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Abstract

“Spoken language” is a field of natural language
processing, which deals with transcribed speech ut-
terances. The processing of spoken language is
much more complex and complicated than process-
ing standard, grammatically correct natural lan-
guage, and requires special treatment of typical
speech phenomena called “disfluencies”, like cor-
rections, interjections and repetitions of words or
phrases. We present a parsing technique that util-
izes a Hybrid Connectionist Parser (HCP) extended
with a Phrase Structure Matching Algorithm
(PSMA) for the syntactic processing (parsing) of
spoken language. The HCP is a hybrid of a connec-
tionist and a symbolic approach, which builds a
neural network dynamically based on a given con-
text-free grammar and an input sentence. It has an
advantage over traditional parsers due to the fise o
graded activation and activation passing in the
network. These features were exploited in tech-
nigues to detect and repair disfluencies, in combi-
nation with the Phrase Structure Matching Algo-
rithm, which operates on the graphical structure of
the network. This approach to spoken language
parsing is purely syntactical and — in contrast to
other work — does not require a modified grammar
for spoken language, or information derived from
the speech input, nor any pre-marking of disfluen-
cies. We implemented the combined HCP and
PSMA parser and tested it on a standard corpus for
spoken language, the HCRC Map Task Corpus.
The experiments showed very good results, espe-
cially for a purely syntactic method, which detects
as well as corrects disfluencies.

Introduction

Over the last 50 years, researchers from diffefietats have
worked on the problem to describe natural languagebat
they can be processed by formal means and thusutersp
Dale et al. [2000] classify these approaches ititceet

groups:symbolic methodghat represent the language with hangling these erroneous inputs. We need to speajz-

formal grammarsempirical methodshat rely on statistical

data rather than explicit handcrafted rules, emanectionist

approachesuses neural networks for processing natural
languages. Rather than relying on one particularaach
researchers are also trying techniques that invdifferent
approaches. For example, Christiansen and Chagd5]1
state that the symbolic approach and the connestiap-
proach complement each other rather than merelyigeo
alternative representations.

The Hybrid Connectionist Parse(HCP) we choose for
our work utilizes both a symbolic component andanec-
tionist component. In the following section, weadiss pre-
vious works on spoken language processing. Themnrere
sent the Hybrid Connectionist Parser, which istihsis for
the spoken language parser. Following, we desdifige
combination of HCP and the Phrase Structure Matchin
Algorithm for spoken language parsing. The papen-co
cludes with a summary of our experimental evalumrid
this method using spoken language sentences fram th
HCRC MapTask corpus [Anderson et al., 1992].

2 Spoken Language Processing

In the following two sections, we give a brief imdiuction
to phenomena typical of spoken language, and tlien c
relevant work in the area of spoken language pedcgs

2.1 Spoken Language

Spoken language is marked by the presence of pantes
jections and repetition of words or phrases. THesgures”
or “speech repairs” are categorized into threeselsis

Fresh starts. The speaker restates his/her previous utter-
ance. For example: “I need to send ... let's see_.w ho
many boxes can one engine take?

Modification repairs. The speaker does not restate what
he/she utters but replaces or repeats a word aras@. For
example: “You cancarry them both ... tow both on the

same enginé

Abridged repairs. The speaker stops or pauses while utter-

ing a phrase and then continues what they staotedyt. For

example: “We need tom... manage to get the banatas
Natural Language parsers, in general, are notbbeyz

bilities in the parsers to deal with these disflties.



Approaches to detecting and repairing disfluendies
spoken language can be categorized according tkinbeof
information they need and the method using thisrink-
tion. Some researchers use syntactic informaticzedan
grammar rules, some use prosodic signals, whidkatelan
interruption in fluent speech, and others use patteatch-
ing to detect repetitions of words or phrases, amhina-
tions of these methods. We present in the follovgections
major work done on detecting and/or repairing disficies
in spoken language.

2.2 Earlier Work on Spoken Language Processing

Hindle [1983] used edit signals (a phonetic signal)ndi-
cate the presence of a repair in speech. He fotetlf@ur
rules namelysurface copy editorcategory copy editor
stack copy editoand handling fresh restartsHis method
had remarkable results in experiments showing @y
failure. However, assuming the presence of editadijm-
ited the applicability of such approach.

Dowding et al. [1993] developed a natural langusge
tem called GEMINI. They used both syntactic and aetns
information in the bottom-up parser to generatacstires.
Then they use an utterance level parser to dersenanti-
cally correct structure. When the utterance lewter fails,
a correction phase is used to detect and repadir Thining
set contained 178 repairs and the system was alletéect
89 repairs, and 81 of those repairs were corrected.

Lavie [1996] developed a new parsing algorithm GLR
for spoken language. This parser skipped wordsind f
maximum set of words that form a complete structiitee
system did not perform any speech repair deteetimhcor-
rection.

that any single source of information is not suéfit to deal
with repairs.

Nakatani and Hirschberg [33] determined the rephir
using acoustic and prosodic cues. They tested #8ances
containing 223 repairs. Of them 186 repairs werealed
with a recall of 83.4%. 177 of the repairs are dietg with
the help of word fragments and pause duration.niotter
experiment, the word fragments were not consideesdIt-
ing in 174 repairs with a 78.1% recall.

Shriberg et al. [1997] showed that prosodic infation
can provide better results to detect repairs irecpahan
other methods that use lexical information. Shigbet al.
used features like the duration of pause, the burabf
vowels, the fundamental frequency, and the sigmaldise
ratio to detect repairs. These measurements wesept in
the speech data that were used for training. Binsfiey
used a decision tree to find the interruption pahat fol-
lows a filled pause, repetitions, repairs and faksets from
other points..

Heeman and Allen [1999] viewed the problem of ggco
nizing part of speech tags, discourse markersgctietedis-
fluent parts in speech as intertwined. They soledprob-
lem of detecting and correcting repairs, findingergnces
ends and discourse markers at the speech recagphi@se.
With this system, Heeman and Allen solved 66% afesih
repairs and they had a precision of 74%.

In contrast to the research described above, agose a
parsing method based on purely syntactic informatthe
Hybrid Connectionist Parser (HCP) with an added pom
nent, the Phrase Structure Matching Algorithm (PSMA
This combined method detects disfluencies (typjcathr-
rections and repetitions), based on a parser probdecon-

Wermter and Weber [1997] mentioned a flat scregnin tinue a once started parse tree, and repairs thiseencies

method to handle utterances in their system SCRBHMN.
system was hybrid in that it used a flat repregemtafor
syntactic and semantic analysis and ANNs to detl win-
biguous structures and repairs in the utteran@é® system
dealt with pauses interjections and repetitions eford or
phrase.

McKelvie [1998] used symbolic rules to implemest r
pairs. He developed a set of grammar rules fonflspeech
and later extended it to handle disfluent patteHw®swever,
McKelvie’'s work does not explicitly show the numbef
repairs detected and the number of false alarmsecau

Core [1999] designed a parser to work with metul
such as non-interference metarule, editing termamkt
and repair metarule. These metarules were usegettifg
different patterns of speech repair. His system alale to
detect 237 out of 495 speech repairs using the wodithe
part of speech tag information. The correct repduanstart
was detected for 187 out of 237 using only wordahiag
and 183 out of 237 using word and part of speewtilagi-
ties.

Bear et. al [1992] worked on different sourcesnééima-
tion to detect and correct repairs in speech. Tussd pat-
tern matching technique, the syntactic and semantiz-
mation of a parser and acoustic information. Thayctude

by overlapping partially matching structures of tihéial
parse-tree and the newly generated sub-tree. Thhoche
does not require any pre-marking of the interrupfimint,
or additional phonetic or prosodic information. thre next
sections, we describe the basic principles of tiezPHand
the augmentation of the HCP with the PSMA, andsthiate
how this method is used to parse spoken language.

3 TheHybrid Connectionist Par ser

Given a Context-Free Grammar (CFG), the Hybrid Ggan
tionist Parser (HCP) constructs the underlying fisitl
Neural Network (ANN) dynamically. The parser works
online, incrementally reading words from the inpahtence
and merging partially completed networks, startingh
mini-networks created from the rules of a given CH@Gis
idea of constructing the ANN dynamically is relafiy un-
common but more suitable for processing dynamiacstr
tures of unlimited size. Previously, [Elman 199®afkey
1992; Wermter and Weber 1997; Jain and Waibel 1990]
used Recurrent Neural Networks (RNN) to imitate the
cursive generative capability of natural languadasthis
section, we outline the main characteristics of H@&P. A
more detailed description can be found in [Kemk®6L9
20014, 2001b, 2002].



3.1 Representation

The mini-networks in HCP represent the grammatiakds
of the given CFG. A mini-network is a two-layer wetk
with one root-node, representing the syntacticgmies on
the left hand side (LHS) of the grammar rule ané on
more child node(s), representing the right hane $RHS)
of the rule. The link weights between each of tinddc
nodes and the root node dr, if n is the number of child
nodes. An example mini-network for the grammar Aile»
AL A, ... A is shown in Figure 1.

1/n / 1/n

/n
() -

Figure 1: Mini-network representing a grammar rule

In the general case, the units in the network amgple
threshold units with the threshold value set to. T.Bus,
each root node gets somewhat activated, when oneooe
of its child nodes are fully activated, but getByfactivated
(and fires) only when all its children are fullytaated.
Thus, the HCP simulates a deterministic, increnigrateser.
In order to make the representation and use ofthasi-
networks more efficient, we introduced complex mini
networks, which can represent rules with the sai8 but
different RHS. This is typical for natural languageam-
mars, which often have slightly different RHS foetsame
category on the LHS. For this purpose, we use lngsis
nodes. When there are multiple RHS for the same,LH
each of the RHS is represented through a hypotinesis,
which is connected to the root node representiegLiiS.
The link weight for each of these new connectianset to
1.0. All other nodes not belonging to a hypotheside are
connected to it through negative link weights toilfeate
mutual inhibition. Thus, the root node for the Lig&ts acti-
vated, when at least one of the children is fultyivated.
Figure 2 illustrates this idea for the sample gramnmle:

VP _ V (H1) | V NP (H2) | V PP (H3) | V NP PP (H4)

—  1.C
— 0.5
— 1/3
--9 .02

Figure 2: Complex mini-network with hypothesis nodes

3.2 TheAlgorithm

The HCP starts with a set of mini-networks generdtem
the context-free grammar. The input is read wordmvoyd,
and the parser proceeds incrementally. After pings
each word from the input sentence, it searcheexising
mini-networks to see if this word can be bound tohdd
node of one of those mini-networks. While searchiog
such networks, it has to be ensured that the ooflehe
terms in the grammar rules is maintained. In otherds, if
we are to bind to a nod&, of a network representing the
rueA - Aj A, ... A, we need to ensure that the nodes
< A have already been fully activated and bound. This
be achieved through introducing proper inhibitioeama-
nisms, similar to the ones described above for dexnp
mini-networks. When all the child nodes in a mietwork
are activated, the root node of that network becofuly
activated. If the root-node of a network is fullgtimated,
the search for a network, to which this root-nodm be
bound, starts again. If some input has already hwen-
essed, and thus incomplete networks have beenaeder
the fully activated network can be bound to suclexisting,
partially activated network, in a process calledetging”.
The root-node of the later network has to match wiite
left-most unbound node of the earlier, partiallytieated
network. Alternatively, a new mini-network can beated
in parallel, if the root-node is the left-most naatethe RHS
of the mini-network. After processing all input wist the
parse was successful if at least one fully activatetwork
exists, whose root-node is labeled with the stamiml of
the grammar. This network corresponds to a complatee
tree for the input sentence. In case of structui@yntacti-
cally) ambiguous sentences, the parser will deseeeral
complete, fully activated networks.

83.3 Special Features

The HCP has some advantages over conventionalrparse
for CFGs, due to the online, incremental, dynanoiestruc-
tion of an underlying neural network. The algoriterhibits
parallelism in the way nodes are bound in eachestathus
the HCP can be ported to a parallel architecturés also
possible to represent CFGs in a condensed formproress-
ing by the HCP. One example are the complex mini-
networks described above, and optional terms orRtHE

of a grammar rule, which could be simply added toe&
work using a link weight of 0, and thus can be pteg by
the parser but are not required.

Some characteristics of this parsing method malgarit
ticularly useful for spoken language processinganfinput
word or root-node of a fully activated network canhie
bound to an existing network, nor create a new -mini
network, the parser cannot continue to derive aptetm
parse tree. This characteristic is used to detgetruption
points and disfluencies in spoken language. The afse
graded activation and activation passing enablesptrser
to maintain information about partially acceptes veell as
expected structures, and this can be used to Eacesm-
plete and superfluous structures, reflecting répes and
corrections in spoken language.



4  Augmenting the HCP with the PSM A

We augmented the HCP withRhrase Structure Matching
Algorithm (PSMA), extending the concept of the “Graph
Matching Algorithm” by Kemke [2001b]. We developtu:
PSMA to correct disfluent structures present irutiarance
by detecting structural similarities between thparandum
and its alteration. The PSMA is triggered, wheniraom-
plete structure is detected during parsing withHIG&P. This
leads to an inconsistent state of the parsing gsyoghich
cannot be continued, since a newly generated sgbean-
not be merged into the initial incomplete parse,tand can
also not otherwise be expanded. The PSMA takepdteél
parses generated by the HCP as input and cortetdis-
fluency by trying to find a structural match betweabe new
sub-tree and the initial parse tree. The followa@mple
illustrates the idea.

The sentencH have a ... | have got a picket fences’ an
example of a fresh start. The speaker meant td'ldagve
got a picket fencg”but inadvertently started with have
a” and then starts the sentence over Witthave got a
picket fence.”

The syntactic parsing of the initial, false start:

S [NP[PRP(]] VP[HV[ havd] NP[DT[a] NOM[ ]II]
reveals that the parser is trying to recognize &g nom-
pleted structure a Noun Phrase NP starting vath and
expects as next category a Nominal NOM (Figure 3).

In this parsing situation, a nominal is thus expdcas
root node of the next completed sub-tree. The HORiT-
ues to parse and derives a new, fully activatedtsaed)
which is in this example a complete sentence siractThe
algorithm detects that a nominal is expected bus ihot
present in the expected position in the parsedtisgntence.
Instead, the root node is labeled with the sentegyo®ol S.
Thus, it is assumed that a disfluency has occuaret this
point in the parse tree is interpreted as the finpdion point.
The PSMA takes the complete sentence structurenesu
by the HCP:

S [NP [PRP ] VP [HV[have] VP[VBP[got]
NP [DT[a] NOM [picket fencH]]

and tries to match the root node S of this striectuith pre-
vious incomplete structure shown in Figure 3.

Figure 3: Partial parseof "1 havea"

The PSMA searches backward through the initialpme
plete parse tree, which contains the unbound, cibtaded
node (NOM in Figure 3). When it can confirm a sfgant
structural similarity, it overlaps the matchingustiures and
thus creates a new, corrected parse tree. At thiigt,pthe
previous structures are discarded and the new, ic@ab
structure is retained.

To find a match between the new sub-structure &ed t
initial, incomplete one, the PSMA starts at thehtigottom
of the initial parse tree and step-by-step movestds its
parent nodes, in case of failure of a match withlttbel of
the root node of the new structure. In the examihe,
PSMA starts the comparison with the node “a” asdtite-
gory DT in the initial parse tree. The root nodetltd new
structure is S which does not match with DT. TheMRS
moves to the next higher level NP, which also fdds
match. The third attempt, to match with VP, is alssuc-
cessful. Finally, the PSMA moves to the highesten8dand
finds a match of the initial structure with the nesemplete
structure. The two structures are then mergedutiircan
overlapping process, in which the newer generairedtsire
precedes over the initial, earlier created strectdiis re-
flects the assumption that speakers correct themsedh
later parts of the utterance, and thus the lates maverride
earlier parts of the input. The result is a newnplete parse
tree (Figure 4). The comparison of the two struesur
through top down traversal confirms a structurataindo a
high degree. This makes the PSMA a robust andbtelia
method to correct the found disfluency.

Figure 4: Full parseof "| have got a picket fence"

In the example, we see that the PSMA has detetied t
interruption point based on the fact that the pamdd not
be continued as expected. The search and matckdwnee
found a substantial overlap and proper replacerfwnthe
incorrect structure. The PSMA does not expect, hawe
that a phrase is repeated exactly to correct dudisfy. A
successful match starting of a parent node inriali parse
tree and the root node of the new sub-tree woulgufi-
cient to allow the PSMA to merge the two structures



4 Evaluation

We tested the method with the HCRC Map Task Colyus
Anderson et al. [1992]. This corpus contains trehsd
dialogues regarding path finding in a terrain, esw an
instruction giver with a route marked map and atrirction
follower with an unmarked map. Since it is basedspan-
taneous spoken language, the Map Task Corpus oentai
disfluencies typical for natural conversation. Advantage
of the Map Task Corpus is the restriction to aipaldr do-
main of conversation, which made the grammar axidde
development for our tests with the HCP and PSMA-rel
tively fast and easy.

4.1 Evaluation Metrics

The merit of the speech repair tool is calculatsthg the
measures oprecisionandrecall — these two metrics have
been used earlier [Core, 1999; Heeman and Alle®9;19
Nakatani and Hirschberg, 1993] and are a standaasm
urement for disfluency detection.

Precision

The precision is calculated by Tp/(Tp+Fp), where(Tpue
positive is the total number of repairs that are deteeted
repairs and FpHalse positivg is the total number of false
repairs that are detected as repairs.

Recall

The recall is calculated by Tp/(Tp+Fn), where MFal§e
negative is the total number of repairs that are not detéc
as repairs. In our tests based on the HCRH Map Task
pus, all examples contained at least one disfluevwey thus
did not calculate the precision, as there wereatgefposi-
tives in the test set.

4.2 Experiments

We implemented the PSMA integrated with the HCRBaia
different ways: using a post-processing methodwimch
the PSMA starts to work only after the HCP has tecall
possible structures, and an incremental methodhioh the
PSMA is activated as soon as parsing cannot bencrat
and a disfluency is assumed.

In our first set of experiments we let HCP to ghmipars-
ing of the full utterance. The PSMA then takes owging
to fix the disfluencies marked by interruption psinWe
conducted the experiment in three stages. Forittbtesfage,
we had 55 test sentences with a single repairrinstaThe
parser was able to correct 38 of them. For thersbstage
we expanded the grammar and ran tests on 71 sestand
the parser corrected 28 of them. In the third stage in-
creased the number of repair instances. Of theeB&Bces
we tested, the parser corrected 42 of them.

In the first set of experiments, it turned out ttia post-
processing method had problems to correct uttesandth
more than two repair instances. We subsequenttgdemn
incremental version of the combined HCP and PSMA
which brought about better results.

In this second set of experiments, the PSMA daa®
soon as a disfluency was detected. After receiangew

complete sub-tree from the HCP, the PSMA startehém
diately to search and match with the initial triseprder to
perform an overlapping of structures to correct dieflu-
ency in the utterance. In the incremental procgssasts,
the PSMA detected 89 out of 121 repair instancdh wi
recall rate of 73.5%. Of these 89 repairs, the PSWES
successfully able to correct 80 of them.

5 FutureWork

As our results have shown, the incremental prongssi
method has a promising prospect. We would likextered
our work with this method in the following directis.

Parallelizing the HCP. The HCP is implicitly parallel in
nature. When each node is activated, we have thieelof

binding it to (several) other nodes, or to createea mini-

network for it. These options are mutually exclesiv.e.

they cannot be present in the same parse treescamd thus
be executed in parallel. We are considering a |gdhrith-

plementation of the HCP to speed up the computa#n
though speeding up the parser does not improveetbea|

rate, it makes the parser more applicable for pralaise.

Removing useless mini-networks. In our implementation,
the HCP can merge and create new mini-networks as
needed. None of these mini-networks were removehglu
run time, even though they might not have been ecagy-
more after a certain point in time. After procegssuffi-
cient input incrementally, we can detect, when atiga
parse tree / mini-network may no longer be usd®e@mov-

ing the mini-network can reduce excessive memory re
quirements and at the same time speed up the whaoipu-
tation.

Using a refined and extended grammar. The choice of
grammar can be a determining factor in robust pgrdtine
tuning the grammar rules can improve the repaiecti&n
capability of the parser. Verb subcategorizationrgfsky
and Martin 2000], for example, can be employedetine
the grammar rules. We would like to use a more azhtie
grammar notation, and do further tests with a lasg of
grammar rules and an expanded lexicon, to see lhew t
spoken language parser improves and/or scales up.

6 Conclusion

We have extended a Hybrid Connectionist Parser jHCP
with a Phrase Structure Matching Algorithm (PSMA) i
order to perform parsing of spoken language. ThE@ach
combines the use of symbolic and connectionist ouzh
and features, in particular, the use of symbolatuees like
syntactic categories as nodes, and neural netveaturfes
like graded activation and threshold dependentgssiag in
the HCP. The neural network features are suitabldeal
with incomplete and inconsistent structures, ands thit
deemed useful to employ the parser for spoken kggu
processing. Typical phenomena of spoken languageliar
fluencies, in particular corrections and modifioas of ut-
terances during spontaneous speech. The HCP dstetdis
disfluencies, and the PSMA repairs them based stug-
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