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Abstract

Robust alignment is arguably both critical and extremely
challenging. Loosely, it is the problem of designing algorith-
mic systems with strong guarantees of always being bene-
ficial for mankind. In this paper, we propose a preliminary
research program to address it in a reinforcement learning
framework. This roadmap aims at decomposing the end-to-
end alignment problem into numerous more tractable sub-
problems. We hope that each subproblem is sufficiently or-
thogonal to others to be tackled independently, and that com-
bining the solutions to all such subproblems may yield a so-
lution to alignment.

Introduction
As they are becoming more and more capable and ubiq-
uitous, AIs are raising numerous concerns, including fair-
ness, privacy, filter bubbles, addiction, job displacement or
even existential risks (Russell, Dewey, and Tegmark 2015;
Tegmark 2017). It has been argued that aligning the goals
of AI systems with humans’ preferences would be an ef-
ficient way to make them reliably beneficial and to avoid
potential catastrophic risks (Bostrom 2014; Hoang 2018a).
In fact, given the global influence of today’s large-scale rec-
ommender systems (Kramer, Guillory, and Hancock 2014),
it already seems urgent to propose even partial solutions to
alignment.

Unfortunately, it has also been argued that alignment is
an extremely difficult problem. In fact, (Bostrom 2014) ar-
gues that it “is a research challenge worthy of some of the
next generation’s best mathematical talent”. To address it,
the Future of Life Institute proposed a landscape of AI safety
research1. Meanwhile, (Soares 2015; Soares and Fallenstein
2017) listed important ideas in this line of work. We hope
that this paper will contribute to outline the main challenges
posed by alignment.

In particular, we shall introduce a complete research pro-
gram to robustly align AIs. Robustness here refers to numer-
ous possible failure modes, including overfitting, hazardous
exploration, evasion attacks, poisoning attacks, crash toler-
ance, Byzantine resilience, reward hacking and wireheading.
To guarantee such a robustness, we argue that it is desirable
to structure (at least conceptually) our AI systems in their

1https://futureoflife.org/landscape/

entirety. This motivated us to propose a roadmap for robust
end-to-end alignment.

While much of our proposal is speculative, we believe that
several of the ideas presented here will be critical for AI
safety and alignment. More importantly, we hope that this
will be a useful roadmap for both AI experts and non-experts
to better estimate how they can best contribute to the effort.

Given the complexity of the problem, our roadmap here
will likely be full of gaps and false good ideas. It is important
to note that our purpose is not to propose a definite perfect
solution. Rather, we aim at presenting a sufficiently good
starting point for others to build upon.

The Roadmap
Our roadmap consists of identifying key steps to alignment.
For the sake of exposition, these steps will be personified
by 5 characters, called Alice, Bob, Charlie, Dave and Erin.
Roughly speaking, Erin will be collecting data from the
world, Dave will use these data to infer the likely states of
the world, Charlie will compute the desirability of the likely
states of the world, Bob will derive incentive-compatible re-
wards to motivate Alice to take the right decision, and Al-
ice will optimize decision-making. This decomposition is
graphically represented in Figure 1.

Figure 1: We decompose the alignment problem into 5 key
steps: data collection, world model inference, desirability
learning, incentive design and reinforcement learning.

Evidently, Alice, Bob, Charlie, Dave and Erin need not be
5 different AIs. Typically, it may be much more computa-
tionally efficient to merge Charlie and Dave. Nevertheless,
at least for pedagogical reasons, it seems useful to first dis-
sociate the different roles that these AIs have.

In the sequel, we shall further detail the challenges posed
by each of the 5 AIs. We shall also argue that, for robustness
and scalability reasons, these AIs will need to be further di-
vided into many more AIs. We will see that this raises ad-
ditional challenges. We shall also make a few non-technical
remarks, before concluding.



Alice’s Reinforcement learning
It seems that today’s most promising framework for large-
scale AIs is that of reinforcement learning. In reinforcement
learning, an AI can be regarded as a decision-making pro-
cess. At time t, the AI observes some state of the world st.
Depending on its inner parameters θt, it then takes (possibly
randomly) some action at.

The decision at then influences the next state and turns it
into st+1. The transition from st to st+1 given action at is
usually assumed to be nondeterministic. In any case, the AI
then receives a reward Rt+1. The internal parameters θt of
the AI may then be updated into θt+1, depending on previ-
ous parameters θt, action at, state st+1 and reward Rt+1.

Note that this is a very general framework. In fact, we hu-
mans are arguably (at least partially) subject to this frame-
work. At any point in time, we observe new data st that in-
forms us about the world. Using an inner model of the world
θt, we then infer what the world probably is like, which mo-
tivates us to take some action at. This may affect what likely
next data st+1 will be observed, and may be accompanied
with a rewarding (or painful) feeling Rt+1, which will moti-
vate us to update our inner model of the world θt into θt+1.

Let us call Alice the AI in charge of performing this re-
inforcement learning reasoning. Alice can thus be viewed as
an algorithm, which inputs observed states st and rewards
Rt, and undertakes actions at so as to typically maximize
some discounted sum of expected future rewards.

Such actions will probably be mostly of the form of mes-
sages sent through the Internet. This may sound benign. But
it is not. The YouTube recommender system might suggest
billions of antivax videos, causing a major decrease of vac-
cination and an uprise of deadly diseases. Worse, if an AI is
in control of 3D-printers, then a message that tells them to
construct killer drones to cause a genocide would be catas-
trophic. On a brighter note, if an AI now promotes convinc-
ing eco-friendly messages every day to billions of people,
the public opinion on climate change may greatly change.

Note that, as opposed to all other components, in some
sense, Alice is the real danger. Indeed, in our framework,
she is the only one that really undertakes actions. More pre-
cisely, only her actions will be unconstrained (although oth-
ers highly influence her decision-making and are thus criti-
cal as well).

As a result, it is of the utmost importance that Alice be
well-designed. Some of the past work (Orseau and Arm-
strong 2016; El Mhamdi et al. 2017) have proposed to re-
strict the learning capabilities of Alice to provide provable
desirable properties. Typically, they proposed to allow only
a subclass of learning algorithms, i.e. of update rules of θt+1

as a function of (θt, at, st+1, Rt+1). However, such restric-
tions might be too costly. And this may be a big problem.

Indeed, there is already a race between competing com-
panies in competing countries to construct powerful AIs.
While it might be possible for some countries to impose
some restrictions to some AIs of some companies, it is un-
likely that all companies of all countries will accept to be
restricted, especially if the restrictions are too constraining.
In fact, AI safety will be useful only if the most powerful
AIs are all subject to safety measures. As a result, the safety

measures that are proposed should not be too constrain-
ing. In other words, there are constraints on the safety con-
straints that can be imposed. This is what makes AI safety
so challenging.

As a result, what is perhaps more interesting are the ideas
proposed by (Amodei et al. 2016) to make reinforcement
learning safer, especially using model lookahead. This es-
sentially corresponds to Alice simulating many likely sce-
narii before undertaking any action. More generally, Alice
faces a safe exploration problem.

But this is not all. Given that AIs will likely be based on
machine learning, and given the lack of verification meth-
ods for AIs obtained by machine learning, we should not
expect AIs to be correct all the time. Just like humans, AIs
will likely be sometimes wrong. But this is extremely wor-
rysome. Indeed, even if an AI is right 99.9999% of the time,
it will still be wrong one time out of a million. Yet, AIs like
recommender systems or autonomous cars take billions of
decisions every day. In such cases, thousands of AI deci-
sions may be unboundedly wrong every day!

This problem can become even more worrysome if we
take into account the fact that hackers may attempt to take
advantage of the AIs’ deficiencies. Such hackers may typi-
cally submit only data that corresponds to cases where the
AIs are wrong. This is known as evasion attacks (Lowd and
Meek 2005; Su, Vargas, and Kouichi 2017; Gilmer et al.
2018). To avoid evasion attacks, it is crucial for an AI to
never be unboundedly wrong, e.g. by reliably measuring its
own confidence in its decisions and to ask for help in cases
of great uncertainty.

Now, even if Alice is well-designed, she will only be an
effective optimization algorithm. Unfortunately, this is no
guarantee of safety or alignment. Typically, because of hu-
mans’ well-known addiction to echo chambers (Haidt 2012),
a watch-time maximization YouTube recommender AI may
amplify filter bubbles, which may lead to worldwide geopo-
litical tensions. Both misaligned and unaligned AIs will
likely lead to very undesirable consequences.

In fact, (Bostrom 2014) even argues that, to best reach its
goals, any sufficiently strategic AI will likely first aim at so-
called instrumental goals, e.g. gaining vastly more resources
and guaranteeing self-preservation. But this is very unlikely
to be in humans’ best interests. In particular, it will likely
motivate the AI to undertake actions that we would not re-
gard as desirable.

To make sure that Alice will want to behave as we want
her to, it seems critical to at least partially control the ob-
served state st+1 or the reward Rt+1. Note that this is simi-
lar to the way children are taught to behave. We do so by ex-
posing them to specific observed states, by punishing them
when the sequence (st, at, st+1) is undesirable, and by re-
warding them when the sequence (st, at, st+1) is desirable.

Whether or not Alice’s observed state st is constrained,
her rewards Rt are clearly critical. They are her incentives,
and will thus determine her decision-making. Unfortunately,
determining the adequate rewards Rt to be given to Alice is
an extremely difficult problem. It is, in fact, the key to align-
ment. Our roadmap to solve it identifies 4 key steps incar-
nated by Erin, Dave, Charlie and Bob.



Erin’s data collection problem
In order to do good, it is evidently crucial to be given a lot of
reliable data. Indeed, even the most brilliant mind will be un-
able to know anything about the world if it does not have any
data from that world. This is particularly true when the goal
is to undertake desirable actions, or to make sure that one’s
action will not have potentially catastrophic consequences.

Evidently, much data is already available on the Internet.
It is likely that any large-scale AI will have access to the In-
ternet, as is already the case of the Facebook recommender
system. However, it is important to take into account the
fact that the data on the Internet is not always fully reliable.
It may be full of fake news, fraudulent entries, misleading
videos, hacked posts and corrupted files.

It may then be relevant to invest in more reliable and rel-
evant data collection. This would be Erin’s job. Typically,
Erin may want to collect economic metrics to better assess
needs. Recently, it has been shown that satellite images com-
bined with deep learning allow to compute all sorts of use-
ful economic indicators (Jean et al. 2016), including poverty
risks and agricultural productivity. It is possible that the use
of still more sensors can further increase our capability to
improve life standards, especially in developing countries.

To guarantee the reliability of such data, cryptographic
and distributed computing solutions are likely to be use-
ful as well, as they already are on the web. In particu-
lar, distributed computing, combined with recent Byzantine-
resilient consensus algorithms like Blockchain (Nakamoto
2008) or Hashgraph (Baird 2016), could guarantee the reli-
able storage and traceability of critical information.

Note though that such data collection mechanisms could
pose major privacy issues. It is a major current challenge
to balance the usefulness of collected data and the privacy
violation they inevitably cause. Some possible solutions in-
clude differential privacy (Dwork, Roth, and others 2014), or
weaker versions like generative-adversarial privacy (Huang
et al. 2017). It could also be possible to combine these with
more cryptographic solutions, like homomorphic encryption
or multi-party computation. It is interesting that such cryp-
tographic solutions may be (essentially) provably robust to
any attacker, including a superintelligence2.

Dave’s world model problem
Unfortunately, raw data are usually extremely messy, redun-
dant, incomplete, unreliable, poisoning and even hacked. To
tackle these issues, it is necessary to infer the likely actual
states of the world, given Erin’s collected data. This will be
Dave’s job.

The overarching principle of Dave’s job is probably going
to be some deep representation learning. This corresponds
to determining low-dimensional representations of high-
dimensional data. This basic idea has given rise to today’s
most promising unsupervised machine learning alogrithms,
e.g. word vectors (Mikolov et al. 2013), autoencoders (Liou,
Huang, and Yang 2008) and generative adversarial net-
works (GANs) (Goodfellow et al. 2014).

2The possible use of quantum computers may require postquan-
tum cryptography.

Given how crucial it is for Dave to have an unbiased rep-
resentation of the world, much care will be needed to make
sure that Dave’s inference will foresee selection biases. For
instance, when asked to provide images of CEOs, Google
Image may return a greater ratio of male CEOs than the ac-
tual ratio. More generally, such biases can be regarded as
instances of Simpson’s paradox (Simpson 1951), and boil
down to the saying ”correlation is not causation”. It seems
crucial that Dave does not fall into this trap.

In fact, data can be worse than unintentionally misleading.
Given how influential Alice may be, there will likely be great
incentives for many actors to bias Erin’s data gathering, and
to thus fool Dave. This is known as poisoning attacks (Blan-
chard et al. 2017; Mhamdi, Guerraoui, and Rouault 2018;
Damaskinos et al. 2018). It seems extremely important that
Dave anticipate the fact that the data he was given may be
purposely biased, if not hacked. Like any good journalist,
Dave will likely need to cross information from different
sources to infer the most likely states of the world.

This inference approach is well captured by the Bayesian
paradigm (Hoang 2018b). In particular, Bayes rule is de-
signed to infer the likely causes of the observed data D.
These causes can also be regarded as theories T (and such
theories may assume that some of the data were hacked).
Bayes rule tells us that the reliability of theory T given data
D can be derived formally by the following computation:

P[T |D] =
P[D|T ]P[T ]

P[D]
.

One typical instance of Dave’s job is the problem of infer-
ring global health from a wide variety of collected data. This
is what has been done by (Institute for Health Metrics and
Evaluation (IHME), University of Washington 2016), using
a sophisticated Bayesian model that reconstructed the likely
causes of deaths in countries where data were lacking.

Importantly, Bayes rule also tells us that we should not
fully believe any single theory. This simply corresponds to
saying that data can often be interpreted in many different
mutually incompatible manners. It seems important to rea-
son with all possible interpretations rather than isolating a
single interpretation that may be flawed.

When the space of possible states of the world is large,
which will surely be the case of Dave, it is often computa-
tionally intractable to reason with the full posterior distribu-
tion P[T |D]. Bayesian methods often rather propose to sam-
ple from the posterior distribution to identify a reasonable
number of good interpretations of the data. These sampling
methods include Monte-Carlo methods, as well as Markov-
Chain Monte-Carlo (MCMC) ones.

In some sense, Dave’s job can be regarded as writing a
compact report of all likely states of the world, given Erin’s
collected data. It is an open question as of what language
Dave’s report will be in. It might be useful to make it under-
standable by humans. But it might be too costly as well. In-
deed, Dave’s report might be billions of pages long. It could
be unreasonable or undesirable to make it humanly readable.

Note also that Erin and Dave are likely to gain cogni-
tive capabilities over time. It is surely worthwhile to an-
ticipate the complexification of Erin’s data and of Dave’s



world models. It seems unclear so far how to do so. Some
high-level (purely descriptive) language to describe world
models is probably needed. In addition, this high-level lan-
guage may need to be flexible enough to be reshaped and re-
designed over time. This may be dubbed the world descrip-
tion problem. It is arguably still a very open and uncharted
area of research.

Charlie’s desirability learning problem
Given any of Dave’s world models, Charlie’s job will then
be to compute how desirable this world model is. This is
the desirability learning problem (Soares 2016), also known
as value learning3. This is the problem of assigning desir-
ability scores to different world models. These desirability
scores can then serve as the basis for any agent to determine
beneficial actions.

Unfortunately, determining what, say, the median human
considers desirable is an extremely difficult problem. But
again, it should be stressed that we should not aim at deriv-
ing an ideal inference of what people desire. This is likely
to be a hopeless endeavor. Rather, we should try our best
to make sure that Charlie’s desirability scores will be good
enough to avoid catastrophic outcomes, e.g. world destruc-
tion, global sufferance or major discrimination.

One proposed solution to infer human preferences is so-
called inverse reinforcement learning (Ng, Russell, and oth-
ers 2000; Evans, Stuhlmüller, and Goodman 2016). Assum-
ing that humans perform reinforcement learning to choose
their actions, and given examples of actions taken by hu-
mans in different contexts, inverse reinforcement learning
infers what were the humans’ likely implicit rewards that
motivated their decision-making. Assuming we can some-
how separate humans’ selfish rewards from altruistic ones,
inverse reinforcement learning seems to be a promising first
step towards inferring humans’ preferences from data. There
are, however, many important considerations to be taken into
account, which we discuss below.

First, it is important to keep in mind that, despite Dave’s
effort and because of Erin’s limited and possibly biased data
collection, Dave’s world model is fundamentally uncertain.
In fact, as discussed previously, Dave would probably rather
present a distribution of likely world models. Charlie’s job
should be regarded as a scoring of all such likely world mod-
els. In particular, she should not assign a single number to
the current state of the world, but, rather, a distribution of
likely scores of the current state of the world. This distribu-
tion should convey the uncertainty about the actual state of
the world. Besides, as we shall see, this uncertainty is likely
to be crucial for Bob to choose incentive-compatible rewards
for Alice adequately.

Another challenging aspect of Charlie’s job will be to pro-
vide a useful representation of potential human disagree-
ments about the desirability of different states of the world.
Humans’ preferences are diverse and may never converge.
This should not be swept under the rug. Instead, we need to
agree on some way to mitigate disagreement.

3To avoid raising eyebrows, we shall try to steer away from
polarizing terminologies like values, moral or ethics.

This is known as a social choice problem. In its general
form, it is the problem of aggregating the preferences of a
group of disagreeing people into a single preference for the
whole group that, in some sense, fairly well represents the
individuals’ preferences. Unfortunately, social choice theory
is plagued with impossibility results, e.g. Arrow’s theorem
(Arrow 1950) or the Gibbard-Satterthwaite theorem (Gib-
bard 1973; Satterthwaite 1975). Again, we should not be too
demanding regarding the properties of our preference aggre-
gation. Besides, this is the path taken by social choice theory,
e.g. by proposing randomized solutions to preserve some de-
sirable properties (Hoang 2017).

One particular proposal, known as majority judgment
(Balinski and Laraki 2011), may be of particular interest to
us here. Its basic idea is to choose some deciding quantile
q ∈ [0, 1] (often taken to be q = 1/2). Then, for any pos-
sible state of the world, consider all individuals’ desirability
scores for that state. This yields a distribution of humans’
preferences for the state of the world. Majority judgment
then concludes that the group’s score is the quantile q of
this distribution. If q = 1/2, this corresponds to the score
chosen by the median individual of the group.

Now, to avoid an oppression of a majority over some mi-
nority, it might be relevant to choose a small value of q, say
q = 0.1. This would mean that Charlie’s scoring of a state
of the world will be less than a number score, if more than
10% of the people believe that this state should be given a
score less than score. But evidently, this point is very much
debatable. It seems unclear so far how to best choose q.

While majority judgment seems to be a promising ap-
proach, it does raise the question of how to compare two dif-
ferent individuals’ scores. It is not clear that score = 5 given
by John has a meaning comparable to Jane’s score = 5. In
fact, according to a theorem by von Neumann and Morgen-
stern (Neumann and Morgenstern 1944), within their frame-
work, utility functions are only defined up to a positive affine
transformation. More work is probably needed to determine
how to scale different individuals’ utility functions appro-
priately, despite previous attempts in special cases (Hoang,
Soumis, and Zaccour 2016). Again, it should be stressed that
we should not aim at an ideal solution; a workable reason-
able solution is much better than no solution at all.

Now, arguably, humans’ current preferences are almost
surely undesirable. Indeed, over the last decades, psychol-
ogy has been showing again and again that human think-
ing is full of inconsistencies, fallacies and cognitive biases
(Kahneman 2011). We tend to first have instinctive reactions
to stories or facts (Bloom 2016), which quickly becomes the
position we will want to defend at all costs (Haidt 2012).
Worse, we are unfortunately largely unaware of why we be-
lieve or want what we believe or want. This means that our
current preferences are unlikely to be what we would prefer,
if we were more informed, thought more deeply, and tried to
make sure our preferences were as well-founded as possible.

And arguably, we should prefer what we would prefer to
prefer, rather than what we instinctively prefer. Typically,
one might prefer to watch a cat video, even though one might
prefer to prefer mathematics videos over cat videos. Desir-
ablity scores should arguably encode what we would prefer



to prefer, rather than what we instinctively prefer.
To understand, a thought experiment may be useful. Let

us imagine better versions of us. Each current me is thereby
associated with ame++. Ame++ is what current me would
desire, if current me were smarter, thought much longer
about what he finds desirable, and analyzed all imaginable
data of the world. Arguably, me++’s desirability score is
“more right” than current me’s.

This can be illustrated by the fact that past standards are
often no longer regarded as desirable. Our intuitions about
the desirability of slavery, homosexuality and gender dis-
crimination have been completely upset over the last cen-
tury, if not over the last few decades. It seems unlikely that
all of our other intuitions will never change. In particular,
it seems unlikely that me++ will fully agree with current
me. And it seems reasonable to argue that me++ would be
“more right” than current me.

These remarks are the basis of coherent extrapolated voli-
tion (Yudkowsky 2004). The basic idea is that we should aim
at the preferences that future versions of ourselves would
eventually adopt, if they were vastly more informed, had
much more time to ponder what they regard as desirable,
and tried their best to be better versions of themselves. In
some sense, instead of making current me’s debate about
what’s desirable (which often turns into a pointless debacle),
we should letme++’s debate. In fact, sinceme++’s suppos-
edly already know everything about other me++’s, there is
actually no point in getting them to debate. It suffices to ag-
gregate their preferences through some social choice mech-
anism. This is the preference aggregation problem.

It is noteworthy that we clearly have epistemic uncertainty
about me++’s. Determining me++’s desirability scores
may be called the coherent extrapoled individual volition
problem. Interestingly, this is (mostly) a prediction problem.
But it is definitely too ambitious to predict them with ab-
solute uncertainty. Bayes rule tells us that we should rather
describe these desirability scores by a probability distribu-
tions of likely desirability scores.

Such scores could also be approximated using a large
number of proxies, as is done by boosting methods (Arora,
Hazan, and Kale 2012). The use of several proxies could
avoid the overfitting of any proxy. Typically, rather than re-
lying solely on DALYs (Organization and others 2009), we
probably should invoke machine learning methods to com-
bine a large number of similar metrics, especially those that
aim at describing other desirable economic metrics, like hu-
man development index (HDI) or gross national happiness
(GNH). Still another approach may consist of analyzing
“typical” human preferences, e.g. by using collaborative fil-
tering techniques (Ricci, Rokach, and Shapira 2015). Evi-
dently, much more research is needed along these lines.

Computing the desirability of a given world state is Char-
lie’s job. In some sense, Charlie’s job would thus be to re-
move cognitive biases from our intuitive preferences, so that
they still basically reflect what we really regard as prefer-
able, but in a more coherent and informed manner. This is an
incredibly difficult problem, which will likely take decades
to sort out reasonably well. This is why it is of the utmost
importance that it be started as soon as possible. Let us try

our best to describe, informally and formally, what better
versions of ourselves would likely regard as desirable. Let
us try to predict the volition of me++’s.

This attempt is likely going to be shocking to us all. In-
deed, we should expect that better versions of ourselves will
find desirable things that the current versions of ourselves
find repelling. Unfortunately though, we humans tend to re-
act poorly to disagreeing jugments. And this is likely to hold
even when the oppositions are our better selves. This poses
a great scientific and engineering challenge. How can one be
best convinced of the judgments that he or she will eventu-
ally embrace but does not yet? In other words, how can we
quickly agree with better versions of ourselves? What could
someone else say to get me closer to my me++? This may
be dubbed the individual improvement problem.

To address this issue, (Irving, Christiano, and Amodei
2018) have discussed the possibility of setting up a debate
between opposing AIs. In particular, they asked whether a
human judge would be able to lean towards the better AI
for the right reasons. Interestingly, such a debate might al-
low for significantly more powerful “proofs of superiority”
than monologues, at least if the analogy with the so-called
polynomial hierarchy of complexity theory holds.

This question is critical for alignment as it will likely be
a key challenge to build trust in the systems we design. But
evidently, this is a more general question that should be of
interest to anyone who desires to do good.

Bob’s incentive design
The last piece of the jigsaw is Bob’s job. Bob is in charge of
computing the rewards that Alice will receive, based on the
work of Erin, Dave and Charlie. Evidently he could simply
compute the expectation of Charlie’s scores for the likely
states of the world. But this is probably a bad idea, as it
opens the door to reward hacking.

Recall that Alice’s goal is to maximize her discounted
expected future rewards. But given that Alice knows (or is
likely to eventually guess) how her rewards are computed,
instead of undertaking the actions that we would want her
to, Alice could hack Erin, Dave or Charlie’s computations,
so that such hacked computations yield large rewards. This
is sometimes called the wireheading problem.

Since all this computation starts with Erin’s data collec-
tion, one way for Alice to increase her rewards would be to
feed Erin with fake data that will make Dave infer a deeply
flawed state of the world, which Charlie may regard as ideal.
Worse, Alice may then find out that the best way to do so
would be to invest all of Earth’s resources into mislead-
ing Erin, Dave and Charlie. This could potentially be ex-
tremely bad for mankind. Indeed, especially if Alice cares
about discounted future rewards, she might eventually re-
gard mankind as a possible threat to her objective.

This is why it is of the utmost importance that Alice’s in-
centives be (partially) aligned with Erin, Dave and Charlie
performing well and being accurate. This will be Bob’s job.
Bob will need to make sure that, while Alice’s rewards do
correlate with Charlie’s scores, they also give Alice the in-
centives to guarantee that Erin, Dave and Charlie perform as
reliably as possible the job they were given.



In fact, it even seems desirable that Alice be incentivized
to constantly upgrade Erin, Dave and Charlie for the bet-
ter. Ideally, she would even want them to be computation-
ally more powerful than herself, especially in the long run.
This approach would bear resemblance with the idea of
self-nudge (Thaler and Sunstein 2009). This corresponds to
strategies that we humans sometimes use to nudge ourselves
(or others) into doing what we want to want to do, rather
than what our latest emotion or laziness invites us to do.

Unfortunately, it seems unclear how Bob can best make
sure that Alice has such incentives. Perhaps a good idea is to
penalize Dave’s reported uncertainty about the likely states
of the world. Typically, Bob should make sure Alice’s re-
wards are affected by the reliability of Erin’s data. The more
reliable Erin’s data, the larger Alice’s rewards. Similarly,
when Dave or Charlie feel that their computations are unreli-
able, Bob should take note of this and adjust Alice’s rewards
accordingly to motivate Alice to provide larger resources for
Charlie’s computations.

Now, Bob should also mitigate the desire to retrieve more
reliable data and perform more trustworthy computations
with the fact that such efforts will necessarily require the
exploitation of more resources, probably at the expense of
Charlie’s scores. It is this non-trivial trade-off that Bob will
need to take care of.

Bob’s work might be simplified by some (partial) control
of Alice’s action or world model. Although it seems unclear
so far how, techniques like interactive proofs (IP) (Babai
1985; Goldwasser, Micali, and Rackoff 1989) or probabilis-
tically checkable proofs (PCP) (Arora et al. 1998) might be
useful to force Alice to prove its correct behavior. By re-
questing such proofs to yield large rewards, Bob might be
able to incentivize Alice’s transparency. All such considera-
tions make up Bob’s incentive problem.

It may or may not be useful to enable Bob to switch off
Alice. It should be stressed though that (safe) interruptibility
is nontrivial, as discussed by (Orseau and Armstrong 2016;
El Mhamdi et al. 2017; Martin, Everitt, and Hutter 2016;
Hadfield-Menell et al. 2016a; 2016b; Wängberg et al. 2017)
among others. In fact, safe interruptibility seem to require
very specific circumstances, e.g. Alice being indifferent to
interruption, Alice being programmed to be suicidal in case
of potential harm or Alice having more uncertainty about
her rewards than Bob being able to take over Alice’s job. It
seems unclear so far how relevant such circumstances will
be to Bob’s control problem over Alice4. Besides, instead of
interrupting Alice, Bob might prefer to guide Alice towards
preferable actions by acting on Alice’s rewards.

On another note, it may be computationally more efficient
for all if, instead of merely transmitting a reward, Bob also
feeds Alice with ”backpropagating signals”, that is, informa-
tion not about the reward itself, but about its gradient with
respect to key variables, e.g. Charlie’s score or Erin’s relia-
bility. Having said this, we leave open the technical question
of how to best design this.

4Note though that this may be very relevant assuming that there
are several Alices, as will be proposed later on.

Decentralization
We have decomposed alignment into 5 components for the
sake of exposition. However, any component will likely have
to be decentralized to gain reliability and scalability. In other
words, instead of having a single Alice, a single Bob, a sin-
gle Charlie, a single Dave and a single Erin, it seems cru-
cial to construct multiple Alices, Bobs, Charlies, Daves and
Erins.

This is key to crash-tolerance. Indeed, a single com-
puter doing Bob’s job could crash and leave Alice with-
out reward nor penalty. But if Alice’s rewards are an ag-
gregate of rewards given by a large number of Bobs, then
even if some of the Bobs crash, Alice’s rewards will remain
mostly the same. But crash-tolerance is likely to be insuf-
ficient. Instead, we should design Byzantine-resilient mech-
anisms, that is, mechanisms that still perform correctly de-
spite the presence of hacked or malicious Bobs. Estimators
with large statistical breakdowns (Lopuhaa, Rousseeuw, and
others 1991), e.g. (geometric) medians and variants (Blan-
chard et al. 2017), may be useful for this purpose.

Evidently, in this Byzantine environment, cryptography,
especially (postquantum?) cryptographical signatures and
hashes, are likely to play a critical role. Typically, Bobs’
rewards will likely need to be signed. More generally, the
careful design of secure communication channels between
the components of the AIs seems key. This may be called
the secure messaging problem.

Another difficulty is the addition of more powerful and
precise Bobs, Charlies, Daves and Erins to the pipeline. It
is not yet clear how to best integrate reliable new comers,
especially given that such new comers may be malicious. In
fact, they may want to first act benevolent to gain admis-
sion. But once they are numerous enough, they could take
over the pipeline and, say, feed Alice with infinite rewards.
This is the upgrade problem, which was recently discussed
by (Christiano, Shlegeris, and Amodei 2018) who proposed
using numerous weaker AIs to supervise stronger AIs. More
research in this direction is probably needed.

Now, in addition to reliability, decentralization may also
enable different Alices, Bobs, Charlies, Daves and Erins to
focus on specific tasks. This would allow to separate differ-
ent problems, which could lead to more optimized solutions
at lower costs. To this end, it may be relevant to adapt differ-
ent Alices’ rewards to their specific tasks. Note though that
this could also be a problem, as Alices may enter in com-
petition with one another like in the prisoner’s dilemma. We
may call it the specialization problem. Again, there seems to
be a lot of new research needed to address this problem.

Another open question is the extent to which AIs should
be exposed to Bobs’ rewards. Typically, if a small company
creates its own AI, to what extent should this AI be aligned?
It should be noted that this may be computationally very
costly, as it may be hard to separate the signal of interest
to the AI from the noise of Bobs’ rewards. Intuitively, the
more influential an AI is, the more it should be influenced
by Bobs’ rewards. But even if this AI is small, it may be im-
portant to demand that it be influenced by Bobs to avoid any
diffusion of responsibility, i.e. many small AIs that disregard
safety concerns on the ground that they each hardly have any



Figure 2: We propose to decompose alignment into 5 steps. Each step is associated with further substeps or techniques. Also,
there are critical subproblems that will likely be useful for several of the 5 steps.

global impact on the world.
What makes this nontrivial is that any AI may gain ca-

pability and influence over time. An unaligned weak AI
could eventually become an unaligned human-level AI. To
avoid this, even basic, but potentially unboundedly self-
improving5 AIs should be given at least a seed of alignment,
which may grow as AIs become more powerful. More gen-
erally, AIs should strike a balance between some original
(possibly unaligned) objective and the importance they give
to alignment. This may be called the alignment burden as-
signment problem.

Figure 2 recapitulates our complete roadmap.

Non-technical challenges
Given the difficulty of alignment, its resolution will surely
require solving a large number of non-technical challenges
as well. We briefly mention some of them here.

Perhaps most important is the lack of respectability that
is sometimes associated with this line of research. For align-
ment to be solved, it needs to gain respectability from the
scientific community, and perhaps beyond this community
as well. This is why it seems to be of the utmost importance
that discussions around alignment be carried out carefully to
avoid confusions.

Evidently, alignment definitely needs much more man-
power, which will require funding and recruiting. It seems
particularly important to attract mathematical talents to-
wards this line of work. This evidently also raises the chal-
lenge of training as many brilliant minds as possible.

Finally, questions around AI, AI safety and moral philos-
ophy are sadly often poorly debated. There often is a lot of
overconfidence, and a lack of well-founded reasoning. For

5In particular, nonparametric AIs should perhaps be treated dif-
ferently from parametric ones.

alignment research to gain momentum, it seems crucial to
make debating more informative, respectful and stimulating.

Conclusion
This paper discussed the alignment problem, that is, the
problem of aligning the goals of AIs with human prefer-
ences. It presented a general roadmap to tackle this issue.
Interestingly, this roadmap identifies 5 critical steps, as well
as many relevant aspects of these 5 steps. In other words, we
have presented a large number of hopefully more tractable
subproblems that readers are highly encouraged to tackle.
We hope that combining the solutions to these subproblems
could help to partially address alignment. And we hope that
any reader will be able to better determine how he or she
may best contribute to the global effort6.
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