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Abstract:  We present a new GPU-based rendering 

method for ray casting of multiple geometric data. Our 
approach supports a polygonal data to calculate scattered 
light. Terrain is represented for the base of scalar 
perturbation functions. The geometric model is based on 
non-polygonal representation. We present a new 
representation scheme for freeform surfaces  it is possible 
to combine basic surface and perturbation functions. To 
recognize the place it is often sufficient to fill areas with 
the generalized texture patterns, such as "themes". 
Themes designed beforehand and consumption of 
memory for storing them is not huge. 
 Keywords: freeform surfaces, recursive multilevel ray 
casting, shape texture, thematic texture, scattered light, 
volume-oriented visualization. 

I. INTRODUCTION 
 Using traditional polygonal representation for the example 
complex surface give rise to a range of problems such as 
visible surface determination, depth complexity handling, 
controlling levels of details, clipping polygons by viewing 
frustum, geometry transformations of large number of 
polygons [1, 2]. 

A method for constructing a triangle mesh whose vertices 
coincide with the zero-valued isosurface is the Marching 
Cubes algorithm [3]. Although it provides many greater 
capabilities, the use of voxel-based terrain in real-time virtual 
simulations also introduces several new difficulties. The 
algorithms used to extract the terrain surface from a voxel 
map produce far greater numbers of vertices and triangles 
when compared to conventional 2D terrain. The development 
of a seamless LOD algorithm for voxel-based terrain is vastly 
more complex than the analogous problem for height-based 
terrain. 

Texturing and shading of voxel-based terrain is more 
difficult than it is for height-based terrain. In the cases that 
triangle meshes are generated for multiple resolutions, arises 
the cracking problem. 

A method for patching cracks on the boundary plane 
between cells triangulated at different voxel resolutions was 
described in [4]. Using a voxel-based model however, can 
achieve the same results at a much lower hardware 
requirement. 
 The proposed method includes the following main 
features: rendering second-order surfaces; rendering surfaces 
defined on a regular altitude grid (Shape texture); rendering 
freeform surfaces; scattered light visualization. 

II. VOLUME-ORIENTED RENDERING 
 Along with possibility to rasterizing 2D space, the main 
feature of the proposed method is rasterizing made by 3D 
space quadtree subdivision of pyramids of different levels, 
which constitute the whole pyramid of vision. Then a 
pyramid of the lowest level is binary-tree subdivided into 
voxels of the lowest level - Recursive Multilevel Ray Casting 
(RMLRC). In the latter case, extent space regions (in depth) 
can masked out. Depth subdivision of space performed on the 
logarithmic basis. The technique of RMLRC allows 
determining an intersection of a ray (pyramid) of any level 
with a surface effectively. It is also suitable for fast culling of 
a spatial region outside an object. The core of this approach is 
effective search of volume elements (hereinafter voxels), 
involved in current frame generation, fused with direct 
projection [5]. If geometry transformation is described by 
matrix (C) then new calculated matrix of quotients 
(Q)'=(C)T*Q*(C) does in the coordinate system P the same 
as the matrix (Q) in the coordinate system P. The matrix (C) 
of projecting transformation calculated once for particular 
frustum. So the use of projecting transformation generalizes 
the discussed algorithm for pyramidal volumes (frustums) 
and allows synthesize images with perspective. In our 
approach a virtual environment can be described using 
polygonal models, surfaces of second order, three-
dimensional scalar functions, defined on discrete grid 
h=h(u,v), free-form surfaces, which are represented by 
composition of base surfaces and shape-driving functions. 
The proposed RMLRC algorithm has several advantages in 
processing mentioned surface models as compared with 
known algorithms. Therefore, for example, RMLRC 
algorithm applied for second order surfaces simplifies 
calculation of Phuong shading, since at the last level of 
subdivision derivative plane coefficients for the surface 
obtained. Further, the possibility of second order and free 
form surfaces composition allows producing objects that are 
more complex. Photorealistic visualization of complex 
surfaces, for instance, specified by a three-dimensional 
function, defined on discrete grid h=h(u,v) can be done 
without intermediate polygonal approximation. Such surfaces 
represented by differential height map, i. e. the algebraic 
carrier surface is given and in each grid node, only deviation 
from this surface needed. This representation facilitates 
calculation of contiguous levels of details as well as makes 
easy quality filtering. Geometry transformations apply only 
to the carrier surface and the height map is kind of surface 
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texture. Freeform surface representation differs from known 
representations, such as for example, Constructive Shell 
Representation [6], since the former is free of problems 
arising when complex surfaces are approximated with large 
number of Bezier patches, B-splines etc. (problems of 
rendering patches boundaries, problems of warped 
halfspaces). The proposed approach allows specifying surface 
representation as composition of base surfaces and shape-
driving functions. Small number of such functions is enough 
to describe surfaces of any form including non-convex, with 
holes etc. (Fig. 1). Discussed surface representations and the 
approach to their processing facilitate description of such 
phenomena as waves, dynamic surface warping, morphing, 
deformations and animation of wide range of surfaces. 

 
Fig. 1. Freeform surface (F-117) over terrain. Height map resolution 

512x512. Screen resolution 1920 x 1080 
 III. FREEFORM SURFACES 

 Traditionally, the parametric form represents each patch in 
a freeform surface as a mapping from 2D parameter space to 
3D space. Although parametric patches are powerful for 
constructing freeform surfaces, processing these patches 
poses fundamental problems, only two - constructive solid 
geometry (CSG) and boundary representation (Brep) - 
commonly represent solids exactly, that is, without 
approximation. In particular, "separation" and other such 
problems associated with curved halfspaces are hard to solve 
in parametric patches. We present a new representation 
scheme for freeform surfaces - it is possible to combine basic 
surface F(x,y,z) and shape-driving function R(x,y,z) or 
perturbation function, where shape-driving function 
represents smooth deformation of basic surface [7]. The 
shape-driving function is composed of several second-order 
functions using logic intersection and union operations, it is 
recursively evaluated during subdivision itself, and therefore, 
computation of resulting R (x, y, z) is minimal. At the same 
time, it is moderate in computations, so it can implemented in 
hardware to carry on realistic object outlook.  
 Because of application of the 3D space, subdivision 
algorithm the possibility appears to render surfaces, which 
usually consist of huge amount of patches such as freeform 
surfaces. 

IV. SHAPE TEXTURE 
Non-regular terrain algorithms are more complex but 

have the potential to reduce the number of polygons that the 
system must process [1]. However, for many terrains with 
limited elevation gradient, the average expected reduction in 

the image generator load is small for irregular grid as 
compared to regular grid. Each irregular grid node consumes 
much more computational time and memory than that of 
regular. Systems, which employ irregular grids, are very 
limited in the number of LODs that can handled. In addition, 
it is very difficult to solve problems concerned with terrain 
deformation when using irregular grid (explosions, pits in the 
ground). 

Volume oriented rendering and uniformity of object 
processing result in an efficient hidden surface removal and 
detection of spatial collisions. Chosen representation of 
terrain data is based on regular multi-level elevation map 
complemented with levels of detail [7]. This approach has 
several advantages, such as rapid generation and 
modification, efficient data storing and retrieving, over 
polygonal models. 

V. THEMATIC TEXTURE 
 Systematically analyzing geographer’s work, Barr [8] has 
described it as operating with the “geographic matrix”. For 
clearness, it can thought as three-dimensional, i.e. two 
dimensions correspond to the geo-coordinating system, and 
the third one corresponds to a description list. Each element 
represents a “geographic fact” (Fig. 2). For a large database, 
it is resource-intensive to obtain and process geospecific 
photo-texture for the entire gaming area. It assumed that most 
of the benefits of geospecific photo-texture could attained by 
combining a large amount of generic photo-texture with a 
small amount of geospecific photo-texture. 

 
Fig. 2. Thematic texture 

 Simulation of big areas of terrain in the training system 
image generators requires the large capacity of memory for 
the photographic data storage. The usual approach to reduce 
this information is to compress the data with the help of the 
methods such as JPEG, etc. In the approach of the texture 
composition it supposed, that the observer (pilot) often is not 
interested in the exact, photographic information about the 
areas, covered by, for example, forest, water, mountains, etc. 
To recognize the place it is often sufficient to fill these areas 
with the generalized texture patterns (we will call them 
"themes" afterwards). Themes designed beforehand and 
consumption of memory for storing them is not huge. Area of 
the terrain photo-texture with the same theme approximated 
by the polygons, which are bounded by curves. Each of the 
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polygons has the pointer to the texture theme and to the 
procedure of generating the boundaries between the areas 
with the different themes. The procedures of generating the 
boundaries do not reproduce true boundaries exactly, but 
have the goal to keep their features. There are two main 
problems in the technique of the texture composition. The 
first is the generation of the boundaries between the areas 
with the different themes. To resolve this problem, the 
algorithms, which allows generating the different kinds of 
boundaries, designed. Among the possible kinds of the 
boundaries the following can be selected: fractal boundaries, 
following natural boundaries in the maps of the texture 
themes (for example, following the streets in the texture map 
of the town), procedural blend zones (beaches, etc.). The 
second problem of the technique of the texture composition is 
the filling the areas by the homogeneous texture pattern. 
Filling the big area of the terrain by the small texture pattern 
leads to the undesirable periodic, unnatural picture. The 
introduction of the different kinds of non-regularity, which 
keeps the features of the texture pattern, allows obtaining 
more natural picture. 
 The first stage is the usual rendering of polygons, 
describing the texture, and filling the service buffer by the 
pointers to the texture themes and kinds of boundaries. The 
second stage is access to the buffer through the perturbation 
map, to obtain the color of each texel. Perturbation map 
calculated beforehand. Note that approach is adapted for the 
generation of the fractal boundaries, but it allows to use the 
procedural blend zones also, and to generate boundaries, 
which coincide with the natural boundaries in the maps. To 
generate fractal boundaries the following actions must be 
done (some are simplified): access to the perturbation map by 
address, defined by the U and V coordinates of the given 
texel, to obtain the additions to the values of U and V. 
Obtaining the new values of U and V by the addition with the 
values from the perturbation map. Access to the buffer of the 
source map by the address, defined by new values of U and 
V, to obtain the index of the texture theme; access to memory 
of the texture themes, to obtain the color of the texel. 
Boundaries between regions, obtained by the method 
described, looks fractal due to the fractal character of the 
perturbation map used. Turbulent noise used to fill this map. 
As it is well known, the higher spatial frequencies of the 
turbulent noise have the smaller amplitude (and on the 
contrary). All of the boundaries, obtained by this method, are 
similar, but different themes can have different boundaries, 
with different widths (amplitudes) and "crooknesses" 
(frequencies). Therefore, the sequence of actions, described 
above, must be little more complex: access to the source map 
to obtain the characteristics of boundary; scaling of U and V 
coordinates to obtain required frequency of the noise, then 
access to the noise map (perturbation map). Multiplication of 
the values, obtained from the noise map, by the constant 
value to provide required amplitude of the noise, then 
modification of U and V; access to the source map to obtain 
the index of the texture map; access to memory of the texture 
themes to obtain the color of the texel. 
 Obviously, blending can become correct only if textural 
areas have coinciding borders. To satisfy a condition an 
additional database is introduced which describes faces of 

blending areas. These faces do not differ from others and 
their special role is to connect textural areas with different 
borders. For this purpose, such face owns border description 
of one area, and a texture of the other area. While the 
database created, these faces constructed by expanding 
polygons, i.e. by moving their edges. By the way, 
procedurally generated areas can obtained exactly the same 
way:  if a certain polygon with any textural theme has a 
prescribed blended border, the procedure described above 
executed and a newly created polygon assigned descriptions 
of the area created. 
 The boundaries coinciding with natural borders within a 
textural picture are considered. Such borders can formed by 
processing the image from the original map buffer after all 
textural polygons have been rasterized. Beside difficulties 
with forming the borders between areas of different textures, 
there is a problem concerning inner filling of these areas by a 
homogeneous picture. Therefore, in the proposed approach 
the textural coordinates disturbed by a noise-map to provide 
singularities on the picture. It is possible to reuse noise values 
previously obtained while determining the textural theme 
index. Let us estimate memory and time consumption within 
the proposed approach. Note, that original map resolution can 
be less than final texture map resolution. Maximal spatial 
frequency of the final image determined by a spatial 
frequency of textural themes and a noise-map; therefore, they 
can be scaled, so that one texel of original map is transformed 
into an area filled by a certain picture with a fractal border. 
Thus, minimal size of original map determined by a required 
precision of border presentation. The image kept in an 
original map consists of contiguous areas each filled by a 
certain textural theme index, that is why these data can be 
safely compressed using, for instance, Color Cell 
Compression method (this will ensure up to six times 
compression). Besides, this task can accomplished during 
textural polygon rasterizing with no additional time 
consumption. As noise-map, contents do not explicitly 
emerge in the final image, periodically wrapped map can 
used for this purpose and unwanted regularity will not 
noticed. For instance, fractal border has a repeating structure 
only if it originally presented as a straight line parallel to one 
of textural coordinate axes. The task of rasterizing textured 
polygons and filling original map is not extremely difficult 
and can be handled by any sufficiently powerful universal 
processor, moreover the time is limited only by a needed 
uploading due to the camera’s motion. To determine the color 
of a texel several steps are completed: fetch operation from 
original map, from noise-map, then, modification of U and V 
coordinates, fetch operation from original map and from 
textural theme memory. As one may see, these operations are 
quite simple and, therefore, a conventional textural fetch 
operation can substituted. This implementation has several 
significant advantages, as follows: overall memory 
requirements are less then those for a global texture; texture 
animation features become available by simple means, as 
fractal border can made animated, if a shift is applied to a 
noise-map at each frame. In addition, noise magnitude can 
change resulting in an interesting effect. In analogous way, 
texture inside the distinct regions can animated. Besides, this 
approach would be naturally used also for all other feature 
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textures (fetch operation from original texture memory 
should be excluded). All this could be useful while rendering, 
for instance, water surface, flames, snow, etc. 
 It should be also mentioned that implementation described 
above requires original map, noise-map and textural theme 
(as MIP map) storing, Generation of levels of detail for 
textural themes and noise-maps is of no difficulty, however 
levels of detail for original map is not clear, because these 
data are indices, which cannot be blended like colors. A 
straightforward solution of this problem is to eliminate details 
that are smaller than corresponding texel size, i.e. only 
wholly covered texels  handled during rasterizing original 
textural polygons. 

VI. SCATTERED LIGHT 
 The vertex shaders compute the light reaching the eye from 
a source or a reflective object and fog component. The inputs 
to the vertex shader are vertex position, transformation 
matrices, sunlight intensity, the sun direction, the various 
extinction and scattering coefficients. In this implementation 
using calculate them per-vertex in a vertex shader. If the Sun 
is not too low in the sky, this approximation gives good 
results at a low cost. For these assumptions, the illumination 
of the ground plane and light reaching the eye from it may 
easily derived (Fig. 3). To find the color perceived along a 
line of sight, we must consider both the light reflected by 
objects along the line of sight, attenuated by the inverting 
fog, and the light scattered towards the eye by fog along the 
line of sight. 

 
Fig. 3. Terrain, F117 and scattered light. Height map resolution 

512x512. Screen resolution 1920 x 1080 

VII. PERFORMANCE 
The visualization time is reduced by using the 

computational resources of a graphics processing unit with 
compute unified device architecture (CUDA). The result of 
running the programs on different processing units is the 
same even if they may have a different number of streaming 
multiprocessors. A large portion of the cube will be computed 
in parallel. Among the functions of the graphics processing 
unit was to calculate the coordinates of points of the surfaces, 
normals, and illumination. Geometric transformations were 
performed by the central processing unit (CPU). Rendering 
results using CPU (i7-2700K) and GPU (GTX 550Ti, GTX 750 
Ti, GTX 950) are shown in Table 1. 

 

TABLE 1. PERFORMANCE ON CPU AND GPUS 

The surface obtained will be smooth (Fig. 1 and Fig. 3), 
and a small number of perturbation functions (16) will be 
necessary to create complex surface forms. The figure shows 
a result of modeling a scene object by means of free forms, 
whose description required 2Kbyte information, which is 500 
times less than the polygonal description that would take 
1Mbyte information.  

VIII. CONCLUSION 
The main advantages include ease of calculation of points 

on the surface with quick search and rejection of the regions 
not occupied by the scene objects. A factor of 100 or more 
decrease in the number of surfaces for describing curved 
objects. Operations of the Geometry Processor (CPU) 
becomes significantly easier and data stream from the 
Geometry Processor (CPU) to the Renderer (GPU) reduced. 
Paralleling of the system becomes easier because the total 
system performance determined by the performance of the 
Renderer (GPU) which operations can be easily distributed 
between different screen regions. All problems connected to 
terrain generation solved. The opportunity to describe objects 
with grid values, i.e., with shape texture map; it becomes 
possible to morph objects; it is achieved by plain 
interpolation or animation of shape texture. It can used to 
render clouds, explosions, waves on water, etc.  
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Resolution i7-2700K GTX 550Ti GTX 750 Ti GTX 950 
256x256 802,65 ms 67,03 ms 31,07 ms 26, 55 ms 
512x512 850,81 ms 71,05 ms 32,93 ms 28, 01 ms 

1024x1024 856,52 ms 71,53 ms 33,15 ms 30, 22 ms 
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