
Abstract
“Spoken language” is a field of natural language
processing, which deals with transcribed speech ut-
terances. The processing of spoken language is
much more complex and complicated than process-
ing standard, grammatically correct natural lan-
guage, and requires special treatment of typical
speech phenomena called “disfluencies”, like cor-
rections, interjections and repetitions of words or
phrases. We present a parsing technique that util-
izes a Hybrid Connectionist Parser (HCP) extended
with a Phrase Structure Matching Algorithm
(PSMA) for the syntactic processing (parsing) of
spoken language. The HCP is a hybrid of a connec-
tionist and a symbolic approach, which builds a
neural network dynamically based on a given con-
text-free grammar and an input sentence. It has an
advantage over traditional parsers due to the use of
graded activation and activation passing in the
network. These features were exploited in tech-
niques to detect and repair disfluencies, in combi-
nation with the Phrase Structure Matching Algo-
rithm, which operates on the graphical structure of
the network. This approach to spoken language
parsing is purely syntactical and – in contrast to
other work – does not require a modified grammar
for spoken language, or information derived from
the speech input, nor any pre-marking of disfluen-
cies. We implemented the combined HCP and
PSMA parser and tested it on a standard corpus for
spoken language, the HCRC Map Task Corpus.
The experiments showed very good results, espe-
cially for a purely syntactic method, which detects
as well as corrects disfluencies.

1 Introduction
Over the last 50 years, researchers from different fields have
worked on the problem to describe natural languages so that
they can be processed by formal means and thus computers.
Dale et al. [2000] classify these approaches into three
groups: symbolic methods that represent the language with
formal grammars, empirical methods that rely on statistical
data rather than explicit handcrafted rules, and connectionist

approaches uses neural networks for processing natural
languages. Rather than relying on one particular approach
researchers are also trying techniques that involve different
approaches. For example, Christiansen and Chater [1985]
state that the symbolic approach and the connectionist ap-
proach complement each other rather than merely provide
alternative representations.
 The Hybrid Connectionist Parser (HCP) we choose for
our work utilizes both a symbolic component and a connec-
tionist component. In the following section, we discuss pre-
vious works on spoken language processing. Then, we pre-
sent the Hybrid Connectionist Parser, which is the basis for
the spoken language parser. Following, we describe the
combination of HCP and the Phrase Structure Matching
Algorithm for spoken language parsing. The paper con-
cludes with a summary of our experimental evaluation of
this method using spoken language sentences from the
HCRC MapTask corpus [Anderson et al., 1992].

2 Spoken Language Processing
In the following two sections, we give a brief introduction
to phenomena typical of spoken language, and then cite
relevant work in the area of spoken language processing.

2.1 Spoken Language
Spoken language is marked by the presence of pauses, inter-
jections and repetition of words or phrases. These “features”
or “speech repairs” are categorized into three classes:

Fresh starts. The speaker restates his/her previous utter-
ance. For example: “I need to send … let’s see … how
many boxes can one engine take?”

Modification repairs. The speaker does not restate what
he/she utters but replaces or repeats a word or a phrase. For
example: “You can carry them both … tow both on the
same engine.”

Abridged repairs. The speaker stops or pauses while utter-
ing a phrase and then continues what they started to say. For
example: “We need to um… manage to get the bananas.”
 Natural Language parsers, in general, are not capable of
handling these erroneous inputs. We need to special capa-
bilities in the parsers to deal with these disfluencies.

HCP with PSMA: A Robust Spoken Language Parser

Monirul Hasan, Venkatesh Manian, Christel Kemke
Department of Computer Science, University of Manitoba, Winnipeg, Canada

{kmhasan, venkat, ckemke}@cs.umanitoba.ca

Approaches to detecting and repairing disfluencies in
spoken language can be categorized according to the kind of
information they need and the method using this informa-
tion. Some researchers use syntactic information based on
grammar rules, some use prosodic signals, which indicate an
interruption in fluent speech, and others use pattern match-
ing to detect repetitions of words or phrases, or combina-
tions of these methods. We present in the following sections
major work done on detecting and/or repairing disfluencies
in spoken language.

2.2 Earlier Work on Spoken Language Processing
Hindle [1983] used edit signals (a phonetic signal) to indi-
cate the presence of a repair in speech. He formulated four
rules namely surface copy editor, category copy editor,
stack copy editor and handling fresh restarts. His method
had remarkable results in experiments showing only 3%
failure. However, assuming the presence of edit signal lim-
ited the applicability of such approach.
 Dowding et al. [1993] developed a natural language sys-
tem called GEMINI. They used both syntactic and semantic
information in the bottom-up parser to generate structures.
Then they use an utterance level parser to derive a semanti-
cally correct structure. When the utterance level parser fails,
a correction phase is used to detect and repair. Their training
set contained 178 repairs and the system was able to detect
89 repairs, and 81 of those repairs were corrected.
 Lavie [1996] developed a new parsing algorithm GLR*
for spoken language. This parser skipped words to find
maximum set of words that form a complete structure. The
system did not perform any speech repair detection and cor-
rection.
 Wermter and Weber [1997] mentioned a flat screening
method to handle utterances in their system SCREEN. The
system was hybrid in that it used a flat representation for
syntactic and semantic analysis and ANNs to deal with am-
biguous structures and repairs in the utterances. The system
dealt with pauses interjections and repetitions of a word or
phrase.
 McKelvie [1998] used symbolic rules to implement re-
pairs. He developed a set of grammar rules for fluent speech
and later extended it to handle disfluent patterns. However,
McKelvie’s work does not explicitly show the number of
repairs detected and the number of false alarms caused.
 Core [1999] designed a parser to work with metarules
such as non-interference metarule, editing term metarule
and repair metarule. These metarules were used to specify
different patterns of speech repair. His system was able to
detect 237 out of 495 speech repairs using the word and the
part of speech tag information. The correct reparandum start
was detected for 187 out of 237 using only word matching
and 183 out of 237 using word and part of speech similari-
ties.

Bear et. al [1992] worked on different sources of informa-
tion to detect and correct repairs in speech. They used pat-
tern matching technique, the syntactic and semantic infor-
mation of a parser and acoustic information. They conclude

that any single source of information is not sufficient to deal
with repairs.
 Nakatani and Hirschberg [33] determined the repairs by
using acoustic and prosodic cues. They tested 202 utterances
containing 223 repairs. Of them 186 repairs were detected
with a recall of 83.4%. 177 of the repairs are detected with
the help of word fragments and pause duration. In another
experiment, the word fragments were not considered result-
ing in 174 repairs with a 78.1% recall.
 Shriberg et al. [1997] showed that prosodic information
can provide better results to detect repairs in speech than
other methods that use lexical information. Shriberg et al.
used features like the duration of pause, the duration of
vowels, the fundamental frequency, and the signal to noise
ratio to detect repairs. These measurements were present in
the speech data that were used for training. Finally, they
used a decision tree to find the interruption point that fol-
lows a filled pause, repetitions, repairs and false starts from
other points..
 Heeman and Allen [1999] viewed the problem of recog-
nizing part of speech tags, discourse markers, detecting dis-
fluent parts in speech as intertwined. They solved the prob-
lem of detecting and correcting repairs, finding utterances
ends and discourse markers at the speech recognition phase.
With this system, Heeman and Allen solved 66% of speech
repairs and they had a precision of 74%.
 In contrast to the research described above, we propose a
parsing method based on purely syntactic information, the
Hybrid Connectionist Parser (HCP) with an added compo-
nent, the Phrase Structure Matching Algorithm (PSMA).
This combined method detects disfluencies (typically cor-
rections and repetitions), based on a parser problem to con-
tinue a once started parse tree, and repairs those disfluencies
by overlapping partially matching structures of the initial
parse-tree and the newly generated sub-tree. The method
does not require any pre-marking of the interruption point,
or additional phonetic or prosodic information. In the next
sections, we describe the basic principles of the HCP, and
the augmentation of the HCP with the PSMA, and illustrate
how this method is used to parse spoken language.

3 The Hybrid Connectionist Parser
Given a Context-Free Grammar (CFG), the Hybrid Connec-
tionist Parser (HCP) constructs the underlying Artificial
Neural Network (ANN) dynamically. The parser works
online, incrementally reading words from the input sentence
and merging partially completed networks, starting with
mini-networks created from the rules of a given CFG. This
idea of constructing the ANN dynamically is relatively un-
common but more suitable for processing dynamic struc-
tures of unlimited size. Previously, [Elman 1990; Sharkey
1992; Wermter and Weber 1997; Jain and Waibel 1990]
used Recurrent Neural Networks (RNN) to imitate the re-
cursive generative capability of natural languages. In this
section, we outline the main characteristics of the HCP. A
more detailed description can be found in [Kemke 1996,
2001a, 2001b, 2002].

3.1 Representation
The mini-networks in HCP represent the grammatical rules
of the given CFG. A mini-network is a two-layer network
with one root-node, representing the syntactic categories on
the left hand side (LHS) of the grammar rule and one or
more child node(s), representing the right hand side (RHS)
of the rule. The link weights between each of the child
nodes and the root node are 1/n, if n is the number of child
nodes. An example mini-network for the grammar rule A →
A1 A2 … An is shown in Figure 1.

In the general case, the units in the network are simple
threshold units with the threshold value set to 1.0. Thus,
each root node gets somewhat activated, when one or more
of its child nodes are fully activated, but gets fully activated
(and fires) only when all its children are fully activated.
Thus, the HCP simulates a deterministic, incremental parser.
In order to make the representation and use of these mini-
networks more efficient, we introduced complex mini-
networks, which can represent rules with the same LHS but
different RHS. This is typical for natural language gram-
mars, which often have slightly different RHS for the same
category on the LHS. For this purpose, we use hypothesis
nodes. When there are multiple RHS for the same LHS,
each of the RHS is represented through a hypothesis node,
which is connected to the root node representing the LHS.
The link weight for each of these new connections is set to
1.0. All other nodes not belonging to a hypothesis node are
connected to it through negative link weights to facilitate
mutual inhibition. Thus, the root node for the LHS gets acti-
vated, when at least one of the children is fully activated.
Figure 2 illustrates this idea for the sample grammar rule:

VP → V (H1) | V NP (H2) | V PP (H3) | V NP PP (H4)

3.2 The Algorithm
The HCP starts with a set of mini-networks generated from
the context-free grammar. The input is read word by word,
and the parser proceeds incrementally. After processing
each word from the input sentence, it searches the existing
mini-networks to see if this word can be bound to a child
node of one of those mini-networks. While searching for
such networks, it has to be ensured that the order of the
terms in the grammar rules is maintained. In other words, if
we are to bind to a node Ak of a network representing the
rule A → A1 A2 … An, we need to ensure that the nodes Ai
< Ak have already been fully activated and bound. This can
be achieved through introducing proper inhibition mecha-
nisms, similar to the ones described above for complex
mini-networks. When all the child nodes in a mini-network
are activated, the root node of that network becomes fully
activated. If the root-node of a network is fully activated,
the search for a network, to which this root-node can be
bound, starts again. If some input has already been proc-
essed, and thus incomplete networks have been generated,
the fully activated network can be bound to such an existing,
partially activated network, in a process called “merging”.
The root-node of the later network has to match with the
left-most unbound node of the earlier, partially activated
network. Alternatively, a new mini-network can be created
in parallel, if the root-node is the left-most node on the RHS
of the mini-network. After processing all input words, the
parse was successful if at least one fully activated network
exists, whose root-node is labeled with the start symbol of
the grammar. This network corresponds to a complete parse
tree for the input sentence. In case of structurally (syntacti-
cally) ambiguous sentences, the parser will derive several
complete, fully activated networks.

3.3 Special Features

The HCP has some advantages over conventional parsers
for CFGs, due to the online, incremental, dynamic construc-
tion of an underlying neural network. The algorithm exhibits
parallelism in the way nodes are bound in each stage – thus
the HCP can be ported to a parallel architecture. It is also
possible to represent CFGs in a condensed form for process-
ing by the HCP. One example are the complex mini-
networks described above, and optional terms on the RHS
of a grammar rule, which could be simply added to a net-
work using a link weight of 0, and thus can be accepted by
the parser but are not required.

Some characteristics of this parsing method make it par-
ticularly useful for spoken language processing. If an input
word or root-node of a fully activated network cannot be
bound to an existing network, nor create a new mini-
network, the parser cannot continue to derive a complete
parse tree. This characteristic is used to detect interruption
points and disfluencies in spoken language. The use of
graded activation and activation passing enables the parser
to maintain information about partially accepted, as well as
expected structures, and this can be used to process incom-
plete and superfluous structures, reflecting repetitions and
corrections in spoken language. Figure 2: Complex mini-network with hypothesis nodes

Figure 1: Mini-network representing a grammar rule

A

…

 n 1
n 1

n 1

A1 A2 An

VP

H1 H2 H3 H4

NP V PP

1.0

0.5

 1/3
-0.2

4 Augmenting the HCP with the PSMA
We augmented the HCP with a Phrase Structure Matching
Algorithm (PSMA), extending the concept of the “Graph
Matching Algorithm” by Kemke [2001b]. We developed the
PSMA to correct disfluent structures present in an utterance
by detecting structural similarities between the reparandum
and its alteration. The PSMA is triggered, when an incom-
plete structure is detected during parsing with the HCP. This
leads to an inconsistent state of the parsing process, which
cannot be continued, since a newly generated sub-tree can-
not be merged into the initial incomplete parse tree, and can
also not otherwise be expanded. The PSMA takes the partial
parses generated by the HCP as input and corrects the dis-
fluency by trying to find a structural match between the new
sub-tree and the initial parse tree. The following example
illustrates the idea.

The sentence “I have a … I have got a picket fence” is an
example of a fresh start. The speaker meant to say “I have
got a picket fence”, but inadvertently started with “I have
a” and then starts the sentence over with “I have got a
picket fence.”

The syntactic parsing of the initial, false start:

S [NP[PRP[I]] VP[HV[have]] NP[DT[a] NOM[]]]]

reveals that the parser is trying to recognize as next com-
pleted structure a Noun Phrase NP starting with “a” and
expects as next category a Nominal NOM (Figure 3).

In this parsing situation, a nominal is thus expected as
root node of the next completed sub-tree. The HCP contin-
ues to parse and derives a new, fully activated sub-tree,
which is in this example a complete sentence structure. The
algorithm detects that a nominal is expected but it is not
present in the expected position in the parsed input sentence.
Instead, the root node is labeled with the sentence symbol S.
Thus, it is assumed that a disfluency has occurred and this
point in the parse tree is interpreted as the interruption point.
The PSMA takes the complete sentence structure returned
by the HCP:

S [NP [PRP [I]] VP [HV[have] VP[VBP[got]
NP [DT[a] NOM [picket fence]]]]

and tries to match the root node S of this structure with pre-
vious incomplete structure shown in Figure 3.

The PSMA searches backward through the initial, incom-
plete parse tree, which contains the unbound, not activated
node (NOM in Figure 3). When it can confirm a significant
structural similarity, it overlaps the matching structures and
thus creates a new, corrected parse tree. At this point, the
previous structures are discarded and the new, combined
structure is retained.

To find a match between the new sub-structure and the
initial, incomplete one, the PSMA starts at the right bottom
of the initial parse tree and step-by-step moves towards its
parent nodes, in case of failure of a match with the label of
the root node of the new structure. In the example, the
PSMA starts the comparison with the node “a” and its cate-
gory DT in the initial parse tree. The root node of the new
structure is S which does not match with DT. The PSMA
moves to the next higher level NP, which also fails to
match. The third attempt, to match with VP, is also unsuc-
cessful. Finally, the PSMA moves to the highest node S and
finds a match of the initial structure with the new, complete
structure. The two structures are then merged, through an
overlapping process, in which the newer generated structure
precedes over the initial, earlier created structure. This re-
flects the assumption that speakers correct themselves in
later parts of the utterance, and thus the later parts override
earlier parts of the input. The result is a new, complete parse
tree (Figure 4). The comparison of the two structures
through top down traversal confirms a structural match to a
high degree. This makes the PSMA a robust and reliable
method to correct the found disfluency.

In the example, we see that the PSMA has detected the

interruption point based on the fact that the parse could not
be continued as expected. The search and match procedure
found a substantial overlap and proper replacement for the
incorrect structure. The PSMA does not expect, however,
that a phrase is repeated exactly to correct a disfluency. A
successful match starting of a parent node in the initial parse
tree and the root node of the new sub-tree would be suffi-
cient to allow the PSMA to merge the two structures.

S

NP

PRP

I

VP

HV

have

NP

DT

a

NOM

Figure 3: Partial parse of "I have a"

S

NP

PRP

I

VP

HV

have NP

DT

a

NOM

VP

VBP

got

picket fence

Figure 4: Full parse of "I have got a picket fence"

4 Evaluation
We tested the method with the HCRC Map Task Corpus by
Anderson et al. [1992]. This corpus contains transcribed
dialogues regarding path finding in a terrain, between an
instruction giver with a route marked map and an instruction
follower with an unmarked map. Since it is based on spon-
taneous spoken language, the Map Task Corpus contains
disfluencies typical for natural conversation. An advantage
of the Map Task Corpus is the restriction to a particular do-
main of conversation, which made the grammar and lexicon
development for our tests with the HCP and PSMA rela-
tively fast and easy.

4.1 Evaluation Metrics
The merit of the speech repair tool is calculated using the
measures of precision and recall – these two metrics have
been used earlier [Core, 1999; Heeman and Allen, 1999;
Nakatani and Hirschberg, 1993] and are a standard meas-
urement for disfluency detection.

Precision
The precision is calculated by Tp/(Tp+Fp), where Tp (True
positive) is the total number of repairs that are detected as
repairs and Fp (False positive) is the total number of false
repairs that are detected as repairs.

Recall
The recall is calculated by Tp/(Tp+Fn), where Fn (False
negative) is the total number of repairs that are not detected
as repairs. In our tests based on the HCRH Map Task Cor-
pus, all examples contained at least one disfluency. We thus
did not calculate the precision, as there were no false posi-
tives in the test set.

4.2 Experiments
We implemented the PSMA integrated with the HCP in two
different ways: using a post-processing method, in which
the PSMA starts to work only after the HCP has created all
possible structures, and an incremental method, in which the
PSMA is activated as soon as parsing cannot be continued
and a disfluency is assumed.
 In our first set of experiments we let HCP to finish pars-
ing of the full utterance. The PSMA then takes over trying
to fix the disfluencies marked by interruption points. We
conducted the experiment in three stages. For the first stage,
we had 55 test sentences with a single repair instance. The
parser was able to correct 38 of them. For the second stage
we expanded the grammar and ran tests on 71 sentences and
the parser corrected 28 of them. In the third stage, we in-
creased the number of repair instances. Of the 98 sentences
we tested, the parser corrected 42 of them.

In the first set of experiments, it turned out that the post-
processing method had problems to correct utterances with
more than two repair instances. We subsequently tested an
incremental version of the combined HCP and PSMA,
which brought about better results.
 In this second set of experiments, the PSMA started as
soon as a disfluency was detected. After receiving a new

complete sub-tree from the HCP, the PSMA started imme-
diately to search and match with the initial tree, in order to
perform an overlapping of structures to correct the disflu-
ency in the utterance. In the incremental processing tests,
the PSMA detected 89 out of 121 repair instances with a
recall rate of 73.5%. Of these 89 repairs, the PSMA was
successfully able to correct 80 of them.

5 Future Work
As our results have shown, the incremental processing
method has a promising prospect. We would like to extend
our work with this method in the following directions.

Parallelizing the HCP. The HCP is implicitly parallel in
nature. When each node is activated, we have the choice of
binding it to (several) other nodes, or to create a new mini-
network for it. These options are mutually exclusive, i.e.
they cannot be present in the same parse tree, and could thus
be executed in parallel. We are considering a parallel im-
plementation of the HCP to speed up the computation. Al-
though speeding up the parser does not improve the recall
rate, it makes the parser more applicable for practical use.

Removing useless mini-networks. In our implementation,
the HCP can merge and create new mini-networks as
needed. None of these mini-networks were removed during
run time, even though they might not have been needed any-
more after a certain point in time. After processing suffi-
cient input incrementally, we can detect, when a partial
parse tree / mini-network may no longer be useful. Remov-
ing the mini-network can reduce excessive memory re-
quirements and at the same time speed up the whole compu-
tation.

Using a refined and extended grammar. The choice of
grammar can be a determining factor in robust parsing. Fine
tuning the grammar rules can improve the repair detection
capability of the parser. Verb subcategorization [Jurafsky
and Martin 2000], for example, can be employed to refine
the grammar rules. We would like to use a more elaborate
grammar notation, and do further tests with a larger set of
grammar rules and an expanded lexicon, to see how the
spoken language parser improves and/or scales up.

6 Conclusion
We have extended a Hybrid Connectionist Parser (HCP)
with a Phrase Structure Matching Algorithm (PSMA) in
order to perform parsing of spoken language. This approach
combines the use of symbolic and connectionist methods
and features, in particular, the use of symbolic features like
syntactic categories as nodes, and neural network features
like graded activation and threshold dependent processing in
the HCP. The neural network features are suitable to deal
with incomplete and inconsistent structures, and thus it
deemed useful to employ the parser for spoken language
processing. Typical phenomena of spoken language are dis-
fluencies, in particular corrections and modifications of ut-
terances during spontaneous speech. The HCP detects such
disfluencies, and the PSMA repairs them based on a struc-

tural match and overlapping of comparable structures. The
experimental results we obtained with a detection and cor-
rection degree of approximately 70% are good, for a purely
syntactic method, which does not require any prosodic,
phonetic or other information.

The method, however, seems to depend on the tuning of
the grammar, which has to accurately reflect the linguistic
input structures, and thus scalability and performance
should be improved through a more elaborate grammatical
notation and potentially by adding further information de-
rived from the speech signal, like hesitations, pauses or fill-
ers. Overall, based on the first experimental results, the ap-
proach has a promising prospect.

Acknowledgments
The work reported in this paper is partly based on
Venkatesh Manian’s M.Sc. thesis in the Department of
Computer Science at the University of Manitoba. He is now
affiliated as software architect with a local company.
 This work has been supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

References
[Aho et al., 1986] Alfred V. Aho, Ravi Sethi, and Jeffrey D.

Ullman. Compilers: Principles, Techniques and Tools.
Pearson Education, 1986.

[Anderson et al., 1992] A. Anderson, M. Bader, E. Bard,
E. Boyle, G.M. Doherty, S. Garrod, S. Isard, J. Kowtko,
J. McAllister, J. Miller, C. Sotillo, H.S. Thompson and
R. Weinert. The HCRC Map Task Corpus. Language
and Speech. 34: 351–366, 1992.

[Bear et al., 1992] J. Bear, J. Dowding, and E. Shriberg.
Integrating Multiple Knowledge Sources for Detection
and Correction of Repairs in Human-Computer Dialog.
Proc. 30th Annual Meeting of the Association for Compu-
tational Liguistics, 56-63, 1992.

[Core, 1999] M. G. Core. Dialog Parsing: From Speech
Repairs to Speech Acts. PhD thesis, University of Roch-
ester, New York, 1999.

[Dale et al., 2000] R. Dale, H. Moisl, H. Somers, and H. L.
Somers (Eds.). Handbook of Natural Language Process-
ing. Marcel Dekker, New York, 2000.

[Dowding et al., 1993] J. Dowding, J. M. Gawron, D. Ap-
pelt, J. Bear, J. Cherny, R. Moore and D. Moran. Gem-
ini: A Natural Language System for Spoken Language
Understanding. Proc. 31st Annual Meeting of the Asso-
ciation for Computational Linguistics, 54-61, Columbus,
Ohio, 1993.

 [Elman, 1990] J. L. Elman. Finding Structure in Time.
Cognitive Science, 14: 179–211, 1990.

[Heeman and Allen, 1999] P. Heeman and J. Allen. Speech
Repairs, Intonational Phrases and Discourse Markers,
Modelling Speakers Utterance in Spoken Dialogue.
Computational Linguistics, 25:527-571, December 1999.

[Hindle, 1983] D. Hindle. Deterministic Parsing of Syntactic
Non-fluencies. Proc. 21st Annual Meeting of the Associa-
tion of Computational Linguistics, 123–128, 1983.

[Jain and Waibel, 1990] A. N. Jain and A. H. Waibel. In-
cremental Parsing by Modular Recurrent Connectionist
Networks. In D. S. Touretzky (ed.): Advances in Neural
Information Processing Systems 2, Morgan Kaufmann,
San Mateo, CA, 1990.

[Jurafsky and Martin, 2000] D. Jurafsky and J. H. Martin.
Speech and Language Processing. Prentice Hall, 2000.

[Kemke, 1996] C. Kemke. A Hybrid Approach to Natural
Language Parsing. von der Malsburg, von Seelen, Vor-
brueggen, Sendhoff (Eds.): Artificial Neural Networks,
Proc. ICANN'96, 875–880, Bochum, Germany, 1996.

[Kemke, 2001a] C. Kemke, Connectionist Parsing with Dy-
namic Neural Networks – or: Can Neural Networks
make Chomsky Happy?, Technical Report MCCS-01-
327, CRL, NM State University, 2001.

[Kemke, 2001b] C. Kemke. Generative Connenctionist
Parsing with Dynamic Neural Networks. Proc. 2nd
Workshop on Natural Language Processing and Neural
Networks, 31-37, Tokyo, Japan, 2001.

[Kemke, 2002] C. Kemke. A Constructive Approach to
Parsing with Neural Networks – The Hybrid Connec-
tionist Parsing Method. Advances in Artificial Intelli-
gence, LNAI-2338, 310-318, Springer, 2002.

 [Lavie, 1996] A. Lavie. GLR*: A Robust Grammar-
Focused Parser for Spontaneously Spoken Language.
Ph.D. Thesis, Carnegie Mellon University, 1996.

[Manian, 2005] V. Manian. Integrating a Connectionist
parser and a Graph Matching Algorithm for Handling
Disfluenciesnin Spoken Language Processing. M.Sc.
Thesis, University of Manitoba, 2005.

[McKelvie, 1998] D. McKelvie. The Syntax of Disfluency
in Spontaneous Spoken Language. Human Communica-
tions Research Centre, HCRC/RP-95, Edinburgh, May
1998.

[Nakatani and Hirschberg, 1993] C. Nakatani and J.
Hirschberg. A Speech-First Model for Repair Detection
and Correction. Proc. 31st Annual Meeting of the Asso-
ciation for Computational Linguistics, 46–53, 1993.

[Sharkey, 1992] N. Sharkey. Connectionist Natural Lan-
guage Processing. Intellect, Oxford, England, 1992.

[Shriberg, 1997] E. Shriberg, R. Bates, and A. Stolcke. A
Prosody-only Decision-Tree Model for Disfluency De-
tection. Proc. 5th European Conference on Speech Com-
munication and Technology, 2383-2386, Rhodes,
Greece, 1997.

[Wermter and Weber, 1997] S. Wermter and V. Weber.
SCREEN: Learning a Flat Syntactic and Semantic Spo-
ken Language Analysis Using Artificial Neural Net-
works. Journal of Artificial Intelligence Research, 6:35–
85, 1997.

