
A New Meta-Data Structure For Telecommand
and Telemetry Transmission in Space Missions?

Uzay Görevlerinde Uzkomut ve Uzölçüm
İletimine Yönelik Yeni Bir Meta-Veri Yapısı

Fatih İleri1

Turkish Aerospace Industries Inc., Ankara, Turkey
fatih.ileri@metu.edu.tr

Abstract. Increasing complexities in satellite missions require the telecom-
mand (TC) and telemetry (TM) transmission and the data structures
within the telecommands and telemetries to be designed to meet the
complex mission requirements. Building complex data structures yields
a heavy work load on the development stage, while transmission of such
data frames consumes a significant amount of time period of the avail-
able space link interval. In order to respond these challenges, a metadata
model which is able to be generated through XML formation, together
with the TC encoder, TM decoder (on the ground station), TC decoder
and TM encoder (on the flight SW (FSW)) is developed in this work. This
metadata model enables easy production of complex telecommands and
telemetries composed of various combinations of field types and nested
structures.

Keywords: metadata · telecommand · telemetry · encoder · decoder ·
space missions.

Özet. Uydu görevlerindeki karmaşıklıkların artması, uzkomut ve uzölçüm
iletiminin ve uzkomut - uzölçüm veri yapılarının karmaşık görev gereksin-
imlerine de cevap verebilir şekilde tasarlanmasını gerektirmektedir. Karmaşık
veri yapıları inşa etmek yazılım geliştirme sürecine ağır bir yük getirmek-
teyken, bu tür veri paketlerinin iletimi de mümkün olan uydu bağlantısı
süresinin ciddi bir kısmını tüketmektedir. Bu zorluklara cevap vermek
üzere XML düzeni aracılığıyla kodu üretilebilen bir meta-veri modeliyle
birlikte yer istasyonunda uzkomut kodlayıcı, uzölçüm çözücü, uçuş yazılımında
uzkomut çözücü, uzölçüm kodlayıcı geliştirdik. Bu meta-veri modeli,
veri tiplerinin çeşitli kombinasyonlarından ve iç içe yapılardan oluşan
karmaşık telekomutların kolayca üretilmesini mümkün kılmaktadır.

Anahtar kelimeler: meta-veri · uzkomut · uzölçüm · kodlayıcı · kod
çözücü · uzay görevleri.

? Supported by Turkish Aerospace Industries Inc.



2 Fatih İleri

1 Introduction

Space missions are getting more and more complex in the recent years, such that,
space missions pose hard challenges reflected through a multitude of dependent
parameters [1]. Besides the transmission challenges due to the increasing size of
telecommands and telemetries from the bandwidth point of view, decomposing
the telecommands and the telemetries also brings extra load at the correspond-
ing receivers as the variety of these data frames increases. Defining and tailoring
mission-oriented telecommands and telemetries is also a hard task from the de-
velopment point of view, such that a modular metadata design is an emerging
need.

Satellite communication system SW design and implementation is a huge
work load, which should be based on modularity as much as possible for the SW
to be easily tailored for new satellite systems. The required modularity should
enable easy tailoring the SW system through the configuration files stored in
databases rather than making modifications on the code itself [2]. Architectures
which have the capability of self-adaptation in the runtime with respect to the
modified requirements are named as “meta-architectures” [3]. Thomé et. al. im-
plemented a such an architecture for controlling (monitoring and commanding)
multiple satellites dedicated for different missions through a common infrastruc-
ture [3]. They designed different metadata for each of the satellites to be con-
trolled. Each metadata set composes a different part of a single object model. A
satellite operator is permitted to utilize only the part of the object model which
is related to the satellite system he/she is authorized to control. The authors
do not provide details about the metadata they used but the work they did is
important from the usage scenario point of view.

In 2004, Simon et. al. published the XTCE - an XML based standard for the
mission operation databases - which constitutes a basis for our meta-data model
[4]. In XTCE, the output bit stream is composed of containers. A container may
contain other containers. The useful data packaging unit is named as “message”.
A message together with the identifier key is encapsulated by the “key container”
entity. The key is used by the receiver unit in identifying the related message.
The atomic data unit in the XTCE context is the “parameter”. A parameter has
different features such as type, size and bit order. All the types of parameters
such as integer parameters, float parameter, array parameters and etc. are in-
herited from the parameter base class. All the telemetry and telecommand data
structures can be defined in XTCE format as discussed here.

In this work, we propose a tailored version of the XTCE approach, which
has a hierarchical architecture enabling code generation, to define the telecom-
mands and the telemetries together with all the subcomponents. Once a TC or
TM is defined in XML format with respect to our metadata model, then the
metadata code for the TC or TM can easily be generated. The modularity of
this metadata structure enables quickness and easiness in populating different
versions of telecommands and telemetries. This metadata model can easily be
integrated with the TM and TC encoders and decoders to be used in FSW and



Title Suppressed Due to Excessive Length 3

ground station software (GSW). Telecommands and telemetries are called as
“data frame” in next chapters for simplicity.

2 Methodology

The metadata is built for all the data frame (TC and TM) structures in a hier-
archical manner in XML formation for them to be programmatically populated.
All the metadata are stored in both the onboard computer and the ground sta-
tion. The metadata representing a TC is utilized by the encoder module of the
GSW, which generates the bit stream. The generated bit stream is passed to
the next layer to be transmitted to the satellite. Same methodology is applied
for the TM delivery: The metadata representing a TM frame is used by the TM
encoder module of the FSW, for the corresponding bit stream to be generated.
Once the TM bit stream is generated, it is forwarded to the next layer to be
transmitted to the ground. Decoding of a TM by the GSW, and a TC by the
FSW are handled in a similar manner.

2.1 Metadata Model Components

Field descriptions constitute the biggest part of the metadata. Field descrip-
tions contains all the information related to the component it refers to. Each
description consists of the following:

– descriptionType: field or array
– isConditional: The flag that represents whether the existence of the related

field is dependent to a condition or not.
– conditionDescription: Details of the condition on which the existence of

the field in question depends.
– fieldData: Includes the decription of a single element (field).

• offset: Number of bytes before this field in the encapsulating structure
in the metadata.

• nativeFieldType: Enumerator representing the primitive type of the
field in the output structure of the decoder or input structure of the
encoder.

• encodedFieldType:Represents how the native field is encoded (e.g.
unsigned, twos complement, and etc.)

• fieldBitLength: Size of the fields in bits
• fieldEndianness: Represents the bit ordering of the field.
• polynomialCoefficientsIndex: The index of the polynomial coeffi-

cients in the polynomial coefficients multidimensional array, to be applied
on the raw field value to obtain the corresponding engineering value.

• rangeIndex: The index of the range description in the range descrip-
tions array, which enables range validation on the field in question. Neg-
ative value is assigned to rangeIndex if there is no need for a range check.

– arrayData: Includes the decription of an array.



4 Fatih İleri

• arrayStartOffset: Number of bytes in the encapsulating structure be-
fore the first element of this array

• isSizeFieldConstant: The flag which shows whether the array size is
constant or located in a position in the metadata

• constantArraySize: If the isSizeFieldConstant flag is “True”, then the
array size is written in the constantArraySize field.

• arraySizeFieldOffset: If the isSizeFieldConstant flag is “False”, array-
SizeFieldOffset shows from where to read the array size information in
this metadata. arraySizeFieldOffset is relative to the array level in which
this array is nested, or absolute (relative to the start of the upper layer
data frame structure) if there is no nesting.

• arraySizeFieldOffset: The enumerator which represents the type of
the array size field. It is the same enumerator with the nativeFieldType
of the fieldData.

• arrayElementSize: Number of bytes allocated in the output structure
of the decoder or input structure of the encoder per element of the array
in question.

• arrayDescriptionSpan:Number of component descriptions for the ar-
ray in question. It is used to understand where the descriptions of the
next element of the data to be transferred begins in the metadata.

Only one of the components fieldData and arrayData can exist in a component
description, since a component in the data frame can either be an array, or a
single field. But each element of array may contain another array together with
a field, which is called “nested array”.

2.2 Conditional Fields, Arrays

When the isConditional flag of a description is “True”, the described element
may or may not exist in the data frame bit stream depending on the condition.
conditionDescription field in the metadata describes how to apply a conditional
check on the related field or array. A conditionDescription is composed of the
following components:

– navigationParameters: A set of parameters through which the encoder
or decoder module is supposed to compute the address of the field value on
which the condition check is going to be applied.

– conditionFieldType: Primitive type of the condition field
– conditionValue: The value which will be used to determine the existence

of the field in question

The pathway in applying a condition check on a field is as follows:

1. Calculate absolute offset of the field which is going to be checked,
2. Retrieve value from the field,
3. Apply equality check between the field value and the conditionValue,



Title Suppressed Due to Excessive Length 5

4. If values are equal, then the described component (array or field) exists in
the data frame bit stream,

5. If not, the described component is not present in the data frame bit stream.

An important detail about retrieving a value by using the absolute and relating
offset values is that the offsetting should be related to a field which is already
parsed from the data frame bit stream (for decoding), or written to the data
frame bit stream (for encoding).

2.3 Calibration

Calibration is the conversion of a raw value to its corresponding engineering
value. This is generally needed when it is more efficient to send the raw value to-
gether with the calibration parameters when compared to sending the resulting
engineering value [5]. In our metadata model we implemented polynomial cali-
brations, such that the calibration parameters are the polynomial coefficients.

All the coefficients are stored in a single array. The field which will be cali-
brated has the index (stored in polynomialCoefficientsIndex )for the polynomial
coefficients table. If no calibration is to be applied, polynomialCoefficientsIndex
is set to a negative number. The polynomial coefficients table is an array of poly-
nomialCoefficients elements. Each polynomialCoefficients element is composed
of:

– A variable for the number of coefficients,
– A pointer for the reaching the first polynomial coefficient on the coefficients

array.

Once the calibration parameters are accessed, then the engineering value is com-
puted simply as in the following:

e =

n−1∑
i=0

c[i]ri (1)

where;
n is the number of polynomial coefficients associated with the field in question,
c is the array of polynomial coefficients,
r is the raw value,
e is the engineering value.

2.4 Range Check

Range check is a protective process before encoding or decoding a data frame.
Range check is applied on a field in the data frame if its description indicates
a range check necessity (i.e., rangeIndex has a non-negative value in the related
field description). Range descriptions array is composed of RangeDescription
objects. A RangeDescription object has the following attributes:



6 Fatih İleri

– rangeType: Type of the range check to be applied (e.g. lower limit check,
upper limit check and etc.)

– rangeOperationParameters: The parameters of the range check oper-
ation like the lower and upper limits, or the primitive type of the limit
parameters.

A field, value of which is 20, should pass the range test given on Table 1:

Table 1. A range description example

“lowLimitCheck” int8 -100 Null 0 Null

rangeType valueType minVal maxVal permittedValuesCount permittedValuesStartAddress

When the range test of any field of the data frame fails, the overall data
frame is discarded and some alert mechanisms specific to the application should
be initiated.

2.5 Array Description

An array description is followed by its elements’ description(s) in the metadata.
Elements of an array may be of primitive types, structured types, or combi-
nations of primitive and structured types. Figure 1 demonstrates a single level
(array composed of non-array elements) array description. Each element of the
given sample array is a structured type, which is composed of two primitive type
fields. It is also worth emphasizing that any integer element of the array which
is encoded in the data frame bit stream with n bits, may be represented with m
bits signed integer position in the upper layer structure (output of the decoder
or input of the encoder), where m is larger than n.

2.6 Nested Arrays

If any sub-field of an array is also an array, this architecture is called “nested
array”. The metadata structure we propose provides a flexible nested array def-
inition. Before giving an example of nested array description, it is needed to
mention the “array level info” table. When decoding or encoding an array, the
information necessary to use with the offset values to compute the absolute lo-
cation of any field in the higher level structure are kept in a table called “array
level info”. Number of entities in this structure gives the array level in which the
encoding or decoding process is being carried on.

A graphical representation of a nested array description is given in Figure 2.
Each element of the outer array consists of a 16 bits signed integer and an array.
The inner array consists of unsigned integers (encoded with 8 bits in upper layer
structure).



Title Suppressed Due to Excessive Length 7

Fig. 1. Nested array description example



8 Fatih İleri

Fig. 2. Illustration of a nested array

2.7 The Codec Table

The field descriptions metadata is provided to the encoder or decoder within a
codec table. One can define the codec table as the metadata of the field descrip-
tions metadata. Components of the codec table is given below:

– Number of field descriptions & field descriptions array,
– Number of range descriptions & range descriptions array,
– Number of polynomial coefficients & array polynomial coefficients,
– Byte parsing direction.

Finally, considering the TC transmission; a TC bit stream is transmitted
from GS to the FSW together with the codec table for the FSW to decode the
TC bit stream. Similarly, GS utilizes the codec table to encode the upper layer
TC structure to the TC bit stream with the minimum number of bits to represent
the whole data. Block diagrams of TC encoding in GS, and TC decoding in FSW
are given in Figure 3 and Figure 4, respectively. The opposite direction of the
same pathway is applied in TM transmission.



Title Suppressed Due to Excessive Length 9

Fig. 3. Block diagram for TC encoding in GS

Fig. 4. Block diagram for TC decoding in FSW



10 Fatih İleri

3 Conclusion and Future Work

In this work, we developed a metadata structure which guides the GSW and the
FSW through the encoding and decoding of data frames. The proposed meta-
data structure minimizes the bit length of the transmitted data frame, reducing
the bandwidth needed per data frame, which is a critical parameter especially
for the LEO satellites [6]. Since the metadata architecture is hierarchical, any
TM or TC data structure can be defined in XML format, so that the metadata
code for that data frame can be generated. This also enables easy tailoring of
TM and TC structures. The encoder and decoders within this work are designed
in iterative fashion, while it is possible to utilize recursion. Recursive implemen-
tation decreases the code size and complexity of the encoder and decoder. On
the other hand, it is not considered safe to implement on the onboard computer,
since it may lead to fatal errors when in erroneous codec table cases. Besides
all these; considering the approximate code size of TM/TC interfaces in space
projects, the proposed metadata format may reduce the TM/TC interface devel-
opment effort significantly. As the future work; we are planning to build a specific
language together with an editor to generate XML based metadata models for
telecommands and telemetries. This is supposed to prevent syntax errors as well
as architectural errors in producing XML files representing data models.

References

1. Balint, T.S.: Nuclear systems for Mars exploration. IEEE Aerospace Conference Pro-
ceedings 2004, vol. 6. IEEE (2004). https://doi.org/10.1109/AERO.2004.1368102

2. Yoder, J. W. et al.: Architecture and Design of Adaptive Object-Models. ACM
Sigplan Notices, Vol. 36, pp. 50–60 (2001)

3. Thomé C. et al.: SICSDA: An adaptive configurable distributed software architec-
ture applied to satellite control missions. (2010)

4. Simon, G. et al.: XTCE: a standard XML-schema for describing mission oper-
ations databases. IEEE Aerospace Conference Proceedings 2004, IEEE (2004).
https://doi.org/10.1109/AERO.2004.1368138

5. CCSDS Secretariat: Telecommand Data Management Service. NASA, Washington,
DC 20546, USA (2001)

6. Belokonov, I. et al.: The Technology of LEO Satellite Communication Systems Uti-
lization for the Rapid Exchange of Data with the Low-altitude Spacecraft: Scientific
Technological Equipment “Kontakt-MKA” On the Small Spacecraft “AIST-2”. Pro-
cedia Engineering, vol. 204, pp. 147–156 (2015)


