
Abstract 
“Spoken language” is a field of natural language 
processing, which deals with transcribed speech ut-
terances. The processing of spoken language is 
much more complex and complicated than process-
ing standard, grammatically correct natural lan-
guage, and requires special treatment of typical 
speech phenomena called “disfluencies”, like cor-
rections, interjections and repetitions of words or 
phrases. We present a parsing technique that util-
izes a Hybrid Connectionist Parser (HCP) extended 
with a Phrase Structure Matching Algorithm 
(PSMA) for the syntactic processing (parsing) of 
spoken language. The HCP is a hybrid of a connec-
tionist and a symbolic approach, which builds a 
neural network dynamically based on a given con-
text-free grammar and an input sentence. It has an 
advantage over traditional parsers due to the use of 
graded activation and activation passing in the 
network. These features were exploited in tech-
niques to detect and repair disfluencies, in combi-
nation with the Phrase Structure Matching Algo-
rithm, which operates on the graphical structure of 
the network. This approach to spoken language 
parsing is purely syntactical and – in contrast to 
other work – does not require a modified grammar 
for spoken language, or information derived from 
the speech input, nor any pre-marking of disfluen-
cies. We implemented the combined HCP and 
PSMA parser and tested it on a standard corpus for 
spoken language, the HCRC Map Task Corpus. 
The experiments showed very good results, espe-
cially for a purely syntactic method, which detects 
as well as corrects disfluencies. 

1 Introduction 
Over the last 50 years, researchers from different fields have 
worked on the problem to describe natural languages so that 
they can be processed by formal means and thus computers. 
Dale et al. [2000] classify these approaches into three 
groups: symbolic methods that represent the language with 
formal grammars, empirical methods that rely on statistical 
data rather than explicit handcrafted rules, and connectionist 

approaches uses neural networks for processing natural 
languages. Rather than relying on one particular approach 
researchers are also trying techniques that involve different 
approaches. For example, Christiansen and Chater [1985] 
state that the symbolic approach and the connectionist ap-
proach complement each other rather than merely provide 
alternative representations. 
 The Hybrid Connectionist Parser (HCP) we choose for 
our work utilizes both a symbolic component and a connec-
tionist component. In the following section, we discuss pre-
vious works on spoken language processing. Then, we pre-
sent the Hybrid Connectionist Parser, which is the basis for 
the spoken language parser. Following, we describe the 
combination of HCP and the Phrase Structure Matching 
Algorithm for spoken language parsing. The paper con-
cludes with a summary of our experimental evaluation of 
this method using spoken language sentences from the 
HCRC MapTask corpus [Anderson et al., 1992]. 

2 Spoken Language Processing 
In the following two sections, we give a brief introduction 
to phenomena typical of spoken language, and then cite 
relevant work in the area of spoken language processing.  

2.1 Spoken Language 
Spoken language is marked by the presence of pauses, inter-
jections and repetition of words or phrases. These “features” 
or “speech repairs” are categorized into three classes: 

Fresh starts. The speaker restates his/her previous utter-
ance. For example: “I need to send … let’s see … how 
many boxes can one engine take?” 

Modification repairs. The speaker does not restate what 
he/she utters but replaces or repeats a word or a phrase. For 
example: “You can carry them both … tow both on the 
same engine.” 

Abridged repairs. The speaker stops or pauses while utter-
ing a phrase and then continues what they started to say. For 
example: “We need to um… manage to get the bananas.” 
 Natural Language parsers, in general, are not capable of 
handling these erroneous inputs. We need to special capa-
bilities in the parsers to deal with these disfluencies. 
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Approaches to detecting and repairing disfluencies in 
spoken language can be categorized according to the kind of 
information they need and the method using this informa-
tion. Some researchers use syntactic information based on 
grammar rules, some use prosodic signals, which indicate an 
interruption in fluent speech, and others use pattern match-
ing to detect repetitions of words or phrases, or combina-
tions of these methods. We present in the following sections 
major work done on detecting and/or repairing disfluencies 
in spoken language. 

2.2 Earlier Work on Spoken Language Processing  
Hindle [1983] used edit signals (a phonetic signal) to indi-
cate the presence of a repair in speech. He formulated four 
rules namely surface copy editor, category copy editor, 
stack copy editor and handling fresh restarts. His method 
had remarkable results in experiments showing only 3% 
failure. However, assuming the presence of edit signal lim-
ited the applicability of such approach. 
 Dowding et al. [1993] developed a natural language sys-
tem called GEMINI. They used both syntactic and semantic 
information in the bottom-up parser to generate structures. 
Then they use an utterance level parser to derive a semanti-
cally correct structure. When the utterance level parser fails, 
a correction phase is used to detect and repair. Their training 
set contained 178 repairs and the system was able to detect 
89 repairs, and 81 of those repairs were corrected. 
 Lavie [1996] developed a new parsing algorithm GLR* 
for spoken language. This parser skipped words to find 
maximum set of words that form a complete structure. The 
system did not perform any speech repair detection and cor-
rection. 
 Wermter and Weber [1997] mentioned a flat screening 
method to handle utterances in their system SCREEN. The 
system was hybrid in that it used a flat representation for 
syntactic and semantic analysis and ANNs to deal with am-
biguous structures and repairs in the utterances.  The system 
dealt with pauses interjections and repetitions of a word or 
phrase.  
 McKelvie [1998] used symbolic rules to implement re-
pairs. He developed a set of grammar rules for fluent speech 
and later extended it to handle disfluent patterns. However, 
McKelvie’s work does not explicitly show the number of 
repairs detected and the number of false alarms caused. 
 Core [1999] designed a parser to work with metarules 
such as non-interference metarule, editing term metarule 
and repair metarule. These metarules were used to specify 
different patterns of speech repair. His system was able to 
detect 237 out of 495 speech repairs using the word and the 
part of speech tag information. The correct reparandum start 
was detected for 187 out of 237 using only word matching 
and 183 out of 237 using word and part of speech similari-
ties. 

Bear et. al [1992] worked on different sources of informa-
tion to detect and correct repairs in speech. They used pat-
tern matching technique, the syntactic and semantic infor-
mation of a parser and acoustic information. They conclude 

that any single source of information is not sufficient to deal 
with repairs. 
 Nakatani and Hirschberg [33] determined the repairs by 
using acoustic and prosodic cues. They tested 202 utterances 
containing 223 repairs. Of them 186 repairs were detected 
with a recall of 83.4%. 177 of the repairs are detected with 
the help of word fragments and pause duration. In another 
experiment, the word fragments were not considered result-
ing in 174 repairs with a 78.1% recall. 
 Shriberg et al. [1997] showed that prosodic information 
can provide better results to detect repairs in speech than 
other methods that use lexical information. Shriberg et al. 
used features like the duration of pause, the duration of 
vowels, the fundamental frequency, and the signal to noise 
ratio to detect repairs. These measurements were present in 
the speech data that were used for training. Finally, they 
used a decision tree to find the interruption point that fol-
lows a filled pause, repetitions, repairs and false starts from 
other points.. 
 Heeman and Allen [1999] viewed the problem of recog-
nizing part of speech tags, discourse markers, detecting dis-
fluent parts in speech as intertwined. They solved the prob-
lem of detecting and correcting repairs, finding utterances 
ends and discourse markers at the speech recognition phase. 
With this system, Heeman and Allen solved 66% of speech 
repairs and they had a precision of 74%. 
 In contrast to the research described above, we propose a 
parsing method based on purely syntactic information, the 
Hybrid Connectionist Parser (HCP) with an added compo-
nent, the Phrase Structure Matching Algorithm (PSMA). 
This combined method detects disfluencies (typically cor-
rections and repetitions), based on a parser problem to con-
tinue a once started parse tree, and repairs those disfluencies 
by overlapping partially matching structures of the initial 
parse-tree and the newly generated sub-tree. The method 
does not require any pre-marking of the interruption point, 
or additional phonetic or prosodic information. In the next 
sections, we describe the basic principles of the HCP, and 
the augmentation of the HCP with the PSMA, and illustrate 
how this method is used to parse spoken language. 

3 The Hybrid Connectionist Parser 
Given a Context-Free Grammar (CFG), the Hybrid Connec-
tionist Parser (HCP) constructs the underlying Artificial 
Neural Network (ANN) dynamically. The parser works 
online, incrementally reading words from the input sentence 
and merging partially completed networks, starting with 
mini-networks created from the rules of a given CFG. This 
idea of constructing the ANN dynamically is relatively un-
common but more suitable for processing dynamic struc-
tures of unlimited size. Previously, [Elman 1990; Sharkey 
1992; Wermter and Weber 1997; Jain and Waibel 1990] 
used Recurrent Neural Networks (RNN) to imitate the re-
cursive generative capability of natural languages. In this 
section, we outline the main characteristics of the HCP. A 
more detailed description can be found in [Kemke 1996, 
2001a, 2001b, 2002]. 



3.1 Representation  
The mini-networks in HCP represent the grammatical rules 
of the given CFG. A mini-network is a two-layer network 
with one root-node, representing the syntactic categories on 
the left hand side (LHS) of the grammar rule and one or 
more child node(s), representing the right hand side (RHS) 
of the rule. The link weights between each of the child 
nodes and the root node are 1/n, if n is the number of child 
nodes. An example mini-network for the grammar rule A → 
A1 A2 … An is shown in Figure 1. 

 

 

 

 

 

 

 

In the general case, the units in the network are simple 
threshold units with the threshold value set to 1.0. Thus, 
each root node gets somewhat activated, when one or more 
of its child nodes are fully activated, but gets fully activated 
(and fires) only when all its children are fully activated. 
Thus, the HCP simulates a deterministic, incremental parser. 
In order to make the representation and use of these mini-
networks more efficient, we introduced complex mini-
networks, which can represent rules with the same LHS but 
different RHS. This is typical for natural language gram-
mars, which often have slightly different RHS for the same 
category on the LHS. For this purpose, we use hypothesis 
nodes. When there are multiple RHS for the same LHS, 
each of the RHS is represented through a hypothesis node, 
which is connected to the root node representing the LHS. 
The link weight for each of these new connections is set to 
1.0. All other nodes not belonging to a hypothesis node are 
connected to it through negative link weights to facilitate 
mutual inhibition. Thus, the root node for the LHS gets acti-
vated, when at least one of the children is fully activated. 
Figure 2 illustrates this idea for the sample grammar rule: 

VP → V (H1) | V NP (H2) | V PP (H3) | V NP PP (H4) 

 

 

 

 

 

 

 

3.2 The Algorithm  
The HCP starts with a set of mini-networks generated from 
the context-free grammar. The input is read word by word, 
and the parser proceeds incrementally. After processing 
each word from the input sentence, it searches the existing 
mini-networks to see if this word can be bound to a child 
node of one of those mini-networks. While searching for 
such networks, it has to be ensured that the order of the 
terms in the grammar rules is maintained. In other words, if 
we are to bind to a node Ak of a network representing the 
rule A → A1 A2 … An, we need to ensure that the nodes Ai 
< Ak have already been fully activated and bound. This can 
be achieved through introducing proper inhibition mecha-
nisms, similar to the ones described above for complex 
mini-networks. When all the child nodes in a mini-network 
are activated, the root node of that network becomes fully 
activated. If the root-node of a network is fully activated, 
the search for a network, to which this root-node can be 
bound, starts again. If some input has already been proc-
essed, and thus incomplete networks have been generated, 
the fully activated network can be bound to such an existing, 
partially activated network, in a process called “merging”. 
The root-node of the later network has to match with the 
left-most unbound node of the earlier, partially activated 
network. Alternatively, a new mini-network can be created 
in parallel, if the root-node is the left-most node on the RHS 
of the mini-network. After processing all input words, the 
parse was successful if at least one fully activated network 
exists, whose root-node is labeled with the start symbol of 
the grammar. This network corresponds to a complete parse 
tree for the input sentence. In case of structurally (syntacti-
cally) ambiguous sentences, the parser will derive several 
complete, fully activated networks.  

3.3 Special Features 

The HCP has some advantages over conventional parsers 
for CFGs, due to the online, incremental, dynamic construc-
tion of an underlying neural network. The algorithm exhibits 
parallelism in the way nodes are bound in each stage – thus 
the HCP can be ported to a parallel architecture. It is also 
possible to represent CFGs in a condensed form for process-
ing by the HCP. One example are the complex mini-
networks described above, and optional terms on the RHS 
of a grammar rule, which could be simply added to a net-
work using a link weight of 0, and thus can be accepted by 
the parser but are not required.  

Some characteristics of this parsing method make it par-
ticularly useful for spoken language processing. If an input 
word or root-node of a fully activated network cannot be 
bound to an existing network, nor create a new mini-
network, the parser cannot continue to derive a complete 
parse tree. This characteristic is used to detect interruption 
points and disfluencies in spoken language. The use of 
graded activation and activation passing enables the parser 
to maintain information about partially accepted, as well as 
expected structures, and this can be used to process incom-
plete and superfluous structures, reflecting repetitions and 
corrections in spoken language. Figure 2: Complex mini-network with hypothesis nodes 

Figure 1: Mini-network representing a grammar rule 
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4 Augmenting the HCP with the PSMA 
We augmented the HCP with a Phrase Structure Matching 
Algorithm (PSMA), extending the concept of the “Graph 
Matching Algorithm” by Kemke [2001b]. We developed the 
PSMA to correct disfluent structures present in an utterance 
by detecting structural similarities between the reparandum 
and its alteration.  The PSMA is triggered, when an incom-
plete structure is detected during parsing with the HCP. This 
leads to an inconsistent state of the parsing process, which 
cannot be continued, since a newly generated sub-tree can-
not be merged into the initial incomplete parse tree, and can 
also not otherwise be expanded. The PSMA takes the partial 
parses generated by the HCP as input and corrects the dis-
fluency by trying to find a structural match between the new 
sub-tree and the initial parse tree. The following example 
illustrates the idea. 

The sentence “I have a … I have got a picket fence” is an 
example of a fresh start. The speaker meant to say “I have 
got a picket fence”, but inadvertently started with “I have 
a”  and then starts the sentence over with “I have got a 
picket fence.”  

The syntactic parsing of the initial, false start:  

S [NP[PRP[I]] VP[HV[ have]] NP[DT[a] NOM[ ]]]]  

reveals that the parser is trying to recognize as next com-
pleted structure a Noun Phrase NP starting with “a”  and 
expects as next category a Nominal NOM (Figure 3). 

In this parsing situation, a nominal is thus expected as 
root node of the next completed sub-tree. The HCP contin-
ues to parse and derives a new, fully activated sub-tree, 
which is in this example a complete sentence structure. The 
algorithm detects that a nominal is expected but it is not 
present in the expected position in the parsed input sentence. 
Instead, the root node is labeled with the sentence symbol S. 
Thus, it is assumed that a disfluency has occurred and this 
point in the parse tree is interpreted as the interruption point. 
The PSMA takes the complete sentence structure returned 
by the HCP:  

S [NP [PRP [I]] VP [HV[have] VP[VBP[got]  
NP [DT[a] NOM [picket fence]]]]  

and tries to match the root node S of this structure with pre-
vious incomplete structure shown in Figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The PSMA searches backward through the initial, incom-
plete parse tree, which contains the unbound, not activated 
node (NOM in Figure 3). When it can confirm a significant 
structural similarity, it overlaps the matching structures and 
thus creates a new, corrected parse tree. At this point, the 
previous structures are discarded and the new, combined 
structure is retained. 

To find a match between the new sub-structure and the 
initial, incomplete one, the PSMA starts at the right bottom 
of the initial parse tree and step-by-step moves towards its 
parent nodes, in case of failure of a match with the label of 
the root node of the new structure. In the example, the 
PSMA starts the comparison with the node “a” and its cate-
gory DT in the initial parse tree. The root node of the new 
structure is S which does not match with DT. The PSMA 
moves to the next higher level NP, which also fails to 
match. The third attempt, to match with VP, is also unsuc-
cessful. Finally, the PSMA moves to the highest node S and 
finds a match of the initial structure with the new, complete 
structure. The two structures are then merged, through an 
overlapping process, in which the newer generated structure 
precedes over the initial, earlier created structure. This re-
flects the assumption that speakers correct themselves in 
later parts of the utterance, and thus the later parts override 
earlier parts of the input. The result is a new, complete parse 
tree (Figure 4). The comparison of the two structures 
through top down traversal confirms a structural match to a 
high degree. This makes the PSMA a robust and reliable 
method to correct the found disfluency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
In the example, we see that the PSMA has detected the 

interruption point based on the fact that the parse could not 
be continued as expected. The search and match procedure 
found a substantial overlap and proper replacement for the 
incorrect structure. The PSMA does not expect, however, 
that a phrase is repeated exactly to correct a disfluency. A 
successful match starting of a parent node in the initial parse 
tree and the root node of the new sub-tree would be suffi-
cient to allow the PSMA to merge the two structures. 
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Figure 3: Partial parse of "I have a" 
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Figure 4: Full parse of "I have got a picket fence" 



4 Evaluation 
We tested the method with the HCRC Map Task Corpus by 
Anderson et al. [1992]. This corpus contains transcribed 
dialogues regarding path finding in a terrain, between an 
instruction giver with a route marked map and an instruction 
follower with an unmarked map. Since it is based on spon-
taneous spoken language, the Map Task Corpus contains 
disfluencies typical for natural conversation. An advantage 
of the Map Task Corpus is the restriction to a particular do-
main of conversation, which made the grammar and lexicon 
development for our tests with the HCP and PSMA rela-
tively fast and easy.  

4.1 Evaluation Metrics 
The merit of the speech repair tool is calculated using the 
measures of precision and recall – these two metrics have 
been used earlier [Core, 1999; Heeman and Allen, 1999; 
Nakatani and Hirschberg, 1993] and are a standard meas-
urement for disfluency detection. 

Precision  
The precision is calculated by Tp/(Tp+Fp), where Tp (True 
positive) is the total number of repairs that are detected as 
repairs and Fp (False positive) is the total number of false 
repairs that are detected as repairs. 

Recall  
The recall is calculated by Tp/(Tp+Fn), where Fn (False 
negative) is the total number of repairs that are not detected 
as repairs. In our tests based on the HCRH Map Task Cor-
pus, all examples contained at least one disfluency. We thus 
did not calculate the precision, as there were no false posi-
tives in the test set. 

4.2 Experiments 
We implemented the PSMA integrated with the HCP in two 
different ways: using a post-processing method, in which 
the PSMA starts to work only after the HCP has created all 
possible structures, and an incremental method, in which the 
PSMA is activated as soon as parsing cannot be continued 
and a disfluency is assumed. 
 In our first set of experiments we let HCP to finish pars-
ing of the full utterance. The PSMA then takes over trying 
to fix the disfluencies marked by interruption points. We 
conducted the experiment in three stages. For the first stage, 
we had 55 test sentences with a single repair instance. The 
parser was able to correct 38 of them. For the second stage 
we expanded the grammar and ran tests on 71 sentences and 
the parser corrected 28 of them. In the third stage, we in-
creased the number of repair instances. Of the 98 sentences 
we tested, the parser corrected 42 of them.  

In the first set of experiments, it turned out that the post-
processing method had problems to correct utterances with 
more than two repair instances. We subsequently tested an  
incremental version of the combined HCP and PSMA, 
which brought about better results. 
 In this second set of experiments, the PSMA started as 
soon as a disfluency was detected. After receiving a new  

complete sub-tree from the HCP, the PSMA started imme-
diately to search and match with the initial tree, in order to 
perform an overlapping of structures to correct the disflu-
ency in the utterance. In the incremental processing tests, 
the PSMA detected 89 out of 121 repair instances with a 
recall rate of 73.5%. Of these 89 repairs, the PSMA was 
successfully able to correct 80 of them. 

5 Future Work 
As our results have shown, the incremental processing 
method has a promising prospect. We would like to extend 
our work with this method in the following directions. 

Parallelizing the HCP. The HCP is implicitly parallel in 
nature. When each node is activated, we have the choice of 
binding it to (several) other nodes, or to create a new mini-
network for it. These options are mutually exclusive, i.e. 
they cannot be present in the same parse tree, and could thus 
be executed in parallel. We are considering a parallel im-
plementation of the HCP to speed up the computation. Al-
though speeding up the parser does not improve the recall 
rate, it makes the parser more applicable for practical use. 

Removing useless mini-networks. In our implementation, 
the HCP can merge and create new mini-networks as 
needed. None of these mini-networks were removed during 
run time, even though they might not have been needed any-
more after a certain point in time. After processing suffi-
cient input incrementally, we can detect, when a partial 
parse tree / mini-network may no longer be useful. Remov-
ing the mini-network can reduce excessive memory re-
quirements and at the same time speed up the whole compu-
tation. 

Using a refined and extended grammar. The choice of 
grammar can be a determining factor in robust parsing. Fine 
tuning the grammar rules can improve the repair detection 
capability of the parser. Verb subcategorization [Jurafsky 
and Martin 2000], for example, can be employed to refine 
the grammar rules. We would like to use a more elaborate 
grammar notation, and do further tests with a larger set of 
grammar rules and an expanded lexicon, to see how the 
spoken language parser improves and/or scales up. 

6 Conclusion 
We have extended a Hybrid Connectionist Parser (HCP) 
with a Phrase Structure Matching Algorithm (PSMA) in 
order to perform parsing of spoken language. This approach 
combines the use of symbolic and connectionist methods 
and features, in particular, the use of symbolic features like 
syntactic categories as nodes, and neural network features 
like graded activation and threshold dependent processing in 
the HCP. The neural network features are suitable to deal 
with incomplete and inconsistent structures, and thus it 
deemed useful to employ the parser for spoken language 
processing. Typical phenomena of spoken language are dis-
fluencies, in particular corrections and modifications of ut-
terances during spontaneous speech. The HCP detects such 
disfluencies, and the PSMA repairs them based on a struc-



tural match and overlapping of comparable structures. The 
experimental results we obtained with a detection and cor-
rection degree of approximately 70% are good, for a purely 
syntactic method, which does not require any prosodic, 
phonetic or other information.  

The method, however, seems to depend on the tuning of 
the grammar, which has to accurately reflect the linguistic 
input structures, and thus scalability and performance 
should be improved through a more elaborate grammatical 
notation and potentially by adding further information de-
rived from the speech signal, like hesitations, pauses or fill-
ers. Overall, based on the first experimental results, the ap-
proach has a promising prospect.  
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