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Abstract. Probabilistic Bipolar Abstract Argumentation Frameworks (prBAFs),
combining the possibility of specifying supports between arguments with a prob-
abilistic modeling of the uncertainty, have been recently considered [34, 35] and
the complexity of the problem of computing extensions’ probabilities has been
characterized [22]. In this paper we deal with the problem of computing exten-
sions’ probabilities over prBAFs where the probabilistic events that arguments,
supports and defeats occur in the real scenario are assumed to be independent
probabilistic events (prBAFS of type IND). Specifically an algorithm for effi-
ciently computing extensions’ probabilities under the stable and admissible se-
mantics has been devised and its efficiency has been experimentally validated
w.r.t. the exhaustive approach, i.e. the approach consisting in the generation of all
the possible scenarios.

1 Introduction

An abstract argumentation framework (AAF) represents a dispute as an argumenta-
tion graph 〈A,D〉, where A is the set of nodes (called arguments) and D is the set
of edges (called defeats or attacks). Herein, an argument is an abstract entity that may
attack and/or be attacked by other arguments, where “a attacks b” means that argu-
ment a rebuts/weakens b. Reasoning on the possible strategies for winning the dispute
typically requires looking into the extensions of the AAF. An extension S is a set of
arguments that satisfies some properties certifying its “strength”, so that a party using
the arguments in S has reasonable chances to win the dispute. Different semantics for
AAFs (i.e., sets of properties assessing whether a set of arguments is an extension) have
proven reasonable, such as admissible (ad), stable (st), preferred (pr), complete (co),
grounded (gr), ideal (id) [14, 15, 2], and the complexity of the fundamental problem
EXT of verifying whether a set is an extension has been studied under each of these
semantics [19, 17].

Since the introduction of AAFs in [14], many variants have been proposed, with the
aim of modeling disputes more accurately. Among these, Bipolar Abstract Argumenta-
tion Frameworks (BAFs) allow supports, besides attacks, to be specified between argu-
ments. Specifically, two alternative formal semantics of support have been introduced:
in [6], the support is a generic “inverse” of the notion of attack (“abstract semantics”:
“a supports b” means that a strengthens the validity of a), while, in [4], it is viewed as a
“deductive” correlation between arguments (“deductive semantics”: if a supports b, the
acceptance of a implies the acceptance of b). The various extensions’ semantics defined
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for AAFs have been shown to have a natural counterpart over BAFs, after noticing that
combining attacks with supports (of any semantics) generates “implicit” attacks (see
Example 1).

Example 1. The graph in Figure 1 is a BAF with six arguments a, b, c, d, e, f . The
dashed and the standard arrows denote supports and attacks, respectively. The co-existence
of supports and attacks entails the existence of implicit attacks. For instance, under both
the abstract and deductive semantics, the fact that a strengthens b and b attacks c implic-
itly says that a attacks c. This kind of implicit attack is often called “supported attack”.
If the deductive semantics is adopted, there are other forms of implicit attacks. For
instance, since a supports b and e attacks b, there is an implicit attack from e to a. Oth-
erwise, a would be acceptable while b would be not, thus contradicting the deductive
support from a to b.

Other variants of AAFs that, owing to their practical impact, have gained interest
from the research community are those addressing the representation of uncertainty.
In this regard, probabilistic AAFs (prAAFs) are a popular paradigm, and in particular
those following the constellation approach. Here, the dispute is modeled as a set of
possible scenarios, each consisting of a standard AAF (called possible AAF) associ-
ated with a probability of representing all and only the arguments and attacks actually
occurring in the dispute. In particular, two main paradigms have been adopted for spec-
ifying the probability distribution function (pdf), called EX and IND. In the general case,
the extensive form EX is used, where the composition of each possible AAF must be
explicitly specified along with its probability. Otherwise, when independence between
arguments/attacks is assumed, the form IND can be used, where the possible scenar-
ios and their probabilities are represented compactly and implicitly by specifying the
marginal probabilities of the arguments and attacks.

Recently, for both EX and IND, the complexity of the probabilistic counterpart P-
EXT of EXT (asking for the probability that a set of arguments is an extension) has
been characterized for IND in [23] for prAFFs and in [22] for prBAFs. Interestingly,
when considering IND and the stable or the admissible semantics, moving from prAAfs
to prBAFs makes P-EXT intractable (FP#P -complete).

In this paper, we consider the probabilistic Bipolar Argumentation Framework (prBAF),
where the bipolarity of BAFs is combined with the probabilistic modeling of the uncer-
tainty of prAAFs under the paradigm IND, and provide an efficient algorithm for solving
P-EXT in the cases that the stable or the admissible semantics are considered. The al-
gorithm is shown to be sound and its efficiency has been experimentally validated.
Related Work. [6] first introduced BAFs, where supports have the general “abstract”
semantics of positive interactions between arguments. Later, three more specific inter-
pretations for supports have been proposed: [4], [32] and [33] introduced the deductive,
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Fig. 1: A bipolar abstract argumentation framework
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necessary, and evidential semantics for the support relation, respectively. In this paper,
we focus on the abstract and deductive semantics, but our results also hold for necessary
supports (as shown in [8], they are dual to deductive ones). [8] reviews the four different
semantics for supports, and discusses the similarities and differences among these inter-
pretations. [9] introduces a more general framework that incorporates attacks, supports
and a preference relation to decide between conflicting arguments. In [30], subargu-
ments in AAF have been introduced, that in [10] have been shown to be closely related
with the necessary support. Other related works are [5, 38] where, although supports
are not mentioned, similar dependencies have been considered. A detailed survey over
BAFs can be found in [10].

Regarding uncertainty in AAFs, the approaches based on probability theory can be
classified in two categories: those adopting the classical constellations approach [26,
16, 36, 12, 13, 24, 29, 20, 21] and those adopting the recent epistemic one [37, 28, 27].
The former category has the two sub-categories EX [16, 36, 13] and IND [12, 29, 20,
21], described in the paper. The interested reader can find a more detailed comparative
description of the two categories in [25]. Furthermore, many proposals have been made
where uncertainty is represented by exploiting weights or preferences on arguments
and/or defeats [3, 1, 31, 18, 11]. Although the approaches based on weights, preferences,
or probabilities to model uncertainty have proved effective in different contexts, there is
no common agreement on what kind of approach should be used in general. In this re-
gard, [24, 25] observed that the probability-based approaches may take advantage from
relying on a well-established and well-founded theory, whereas the approaches based
on weights or preferences do not.

As regards probabilistic Bipolar Argumentation Framework (prBAF) they have been
recently introduced [34, 35] and the computational complexity of the problem of com-
puting extensions’ probabilities has been characterized [22].

2 Preliminaries

We assume that the reader is familiar with the notions of Abstract Argumentation Frame-
work (AAF), extension, and acceptability of arguments. We now review Bipolar Ab-
stract Argumentation Frameworks (BAFs) and the concepts of support, attack and de-
fense, along with the most popular extensions’ semantics over BAFs [6].

2.1 Bipolar abstract argumentation frameworks

Definition 1. [BAF] A bipolar abstract argumentation framework (BAF) is a tuple F =
〈A,Ra,Rs〉, where A is a set of arguments, Ra ⊆ A × A is a defeat/attack relation
andRs ⊆ A×A is a support relation.

In the first proposal of BAF [6], supports are given an abstract semantics, that is the
opposite of the traditional semantics of attack, inherited from classical AAFs. This was
shown to make the combination of supports and attacks imply the so-called supported
attacks3.

3 [6] discussed also indirect implicit attacks. W.l.o.g., as in [7], we disregard them, as their
presence would not affect our results.
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Definition 2. [Supported attack] Let F = 〈A,Ra,Rs〉 be a BAF, and a, b ∈ A. There
is a supported attack from a to b iff there is a sequence a1R1 . . .Rn−1an, with n ≥ 2,
where a1 = a, an = b, ∀i ∈ [1..n− 2]Ri = Rs, andRn−1 = Ra.

Example 2. In the BAF in Figure 1, there is a supported attack from a to c. Also the
three direct attacks (e, b), (b, c) and (f, d) are special cases of supported attack.

Besides the abstract, other semantics have been proposed for supports (see Related
Work). In particular, we consider the well-established deductive semantics, first pro-
posed in [4]. Here, “a supports b” is interpreted as a strong correlation between a and b,
meaning that if a is acceptable, then b is acceptable too. As observed in [8], under this
semantics, a new form of implicit attack, called d-attack, must be considered.

Definition 3. [d-attack] Given a BAF F = 〈A,Ra,Rs〉 and a, b ∈ A, there is a d-
attack from a to b iff

– aRab, or
– there is an argument a′ such that there is a path from a to a′ consisting of only

support edges, and a′ attacks b, or
– there is an argument a′ such that there is a path from b to a′ consisting of only

support edges, and a attacks a′.

Example below shows that d-attacks include supported attacks, but can be also of
the form of supermediated attacks (described by the last point in Definition 3).

Example 3. Under the deductive semantics for supports, in the BAF of Figure 1, it is
easy to see that the supported attacks reported in Example 2 are d-attacks. Further d-
attacks are the supermediated attacks from e to a, and from f to c, that are not supported
attacks.

In order to analyze what changes when moving from one semantics of supports to
the other (or, equivalently, from one form of implicit attacks to the other), we partition
BAFs into two classes: s-BAFs and d-BAFs, where only supported attacks and d-attacks
are considered, respectively. From now on, we assume the presence of a BAF F =
〈A,Ra,Rs〉, and, when needed, we will specify whether F is an s- or a d- BAF.

The concepts of support, attack and defense from sets of arguments are mandatory
to define the extensions over BAFs.

Definition 4. [Set-support] A set S ⊆ A set-supports an argument a ∈ A iff there is an
argument a′ ∈ S such that there is a path from a′ to a consisting of only support edges.

Definition 5. [Set-attack] Let F = 〈A,Ra,Rs〉 be an s-BAF (resp., d-BAF). A set
S ⊆ A set-attacks a ∈ A iff there is a supported attack (resp., d-attack) from some
b ∈ S to a.

Definition 6. [Set-defense] A set S ⊆ A set-defends an argument a ∈ A iff, ∀b ∈ A, if
{b} set-attacks a then ∃c ∈ S such that {c} set-attacks b.
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Example 4. Consider the BAF F in Figure 1. Independently from supports’ semantics,
{a, e} both set-supports and set-attacks b, and also set-attacks c. If F is an s-BAF, then
{a, e} does not set-defend c, since there is a supported attack from a to c, and no attack
from e to a. Observe that {a, e} does not set-defend c if F is a d-BAF either, since,
although e d-attacks a, no argument in {a, e} d-attacks f , that in turn d-attacks c.

2.2 Semantics

We first recall the notions of conflict-freeness and safety.

Definition 7. [Conflict-free and safe sets of arguments] A set of arguments S ⊆ A is:

– conflict-free iff 6 ∃ a, b ∈ S such that {a} set-attacks b;
– safe iff 6 ∃ b ∈ A such that S set-attacks b and either S set-supports b or b ∈ S.

Example 5. If the BAF F in Figure 1 is an s-BAF, both {a, e}, and {f, c} are conflict-
free but not safe, while both {a, b, f} and {a, b, d} are conflict-free and safe. If F is a
d-BAF, both {a, e}, and {f, c} are not conflict-free, while both {a, b, f} and {a, b, d}
are still conflict-free and safe.

All the most popular semantics of extensions of “standard” AAFs have been ex-
tended to the case of BAFs [6]. We start with the stable semantics.

Definition 8. [Stable extension] A set of arguments S ⊆ A is a stable extension iff S is
conflict-free and ∀a ∈ A \ S it holds that S set-attacks a.

The presence of supports and the fact that, in BAFs, conflict-freeness and safety do
not coincide (while they do in AAFs) is at the basis of the fact that, for some AAF’s
semantics, different variants are considered when moving to BAFs. This is the case of
the admissible semantics.

Definition 9. [Admissible extension] A set S ⊆ A is

– a d-admissible extension iff S is conflict-free and set-defends all of its arguments;
– an s-admissible extension iff S is safe and set-defends all of its arguments;
– a c-admissible extension iff S is conflict-free, closed for Rs and set-defends all of

its arguments.

In turn, the other semantics subsuming the admissible one are defined as follows. A
set S ⊆ A is said to be:

– a d-complete (resp. s-complete, c-complete) extension iff S is d-admissible (resp.,
s-admissible, c-admissible) and S contains all the arguments set-defended by S;

– a d-grounded (resp. s-grounded, c-grounded) extension iff S is a minimal (w.r.t. ⊆)
d-complete (resp. s-complete, c-complete) extension;

– a d-preferred (resp. s-preferred, c-preferred) extension iff S is a maximal (w.r.t. ⊆)
d-complete (resp. s-complete, c-complete) extension;
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– a d-ideal (resp. s-ideal, c-ideal) extension iff S is a maximal (w.r.t. ⊆) d-admissible
(resp. s-admissible, c-admissible) extension and S is contained in every d-preferred
(resp. s-preferred, c-preferred) extension.

We denote the set {d-ad, s-ad, c-ad, st, d-co, s-co, c-co, d-gr, c-gr, c-gr, d-pr, s-pr,
c-pr, d-id, s-id, c-id} consisting of the above semantics as SEM (herein, st means stable,
d-ad d-admissible, s-ad s-admissible, and so on).

Example 6. Consider the BAF in Figure 1. Both {a, b, f} and {a, b, d}, although conflict-
free and safe, are not d-ad extensions in both the cases of s-BAF and d-BAF (since b
is not set-defended). Furthermore, for the s-BAF case, we have: both {a, f} and {e, f}
are s-ad, s-gr and s-pr extensions, {a, e, f} is a st, d-ad, d-gr, d-pr, and d-id extension,
{f} is an s-id extension, {e, f} is a c-pr, c-gr and c-id extension.

For the d-BAF case we have: {e, f} is the unique stable extension, that is also c-
preferred, c-grounded and c-ideal.

The fundamental problem of verifying whether a set S of arguments is an extension
over a given BAF under a semantics sem ∈ SEM will be denoted as EXTsem(S). Ba-
sically, solving an instance of EXTsem(S) means checking whether a set of arguments
is a reasonable strategy in the dispute, where the meaning of “reasonable” is encoded
in the semantics.

Given a BAF F = 〈A,Ra,Rs〉, a set S ⊆ A, and a semantics sem ∈ SEM , we
define the boolean function ext(α, sem, S) returning true iff S is an extension under
sem.

3 Probabilistic BAFs (prBAFs)

We now consider the extension of BAFs where uncertainty is addressed and modeled
probabilistically as in “traditional” probabilistic Abstract Argumentation Frameworks
- prAAFs (in particular, we refer to prAAFs employing the constellation approach re-
called in the introduction and adopting the IND approach for specifying pdfs).

A probabilistic BAF (prBAF) F of type IND is a tuple 〈A,Ra,Rs,PA,PR〉 where
A = {a1, . . . , am}, Ra = {δ1, . . . , δn} and Rs = {σ1, . . . , σk} are the sets of ar-
guments, attacks and supports, respectively, and PA = {P (a1), . . . , P (am)}, PR =
{P (δ1), . . . , P (δn), P (σ1), . . . , P (σk)} are their marginal probabilities.

A prBAF F is used to represent a set of possible BAFs, that is the alternative
cases of dispute that may occur, and their probabilities. More in detail PS = {α =
〈A′,R′a,R′s〉 |A′ ⊆ A∧ R′a ⊆ (A′ × A′) ∩ Ra ∧ R′s ⊆ (A′ × A′) ∩ Rs} is the set
of possible BAFs represented by F and the pdf P over the possible scenarios that is
implied by the independence assumption and the marginal probabilities PA,PR is as
follows. For each possible BAF α′ = 〈A′,R′a,R′s〉, the probability P (α′) is:

P (α′) =
∏
a∈A′ P (a)×

∏
a∈A\A′

(
1−P (a)

)
×∏

δ∈R′a
P (δ)×

∏
δ∈(Rs∩(A′×A′))\R′a

(
1−P (δ)

)
×∏

σ∈R′s
P (σ)×

∏
σ∈(Rs∩(A′×A′))\R′s

(
1−P (σ)

)
.

(1)

The size of a prBAF of type IND is O(|A|+ |Ra|+Rs|+ |PA|+ |PR|).
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Example 7. Consider a prBAFF ′ of form IND, whereA,Ra andRs are those of Figure
1, and PA and PR are the following: P (a) = P (b) = P (c) = P (d) = P (f) = 1,
P (e) = 0.5, P (e, b) = 0.5 and the probabilities of the other supports and attacks
are equal to 1. We have three possible scenarios: α1 = 〈A,Ra,Rs〉, α2 = 〈A,Ra \
{(e, b)},Rs〉, α3 = 〈A \ {e},Ra \ {(e, b)},Rs〉, whose probabilities are: P (α1) =
0.25, P (α2) = 0.25, P (α3) = 0.5.

In what follows, given a prBAF F = 〈A,Ra,Rs,PA,PR〉, we denote as F .α =
α1, . . . , αm the possible BAFs that are assigned non-zero probability by P , and as
F .P = P (α1), . . . , P (αm) their probabilities.

The probabilistic versions of the two sub-classes s-BAF and d-BAF will be called
s-prBAF and d-prBAF, respectively.

When switching to the probabilistic setting, the decision problem EXTsem(S) makes
no sense, since a number of different scenarios are possible, and a set of arguments can
be an extension in a some scenarios, but not in others. Thus, the most natural “transla-
tion” of the problem of examining the “reasonability” of a set of arguments S becomes
the functional problem P-EXTsem(S) of evaluating the probability that S is an exten-
sion, according to the following definition.

Definition 10 (P-EXTsem(S) and P sem(S)). Given a prBAF F , a set S of arguments,
and a semantics sem ∈ SEM , P-EXTsem(S) is the problem of computing the proba-
bility P semF (S) that S is an extension under sem, i.e.

P semF (S) =
∑

α ∈ F.α ∧ ext(α, sem, S)

F .P (α) (2)

Example 8. Continuing examples 6 and 7, we now compute the probability that S =
{a, e} is d-admissible in both the s-and d- prBAF cases.

Case s-prBAF: S is d-admissible in both α1 and α2 (as e is missing in α3), thus
Pd-ad(S) = P (α1) + P (α2) = 0.5.

Case d-prBAF: S is d-admissible only in α2, as in α1 e d-attacks a and in α3 e is
missing, thus we have Pd-ad(S) = P (α2) = 0.25.

4 An algorithm for computing P sem
F (S)

We now provide our main contribution, that is the definition of an algorithm for effi-
ciently computing the probability that a set of arguments is an extension according to a
semantics sem ∈ {st, d-ad, s-ad, c-ad}.

The algorithm is based on the following results, provided in [21], that hold for
traditional prAAF of type IND. A PrAAf of type IND correspond to a prBAF of type
IND where the support relation is empty.

Fact 1 [21] Given a prAAF F = 〈A,Ra, ∅,PA,PR〉 and a set S ⊆ A of arguments,
the probability that S is an admissible extension in F is equal to P1(S) ·P2(S) ·P3(S),
where4:

4 Note that an empty product evaluates to 1.
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– P1(S) =
∏

a∈S PA(a),
– P2(S) =

∏
(a, b) ∈ Ra

∧ a ∈ S
∧ b ∈ S

(
1− PR((a, b〉))

)
, and

– P3(S)=
∏

d∈A\S

(
P31(S, d)+ P32(S, d)+ P33(S, d)

)
, where:

• P31(S, d) = 1−PA(d),
• P32(S, d) = PA(d)×

∏
(d, b)∈Ra

∧b ∈ S

(
1−PR((d, b))

)
,

• P33(S, d) = PA(d)×
(
1−

∏
(d, b) ∈ Ra

∧b ∈ S

(
1−PR((d, b))

))
×(

1−
∏

(a, d) ∈ Ra

∧a ∈ S

(
1−PR((a, d))

))
Fact 2 [21] Given a prAAF F = 〈A,Ra, ∅,PA,PR〉 and a set S ⊆ A of arguments,
the probability that S is a stable extension in F is equal to P1(S) ·P2(S) ·P3(S), where
P1(S) and P2(S) are defined as in Fact 1 and

P3(S) =
∏

d∈A\S

(
P31(S, d) + P32(S, d)

)
where:

– P31(S, d) = 1−PA(d), and

– P32(S, d) = PA(d)×
(
1−

∏
(a, d)∈Ra

∧a ∈ S

(1− PR((a, d)))
)

Before defining the algorithm we introduce some preliminary notations used in its
definition. Formally, given a prBAF F = 〈A,Ra,Rs,PA,PR〉, we consider the sets:

– F .Ae = {a| ∃〈a, b〉 ∈ Rs ∨ ∃〈b, a〉 ∈ Rs} (called set of supp-arguments, as they
are those involved in supports), and

– F .Re = {〈a, b〉 ∈ (Ra ∪ Rs) | (a ∈ Ae ∨ b ∈ Ae} (called set of supp- attacks and
supports, as they are attacks/supports incident to supp-arguments).

The algorithm evaluation strategy is based on the notions of contraction and com-
pletion. A contraction for a prBAF F = 〈A,Ra,Rs, PA,PR〉 is a prBAF F∗ =
〈A∗,R∗a,R∗s,P∗A,P∗R〉 where:

– A∗ ⊆ A and A \ A∗ ⊆ F .Ae;
– R∗a ⊆ Ra ∩ (A∗ ×A∗) andRa \ R∗a ⊆ F .Re;
– R∗s ⊆ Rs ∩ (A∗ ×A∗);
– P∗A(a) = 1 if a ∈ F .Ae and P∗A(a) = PA(a) otherwise;
– P∗R(〈a, b〉) = 1 if a ∈ F .Ae ∨ b ∈ F .Ae, and P∗R(〈a, b〉) = PR(〈a, b〉) otherwise.

Basically, F∗’s supports are a subset of F’s, and arguments (resp., attacks) are a subset
of F’s containing at least the non supp-arguments (resp., the non supp-attacks). Then,
the probabilities are copied from those specified in F , except for those over supp- argu-
ments and attacks, that are overwritten with 1.
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E(F) will denote the set of possible contractions of F . For F∗ ∈ E(F), we define
the probability of F∗ given F as:

P (F∗|F) =
∏
a∈Ae

PF∗(a)×
∏

δ∈Re∩(A∗×A∗)

PF∗(δ), (3)

where:

– if a∈A∗, PF∗(a)=PA(a); else, PF∗(a)=1−PA(a);
– if δ ∈ R∗a ∪R∗s , PF∗(δ)=PR(δ); else, PF∗(δ)=1−PR(δ).

As regards completions, their definition uses the function cert(F), returning the
BAF consisting of all and only the arguments in F .Ae plus the arguments in F in-
volved in the attacks/supports in F .Re and the attacks/supports of F that appear in
F .Re. More formally, given a prBAF F = 〈A,Ra,Rs,PA,PR〉, cert(F) is the BAF
〈A′,R′a,R′s〉 such that:

– A = F .Ae ∪ {a | a ∈ A ∧ ∃b ∈ As.t.〈a, b〉 ∈ F .Re ∨ 〈b, a〉 ∈ F .Re},
– R′a = Ra ∩ F .Re,
– R′s = Rs ∩ F .Re.

Thus, the completion of F is the prBAF compl(F) = 〈A′,R′a,R′s,P ′A,P ′R〉 where:

– A′ = A andR′s = Rs;
– R′a=Ra∪R′, where R′ consists of the s- or the d- attacks of cert(F), depending on

whether F is an s- or a d- prBAF;
– ∀a ∈ A, P ′A(a) = PA(a);
– ∀δ ∈ R′a, if δ ∈ R′ then P ′R(δ) = 1, else P ′R(δ) = PR(δ).
– ∀δ ∈ R′s, P ′R(δ) = PR(δ).

We now define Algorithm 1 that computes the probability that a set of arguments S
is an extension for F according to the semantics sem ∈ {st, d-ad, s-ad, c-ad} for both
s- and d-prBAFs by iterating over E(F).

Algorithm 1 first computes the sets F .Ae and F .Re of supp-arguments and supp-
attacks and supports of F (Lines 2-3) and it initializes Pr to 0. Then it iterates over the
possible contractions of F by iterating over the subsets of F .Ae (Line 4) and then for
each subset A′e of F .Ae iterating over the subsets ofRe ∩ (A′e ×A′e) (Line 5).

The contraction F∗o f F corresponding to the sets A′e andR′e is generated by call-
ing function contract (Line 6) and its probability P (F∗|F) is computed using Equa-
tion 3 (Line 7). Then the completion F ′ of F∗ is computed as by calling function
complete (Line 8).

Then the variable Pr′ is computed according to the following definition (Lines 9-
19):

– Pr′ = 0.0 if sem = s-ad and S is not safe in cert(F ′),
– Pr′ = 0.0 if sem = s-ad and S is not closed for supports over cert(F ′),
– Pr′ = 1.0, otherwise.

Next, the probability Pr that S is an admissible/stable extension in the prAAF ob-
tained removing supports by F ′ (F) is computed according to the formulas reported in
Facts 1 and 2 (Lines 20- 26). Specifically function computePrAAF is responsible for
computing the probability Pr that S is an admissible/stable extension in F and Pr is
added to the probability Pr. Finally Pr is returned.



10 B. Fazzinga et al.

Algorithm 1 Computing PrsemF (S) by enumerating contractions
Require: A prBAF F = 〈A,Ra,Rs,PA,PR〉

A set S ⊆ A
A semantics sem ∈ {st, d-ad, s-ad, c-ad}

Ensure: PrsemF (S)
1: Pr = 0.0
2: Ae = computeAe(F)
3: Re == computeRe(F , Ae)
4: for A∗e ⊆ Ae do
5: forR∗e ⊆ Re ∩ (A∗e ×A∗e) do
6: F∗ = contract(F ,A∗e ,R∗e ,Ae,Re)
7: Pr∗ =

∏
a∈Ae

PF∗(a)×
∏
δ∈Re∩(A∗e×A∗e)

PF∗(δ)

8: F ′ = complete(F∗,A∗e ,R∗e)
9: if sem = s-ad then

10: if not safe(F ′, S,A∗e ,R∗e) then
11: Pr′ = 0.0
12: end if
13: else if sem = c-ad then
14: if not supclosed(F ′, S) then
15: Pr′ = 0.0
16: end if
17: else
18: Pr′ = 1.0
19: end if
20: F = toPrAAF(F∗)
21: if sem = st then
22: aafsem = st
23: else
24: aafsem = ad
25: end if
26: Pr = computePrAAF(F , S, aafsem)
27: Pr = Pr + Pr∗ × Pr′ × Pr
28: end for
29: end for
30: return Pr

4.1 Correctness of Algorithm 1

In this section we show that Algorithm 1 is sound and characterize its computational
complexity. First we introduce a lemma (which straightforwardly follows from the def-
inition of P (F∗|F)) that allows for decomposing the evaluation of P semF (S) into eval-
uating P semF∗ (S) over each contraction F∗.

Lemma 1. LetF be a prBAF and S a set of its arguments. For sem ∈ {d-ad, s-ad, c-ad, st},
it holds that P semF (S) =

∑
F∗∈E(F) P (F∗|F)× P semF∗ (S).

The following lemma state that the method for computing P semF∗ (S) for each F∗ ∈
E(F) used in Algorithm 1 is correct. Indeed, it states that P semF∗ (S) can be computed
by taking the prAAF F obtained by removing the supports from the completion of
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F∗, and then using over F any state-of-the-art algorithm for computing the extensions’
probabilities over “traditional” prAAFs (e.g. using the formulas reported in Facts 1
and 2).

Lemma 2. Let F be a prBAF, F∗ a contraction for F , F the prAAF obtained from
compl(F∗) by removing the supports, and S a set of arguments of F∗. Then:

– For sem ∈ {d-ad, st} P semF∗ (S) = P sem
′

F (S), where sem′ ∈ {ad, st} respectively;
– P s-ad

F∗ (S) = 0 if S is not safe over cert(compl(F∗)); otherwise, P s-ad
F∗ (S) =

Pad
F

(S);
– P c-ad

F∗ (S) = 0 if S is not closed forRs over cert(compl(F∗)); otherwise,P c-ad
F∗ (S) =

Pad
F

(S).

Proof (Sketch). The statement can be proved by exploiting the fact that, since supp- ar-
guments and attacks in contractions are certain, safeness and closure for Rs hold over
F∗ iff they hold over cert(compl(F∗)). The detailed proof is omitted for space rea-
sons. 2

Theorem 1. For sem ∈ {d-ad, s-ad, c-ad, st}, Algorithm 1 computes P semF (S) for both
s- and d- prBAFs in time O(2|F.Ae|+F.Ee| × F (|F|)), F is a polynomial function.

Proof. The fact that Algorithm 1 computes P semF (S) followos form the fact that it com-
putes

∑
F∗∈E(F) P (F∗|F) × P semF∗ (S). Specifically, Lemma 1 ensures that P semF (S)

can be computed as
∑
F∗∈E(F) P (F∗|F) × P semF∗ (S), where for each F∗ ∈ E(F).

Moreover, for eachF∗ ∈ E(F) Algorithm 1 computes P semF∗ (S) as specified by Lemma
2.

Finally, it is straightforward to see that computing P semF∗ (S) as done by Algorithm 1
(i.e., following Lemma 2 and applying the formulas reported in Facts 1 and 2) is fea-
sible in time O(F (|F|)), where F is a polynomial function. Hence, since |E(F)| ≤
2|F.Ae|+F.Ee|, it follows that Algorithm 1 runs in time O(2|F.Ae|+F.Ee| × F (|F|)),
which completes the proof. 2

4.2 Experimental validation

In this section we report a preliminary experimental assessment of the efficiency of
Algorithm 1. To this end we compared running times of Algorithm 1 (denoted as CON-
TRACT in what follows) with a naive algorithm that computes P semF (S) by directly
applying Equation 2 of Definition 10 (denoted as NAIVE in what follows).

We perform experiments over 100 prBAFs with a number of arguments ranging
over {6, 8, 10, 12, 14}. Specifically we randomly generate 20 prBAFs for every num-
ber of arguments in {6, 8, 10, 12, 14}. Figure 2 reports the average running times of
CONTRACT and NAIVE vs the number of arguments in the prBAFs.

From the experiments it follows that CONTRACT outperforms NAIVE for all the con-
sidered number of arguments. However, it is worth noting that even using CONTRACT
computing P semF (S) requires a large amount of time (the algorithm was halted after 30
minutes) on prBAFs with more than 14 arguments.
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Fig. 2: Average running times of CONTRACT and NAIVE (msec) vs number of arguments

5 Conclusions

In this paper we devised an algorithm for computing extensions’ probabilities over
prBAFs of type IND when the stable, d-admissible, s-admissible or c-admissible se-
mantics are considered. The correctness of the algorithm has been formally proved and
its efficiency experimentally validated w.r.t. the naive computation based on the enu-
meration of possible BAFs. The gain in efficiency of the proposed algorithm is due to
the fact that it enumerates contractions rather than possible BAFs and in most cases the
number of possible contractions is much smaller than the number of possible BAFs.
However, from the experiments it turns out that the algorithm is not able to deal with
large prBAFs in reasonable time. Hence, for large prBAFs resorting to estimating ex-
tensions’ probabilities is reasonable. An interesting research direction for future work
is that of applying the approach based on enumerating contractions to improve the effi-
ciency of estimation algorithms.
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