGE_LEVEL = 10;
 private int damageRate = 1;

 private int fuelLevel = 100;
 private int MIN_FUEL_LEVEL = 0;
 private int fuelRate = 1;

 pointcut triggerShot(): call (* Vehicle.shot(..));

 void around(): triggerShot() {
 damageLevel = damageLevel + damageRate;

 // update the fuel rate according to damage level
 updateFuelRate();

 if (damageLevel > MAX_DAMAGE_LEVEL) proceed();
 }

 pointcut triggerMove():
 call (* Vehicle.move*(..));

 void around():triggerMove () {
 if (damageLevel < MAX_DAMAGE_LEVEL) {
 fuelLevel = fuelLevel - fuelRate;

 // update the damage rate according to fuel level
 updateDamageRate();

 if (fuelLevel > MIN_FUEL_LEVEL) proceed();
 }
 }

 void updateFuelRate() {
 if (damageLevel >= 8 && damageLevel < 10) {
 // update fuel rate according to this condition
 } else if (damageLevel >= 6 && damageLevel < 8) {
 // update fuel rate according to this condition
 }
 …
 }

 void updateDamageRate() {
 if (fuelLevel >= 90 && fuelLevel < 100) {
 // update damage rate according to this condition
 } else if (fuelLevel >= 80 && fuelLevel < 90) {
 // update damage rate according to this condition
 }
 …
 }
}

4 Notion of state-machines, events and actions

We have introduced the problem of orthogonally restricting aspects, where Fuel
Aspect and Damage Aspect are co-related in the previous sections. These two aspects
have to be composed in a modular way for re-use, to implement the history sensitivity
concern. We have discussed that such a modular composition is not possible. A
logical solution that comes to mind is to write a new aspect that implements both
damage and fuel history sensitivity concerns. This approach causes more and more
tangling with if-else statements to express these concerns in the same aspect.

Here, we argue that one can try to remove the undesired if-else blocks for different
concerns using a state-machine in the new aspect, toward a more flexible and re-
usable design. In the sequel, we discuss that this is not a proper solution for
orthogonally restricting aspects problem. However, it helps us recap the notion of
events and actions, and introduce a different way of separation and composition of
concerns.

Considering our case, we tackle the tangling problem of the new aspect by building
a state-machine as in Fig. 4. Instead of checking the damage level in fuel aspect, or
checking the fuel level in damage aspect, we use this state machine with the events
“move” and “shot” that trigger the actions to be taken in the states. Such a state
machine can be implemented as a finite state machine (JavaFSM) or a regular
expression (JavaERE) facilitated by JavaMOP [2]. Extending the state-machine with
more states (actions) for higher precision or with more events to implement another
dimension or concern is possible.

 stm stateDiagram

Game Start

«V=7»
D3F3

«V=8»
D3F2

«V=9»
D3F1

«V=4»
D2F3

«V=5»
D2F2

«V=6»
D2F1

«V=1»
D1F3

«V=2»
D1F2

«V=3»
D1F1

Game Over

[move] [move]

[shot] [shot] [shot]

[shot] [shot] [shot]

[move] [move]

[move] [move]

[move]

[move]

[move]

[shot][shot] [shot]

Fig. 4. State-machine, events and actions.

In our case, damage level influences fuel consumption rate and the fuel level
influences the damage rate. Thus, the effects of “move” and “shot” events, as given in
Fig. 4, are not independent. That is, the current state “D3F3” has to be changed to the
next state “D3F1” when a “move” event happens since the damage level is high and
the vehicle consumes more fuel when it moves. Similarly, we have to by-pass the
state “D2F3” when a “shot” event occurs in state “D3F3” since the vehicle gets more
damage when fuel level is high. In such an orthogonally restricting events-actions
case, the state-machine solution is not well-structured, hence not scalable.
Furthermore, the number of states may explode if higher resolution is required or
more dimensions are introduced.

In the next section, we discuss a modular solution approach based on the events

and the composition of the events that trigger the corresponding actions.

5 Composition of events and actions

In the previous section, we discussed AOP and the state-machine approaches which
work only if the concerns are independent. However, for the orthogonally restricting
aspects problem, neither presents a modular or re-usable extension mechanism. In this
section we present a modular extension framework that tackles the conflicting aspects
problem.

Composition of events has been introduced in [7]. Events are defined by a

declarative language, filtered and the corresponding actions are triggered as illustrated
in Fig. 5. When a new evolution scenario is introduced, new events or a composition
of the events can be defined. Extending the existing design is intuitive and modular in
this way. Dashed ellipses and boxes represent the extensions in Fig. 5.

Fig. 5. Composition of events.

If we consider our case, game with history sensitivity problem, event1 and event2

stand for the move() method and shot() method calls. Respectively, action1 and

event1 event2

e1 e2

Action1

e1&e2

Action2 Action12

action2 stand for modifying the FuelLevel and the DamageLevel. The composition of
semantically related concerns are discussed further in [3] as composition anomalies.

The composition of events and actions approach is extensible, where further events
are defined on top of the actions. This approach is based on event-action-composition
model (EACM) presented in [7]. Higher level events can be generated from actions as
well as events. For our case, we introduce higher level events triggered by actions.
This feature guides us to solve history sensitivity problem with orthogonally
restricting aspects by using the higher level events that are generated by the
corresponding actions. This provides more flexibility for reusable and modular
extensions.

As explained in the previous sections, damage level affects fuel level and fuel level

affects damage level. These effects can be expressed by writing long if-else structures
or by introducing new variables. For our case, two new variables are introduced.

 Fuel consumption can be added as a new variable. While a vehicle moves, it
decreases its fuel level according to its fuel consumption. In the initial
version of the game, there is no fuel level. In the next version of the game,
fuel level history is implemented but it is not affected by damage level such
that each move operation decreases the fuel level by 1. Actually, each move
operation decreases the fuel level by fuel consumption at that time. If we
introduce a new variable called FuelConsumption and this variable is used
directly in move operations, the only remaining problem is setting the fuel
consumption. Damage level affects the fuel consumption. Damage level is
changed when shot operation is called. When damage level changes, fuel
consumption should also be changed.

 Damage rate can also be added as a new variable. While a vehicle is shot, it
increases its damage level according to its damage rate. In the initial version
of the game, there is no damage level. In the next version of the game,
damage level history is implemented but it is not affected by fuel level such
that each shot operation increases the damage level by 1. Actually, each shot
operation increases the damage level by damage rate at that time. If we
introduce a new variable called DamageRate and this variable is used
directly in shot operations, the only remaining problem is setting the damage
rate. Fuel level affects the damage rate. Fuel level is changed when move
operation is called. When fuel level changes, damage rate should also be
changed.

Fig. 6. Events on actions.

This scenario shows that actions can cause other events and these events results in
other actions. Fig. 6 illustrates this case.

 Event1: move operation is called
 Action1: FuelLevel is decreased by FuelConsumptionRate
 Event11: Changing the FuelLevel
 Action11: May change DamageConsumptionRate

 Event2: shot operation is called
 Action2: DamageLevel is increased by DamageRate
 Event21: Changing the DamageRate
 Action21: May change FuelConsumptionRate

7 Related Work

In [1], authors discuss orthogonally restricting features problem from real-time
perspective. In their work, several real-time specifications are defined independently
and they are combined by using multiple inheritance. If these specifications affect
each other semantically, these specifications may have to be re-defined. To solve this
problem, each real-time specification has a parameter in order to state its real-time
constraints. When two methods have to be combined, this parameter is checked to
identify which specification is applicable.

Although Object Oriented Programming (OOP) solves many problems of

Procedure Oriented Programming (POP), many OOP techniques are not sufficient to

Action1:
FL=FL-FCR

Action11:
Update DR

Action21:
Update FCR

e1:move()
is called

e11:FL
is set

e21: DL
is set

Action2:
DL=DL+DR

e2:shot()
is called

capture some of the important design decisions that the developer must implement
bringing scattered and tangled code [15].

Aspect Oriented Programming (AOP) is a methodology to improve the modularity

of the software when the software has crosscutting concerns. AOP claims that change
from POP to OOP is not complete and programmers need more dimensions [9].

AOP may solve many problems related with the object oriented programming.

AOP aims to make the design and the code more modular. This means localizing
concerns instead of scattering them. But on the other hand, superimposing aspects on
software modules may cause side effects. New techniques are required to cope with
this problem [8].

In [14], authors claim that the history-based aspects cause high runtime overhead

and if domain knowledge is used compilers may apply powerful optimizations. Since
current AOP languages do not provide tools for optimization they introduce
“dependent advice” as a new extension to AspectJ language to preserve domain
knowledge. They use a code generation tool to automatically generate dependency
advice to lower the runtime overhead caused by history-bases aspects.

Akşit et. all [8] claim that one of the main problems of AOP is the aspect

interference problem. They presented Composition Filter (CF) approach and
introduce Compose* tool to detect and correct the semantic conflicts among aspects
which are superimposed on the same join point.

Composition Filters (CF) uses the conventional object model and considers an

object as an entity that performs some assigned functions [10, 12]. Within a system,
entities interact with each other to achieve a common task. In the object model, most
interactions are done by sending and receiving messages, that is where CF is
introduced. By controlling messages (changing their targets and/or selectors) and
through a well constructed interface, CF provides suitable solutions to many problems
[10]. One of the CF approach strengths is the use of a uniform filtration mechanism to
resolve these problems. From this viewpoint, CF is easy to understand and work with
as it only adds few concepts to the object model. Like AspectJ, CF is one of the well-
known and mature AOP approaches seeking new modularization concepts [13].

Events, Actions, and Compositions Model (EACM) is introduced as an extension
to Composition Filter Model (CFM). In this model event filters and action filters are
introduced both of which can trigger higher level events. Since filters and filter
modules can be parametric they can be passed as arguments. The E-Chaser language
is proposed to adopt EACM. Events, actions, and compositions are the first class
linguistic constructs in this language. E-Chaser can be used in implementing runtime
enforcement systems. Although it is based on CFM, E-Chaser provides dedicated
constructs to define filter modules, filters and superimposition selectors which are
defined as Prolog rules. Since it is possible to develop generic filter modules using
parametric filter modules and filters, the codes can be evaluated free of tangling and
scattering enabling software reuse and maintainability [7].

8 Evaluation

In this section, we evaluate the presented design approaches and make their
advantages and disadvantages more clear. We begin with explaining the quality
factors to compare different approaches. Our quality factors are related with modular
extension. An approach is preferable if it enables the developers to make modular
extensions. A modular extension can be defined by reuse and number of re-
definitions. If a new functionality is added to the system as a new module and it re-
uses the previously developed modules by reducing the number of re-definitions, it is
a modular extension. If a proposed approach reuses the previously developed modules
but also causes a lot of re-definitions instead of using them directly, its modular
extension level is considered as low. Similarly, if an approach does not use the
previous modules and all of the modules are defined from scratch, it is not definitely a
modular extension because it is not an extension.

First, we evaluate object-oriented extension. We investigate OO techniques for
adding history sensitivity to our initial object-oriented design in Section 3.1.
Generalization technique is applied to re-use the previously developed classes.
However, it is shown that generalization causes many redefinitions. As given in Table
1, 11 methods have to be redefined when 4 new classes are added. If we further
assume that the added history sensitivity features affects each other, then the problem
gets even worse. As an OO technique, multiple inheritance can be applied as stated in
[1]. We should also notice that multiple inheritance does not supported by all OOP
languages. If we assume that we apply multiple inheritance, it also causes redefinition
problem.

In order to overcome redefinition problem, AOP techniques are investigated. Each

new history sensitivity feature is defined as a new aspect instead of inherited classes.
If these features are semantically unrelated, redefinition problem is solved by AOP.
As shown in Table 2, AOP causes no redefinitions. However, if we assume that if
some of the introduced features affect each other, a new problem called orthogonally
restricting aspects problem occurs. If we define all semantically related history
sensitivity features only as one aspect, several drawbacks occur such as tangling and
long if-else blocks.

State machine based approach requires defining the each case as a new state,

instead of writing long if-else blocks. State machines can be implemented by OO
design or AO design. A state machine can also be written as a separate specification
as stated in [6]. Events and state machine specifications are defined together and
events are used to trigger the state machine. The most important problem of the state
machines is extensibility. For example, if a state machine is defined for two
parameters (assume that these parameters are boolean so there are four different
states) and then if a new parameter is introduced (assume that the newly added
parameter is also boolean so it increases the number of states to nine), the whole state
machine should be defined from scratch.

Our proposed solution to overcome orthogonally restricting aspects anomaly is
based on event compositions and events on actions [7], which is a promising solution
for modular extension. It maximizes the reuse of the previously defined actions. It
introduces new actions and new events while the system evolves. Events can be
combined to make new events that can also be associated with actions. According to
this approach, actions can yield new events and these new events can trigger new
actions in turn. These events are called higher-level events. This hierarchy can be
applied to higher-levels as needed. This approach solves both redefinition problem
and orthogonally restricting aspects anomaly for our case study.

9 Conclusion

Evolution of software is irresistible. Main problem is how to design a software system
that is flexible to accommodate the required extensions, minimally altering the base
design. This flexibility is not possible with the existing object-oriented design
methods since concerns or aspects cannot be expressed as first class entities in OOP.
A better solution is to have modular extension mechanisms that do not tangle the base
code, and that supports reliable integration of the new modules.

In this paper, we considered history sensitivity problem that is introduced on top of an
existing object-oriented solution for a simple game. First, it is shown that object-
oriented design techniques cannot undertake the history sensitivity based evolution
scenarios without redefining the original code. Then, an aspect-oriented solution for
modular adaptation of the evolution scenarios is given. As more scenarios are
introduced, the problem of orthogonally restricting aspects occurs. Aspect-oriented
solution loses its modularity and reusability, causing further tangling and scattering,
hence breaking the principle of separation of concerns due to the mixed structure of
events (pointcuts) and actions (advises) in the aspects.

As a modular and reusable extension mechanism, a state-machine approach is
investigated in order to implement several concerns in the same module (aspect).
State-machines do not provide standard extension mechanisms when new concerns
are added as new dimensions of events and state. However, if such extensions grow in
a well-structured way, regular expressions or finite-state automata can be used for
extensions, reusing the original state-machine design.

Finally, the idea of separation of events and actions is discussed where events and
actions are defined independently. Composition of events that trigger corresponding
actions, and events on actions methods are discussed as a modular and more reusable
way of supporting unavoidable evolution requirements.

References

1. Aksit, M., Bosh, J., Sterren, W., Bergmans, L.: Real-Time Specification Inheritance
Anomalies and Real-Time Filters., pp. 386--407. Springer Verlag (1994)

2. F. Chen, C. Lee, and G. Roşu. Mining parametric speci_cations. Technical report,
University of Illinois, 2010. URL http://hdl.handle.net/2142/15109.

3. Bergmans, L., Tekinerdogan, B., Magy, I., Aksit, M., An Analysis of Composability and
Composition Anomalies, Internal Report.

4. Havinga, W., Bergmans, L., Aksit, M., Prototyping and Composing Aspect Languages
Using an Aspect Interpreter Framework, ECOOP 2008 Object Oriented Programming,
Lecture Notes in Computer Science, 2008, Volume 5142, pp. 180-206.

5. Havinga, W., Staijen, T., Rensink, A., Bergmans, L. Berg van den, K., An Abstract
Metamodel for Aspect Languages, Internal Report.

6. Malakuti, S., Bockisch, C., and Akşit, M, “Applying the Composition Filter Model for
Runtime Verification of Multiple-Language Software”, 20th International Symposium on
Software Reliability Enginnering, pp. 31-40, 2009.

7. Malakuti, S., Akşit M., and Bockisch, C., “Events, Actions, and Compositions”, University
of Twente, Enschede, The Netherlands, 2011.

8. Durr, P., Stajlen T., Bergmans, L., and Akşit M., “Reasoning About Semantic Conflicts
Between Aspects”, University of Twente, The Netherlands.

9. http://c2.com/cgi/wiki?AspectOrientedProgramming
10. Akşit, M., and Tekinerdoğan, B., “Solving the modeling problems of object-oriented

languages by composing multiple aspects using composition filters”, University of Twente,
Center for Telematics and Information Technology.

11. Elrad, T., Akşit, M., Kiczales, G., Lieberherr, K., and Ossher, H., et. all, “Discussing
Aspect of AOP”, Communications of the ACM, October 2001, Vol. 44, No:10.

12. Meslati, D., Kimour, M.T., and Ghoul S., “From Composition Filters to AspectJ”, Journal
of Computing and Information Technology, 2006, 2, 111-131.

13. Meslati, D., “On AspectJ and Composition Filters: A Mapping Concept”, Informatica,
2009, Vol. 20, No: 4, pp555-578.

14. Bodden, E., Chen F., and Roşu, G., “Dependent Advice: A General Approach to
Optimizing History-based Aspects”, AOSD’09, March 2-6, 2009, Charlottesville, Virginia,
USA, ACM 978-1-60558-442-3/09/03.

15. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier J.M., and
Irwin, J., “Aspect-Oriented Programming”, Proceedings of the European Conference on
Object-Oriented Programming, Finland, June 1997.

