
Extraction of Functional Structure Graph

from System Design Documents

Eiichi SUNAGAWA and Shinichi NAGANO

Toshiba Corp., Komukai-toshiba-cho 1, Kawasaki, Kanagawa 212-8582, Japan

{eiichi1.sunagawa, shinichi3.nagano}@toshiba.co.jp

Abstract. In system development, reuse of modules from existing systems is an

important issue. However, such reuse becomes difficult in similar but customized

applications because the relations among module functions are complicated. To

address this problem, we aim to establish a technology that can extract, from de-

sign documents, a knowledge graph that represents the functional structure of a

system and use it in development of other systems. In this paper, we introduce

our knowledge-graph extraction framework and describe an experiment show a

partial extraction.

Keywords: function graph, knowledge graph, ontology, machine learning

1 Introduction

Nowadays, software systems are rarely developed from scratch. Instead, most reuse

existing modules. Rational Derivational Development and Software Product Line

(SPL) development are typical styles of system development using extant modules. In

doing such development, it is necessary to consider the functions and relations among

available modules (e.g. their behaviors and functionality) along with their purposes,

conditions, and requirements. However, migrating more complicated modules in-

creases the difficulty for developers to acquire knowledge about the system functions

because they have to read many documents, find the descriptions of functions of inter-

est, and summarize them.

This research aims to support developers seeking to understand the functional con-

figuration of systems, particularly those developed with reuse of several existing mod-

ules, by using a knowledge graph to represent how the system and its functions work.

The goal is to simplify development of a common platform for a series of system prod-

ucts. We establish technology that can extract the knowledge graphs of system func-

tions (function graphs) from design documents and integrate the graphs into a compre-

hensive model as a conceptual platform (Fig. 1) [1]. A graph of this type helps devel-

opers to share understanding of the system, to determine a common module that will

be needed for various services, to grasp the status of ongoing development projects, to

check the range of impact when adding a new module, to access necessary development

assets, and to improve the efficiency of the development process.

2

Fig. 1. Overview of Function Graph and Development Process

This paper introduces a part of our trial approach for extracting a knowledge graph

of system functions from design documents. In Section 2, we explain the extraction

method. In Section 3, we describe an experiment in which expressions are detected in

functions and, in Section 4, we discuss the result. In Section 5, we summarize this paper.

2 Extraction of Function Graph from Documents

In this research, a function graph is a directed graph network in which nodes and

links (edges) correspond functions and their relations, respectively. An example of a

function graph is shown in Fig.2.

Fig. 2. Example of Text and Function Graph

The nodes contain partial text from documents describing functions, such as the

names of the functions or the process in which the functions are used. Three types of

relations between functions are defined.

 Same-as: texts indicate the same function

 (Super-)Sub: one function includes the other as a sub-function

 (Pre-)Post: one function is executed after the other begins

A function graph is extracted from design documents semi-automatically by super-

vised learning model. An overview of the extraction is shown in Fig.3. First, texts in

the document are analyzed and divided into phrases, which typically consist of several

Derivational Developments for Customers

System
Require
ments

System
Design

Software
Design

Coding …

Documents

Function graphs
for each development

Integrated function graph
for series of system products

3

words. The phrases are converted into numerical vectors according to their words,

meanings as defined in a domain ontology, and modifying relations. After that, each

vector is classified into a class of expression for some function, or not. Finally, pairs of

function phrases are classified into a class in which some type of relation (including a

null relation) exists between the pair. To prepare the learning data, the system develop-

ers checked and corrected the results of classification and updated the learning data in

an online fashion before each classification. Moreover, the developers updated the on-

tology for feature extension.

The phrases and their pairs are converted into feature vectors based on documents.

However, developers determine which phrases are treated as functions and what rela-

tions are indicated by the phrases. Therefore, a function graph represents the develop-

ers’ interpretation and understanding of the design documents.

Fig. 3. Process of Function Graph Extraction

Feature Models [2] and functional decomposition trees [3] have already been proposed

also as a model for capturing the system hierarchically. These models are constructed

basically by hand.

3 Experiment

A point-of-sales (POS) system in the retail domain is a representative product, com-

posed of several modules and often customized for each retailer. Design documents

issued by the Open-POS Technical Council (OPOS document) are available for POS

systems with various specifications. Using the OPOS document, we performed an ex-

periment to detect expressions of functions.

First, we selected 18 chapters from the OPOS document, treating these as smaller

documents for designing each of the system modules: a line display, a scanner, a coin

dispenser, and so on. From one chapter, we manually built a function graph. Then, we

created and updated classification models with the learning data, applied the model to

another module document, extracting that document’s function graph, checked and cor-

rected it, and finally added learning data and updated the models. We repeated this

sequence for different orders of presentation of the modules.

Detection of
expression of

function
Learning

Data

Developer

IntegrationCreation of
relations among

functions

Documents

－－－－－
－－－－－
－－－－－
－－－－－
－－－－－
－－－－－

1. Extraction Function Model

Domain
Ontology

2. Checking and Correcting

• Correcting errors
• Complementing for missing data

• Resolve spelling variants
• Generalization of concepts

3. Adding Knowledge

4

4 Result

Figure 4 shows that the average AUC score changes as the amount of learning data

is increased. In one case, data are added according to the modules defined by the OPOS

document, in the other case, data are added from various modules after mixed and

equally divided. There was no notable difference in AUC score between these cases.

This likely reflects that each document among the modules includes important features

for extraction of the function graph. The performance was roughly similar among all

modules, which is expected when the writing styles are similar between documents.

When the data were presented by module, the precision and recall scores for detect-

ing expressions of functions were 0.68 and 0.72, respectively when averaged across the

whole process and 0.72 and 0.81, again respectively, for the last module. We conclude

from this that semi-automatic detection of functions is possible.

Fig. 4. Average AUC Scores Changing as the Amount of Learning Data

5 Conclusion

In this paper, we introduced a prospective approach for extracting a functional model,

which represents the functional structure of a target system, from system design docu-

ments. This should improve the reusability of development aspects. To show the work-

ing of this approach, we described an experiment in which expressions of functions

were detected from documents. In future work, we intend to develop an entire frame-

work for extracting and using functional graphs, increase the application’s generality,

and evaluate it.

References

1. SUNAGAWA, E., NAGANO, S.: An Approach to Extract Functional Model in System De-

sign Documents, SIG-SWO 044-01 (2018) (in Japanese)

2. Apel, S., Kästner, C.: An Overview of Feature-Oriented Software Development. Journal of

Object Technology 8(5), 49-84 (2009)

3. Kitamura, Y., et al.: Deployment of an ontological framework of functional design

knowledge. Advanced Engineering Informatics 18(2), 115-127 (2004)

