
Monitoring Safety of Autonomous Vehicles with Crash Prediction Network

Saasha Nair, Sina Shafaei, Stefan Kugele, Mohd Hafeez Osman and Alois Knoll
Technical University Munich

Munich, Germany
saasha.nair@tum.de, sina.shafaei@tum.de, stefan.kugele@tum.de, hafeez.osman@tum.de, knoll@in.tum.de

Abstract

Automation needs safety inbuilt in the system such that it be-
haves at least as well as a diligent human in unforeseen cir-
cumstances, if not better. It is therefore necessary that the ma-
chine learns to behave intuitively by predicting future occur-
rences and take actions accordingly. Machine learning tech-
niques, therefore, have to focus on safety issues. Human de-
velopment and the consequential environmental changes will
only push safety requirements higher demanding artificial in-
telligence to fill in the voids so generated. The purpose of
this paper is to study the artificial intelligence perspective on
safety challenges and concerns of such systems through an
extensive literature review and propose a futuristic and easily
adaptable system using deep learning technique. The paper
would focus primarily on safety aspects of autonomous vehi-
cles using Bayesian Deep learning method.

Introduction
Current trends in the automotive industry are introducing
new, increasingly complex software functions into vehicles
(Broy 2006). The ever-growing availability of computing re-
sources, memory, and newest technologies allows for new
levels of automated and intelligent systems. Driving at a
high level of driving automation (i. e., level 3 to 5) accord-
ing to SAE J3016 (Committee and others 2014) is just one
example that has been discussed recently and is no longer
just a future vision. Vehicles driving at levels 3 to 5 will be,
hereafter, referred to as Autonomous Vehicles (AV) and the
corresponding task as Autonomous Driving (AD).

Success stories in deep learning have made AVs more
or less a reality, however, commercializing such vehicles
have not yet fructified. Recent accidents, especially those
involving cars driving at as low as SAE Level 2 show,
that there are challenges engineers are still faced with,
and the major impediment that stands in the way of large-
scale adoption of AVs, is its associated safety concerns
(Kalra and Paddock 2016; Fagnant and Kockelman 2015;
McAllister et al. 2017).

Although there is no concrete solution in addressing
the safety concern, several researchers have outlined the
safety challenges and proposed recommendations to con-
sider. Salay et al. (Salay, Queiroz, and Czarnecki 2017) an-
alyzed the impact that the use of ML-based software has on
various parts of ISO 26262 especially with respect to hazard

analysis and risk assessment (HARA). Within the scope of
highly automated driving (i. e., level 4), Burton et al. (Bur-
ton, Gauerhof, and Heinzemann 2017) explored the assur-
ance case approaches that can be applied to the problem of
arguing the safety of machine learning. From the ISO 26262
V-model perspective, Koopman and Wagner (Koopman and
Wagner 2016) identified several testing challenges for au-
tonomous vehicles. Monkhouse et al. (Monkhouse et al.
2017) reported several safety concerns to ensure the safety
of highly automated driving from the functional safety engi-
neers’ perspective. This paper explores the challenges in de-
veloping and monitoring AI-based component for an end-to-
end deep learning AV. The presented approach can minimize
the apparent risk when dealing with machine learning based
components of Autonomous Driving. However, a more fine-
grain safety assessment such as safety requirements and risk
assessment remain for future work. Basically, this research
endeavors to answer the following research questions (RQ):
RQ1 What are the challenges involved in ensuring safety of

highly critical systems when augmented with machine
learning based components?

RQ2 What are the existing approaches used to ensure safety
of learning systems?

RQ3 What are the shortcomings of the existing approaches
and how can they be overcome?

Traditional Safety Techniques and Neural
Networks

The main challenges (RQ1) associated with applying tradi-
tional safety assurance methodologies to NNs as it was ex-
plained in (Cheng et al. 2018) are as follows:

(i) Implicit Specification – Traditional Verification and
Validation (V&V) methods (as suggested in ISO 26262
V model) lay great importance on ensuring that the func-
tional requirements specified at the design-time of the sys-
tem are met. However, NN-based systems depend solely on
the training data for inferring the specifications of the model
and do not depend on any explicit list of requirements, which
can be problematic while applying traditional V&V meth-
ods. (ii) Black-Box Structure – While writing the code for
a NN, one specifies the details about the layers and the acti-
vation functions, but, unlike traditional software, the control
flow is not explicitly coded, leading to NNs being referred to



as black-box structures. Traditional white-box testing tech-
niques such as code coverage and decision coverage cannot
be directly applied to NNs, thus, there is a need to construct
paradigms for adaptive software systems.

Related Work
We distinguish between the existing approaches by cat-
egorizing them into two groups: (i) ‘Training phase’,
i. e.approaches that are solely used during the development
and training phase of the neural network, and (ii) ‘Opera-
tional phase’, i. e.those that are used in the run-time envi-
ronment of the neural network to ensure proper functioning
(RQ2).
Training Phase
The existing approaches that fall under this category are:
(i) Train/Validation/Test split – This method is used to en-
sure that the developed adaptive system works satisfactorily
for a given set of inputs. The method involves splitting the
available data, to obtain three sets, such that the largest of
the sets is used solely for training, and of the remaining two
sets, one is used for fine tuning the hyperparameters of the
NN, and the second one is used to test the working neu-
ral network to study how well it reacts to previously unseen
data points. Though this method helps verify the working of
the NN, it is not extensive enough to be considered a guar-
antee for safety (Taylor, Darrah, and Moats 2003) in high-
criticality systems.
(ii) Automated test data generation – Lack of trust in the
train-validation-test split method roots from the fact that one
is left with very few data samples to test against, wherein,
the chances are that cases of high interest might even get
missed in the testing phase. A way to overcome this problem
is to use test data generation tools to generate synthetic data
points which, can be used for testing the trained neural net-
works. Tools such as Automated Test Trajectory Generation
(ATTG) (Taylor 2006) and the more recent approach of gen-
erating scenes that an AV might encounter using ontologies
(Bagschik, Menzel, and Maurer 2017) fall under this cate-
gory. This approach can help the V&V procedure for NNs
by unveiling missing knowledge in fixed NNs and increasing
confidence in the working of adaptive NNs (Taylor, Darrah,
and Moats 2003).
(iii) Formal Methods – Formal verification (Ray 2010)
refers to the use of mathematical specifications to model
and analyse a system. Though these methods work well
with traditional software, they have not shown much suc-
cess in the area of adaptive software systems. This is due
to challenges (Seshia, Sadigh, and Sastry 2016) in modeling
the non-deterministic nature of the environment, difficulty
in establishing a formal specification to encode the desired
and undesired behavior of the system, and the need to ac-
count for adaptive behavior of the system. Formal verifica-
tion techniques for NNs deal instead with proving conver-
gence and stability (Fuller, Yerramalla, and Cukic 2006) of
the system, using methods such as Lyapunov analysis (Yer-
ramalla et al. 2003).
(iv) Rule extraction – Rules (Darrah and Taylor 2006) are
viewed as a descriptive representation of the inner workings
of a neural network. Rule extraction algorithms, such as KT

(Fu 1994), Validity Interval Analysis (VIA) (Thrun 1995),
DeepRed (Zilke, Mencía, and Janssen 2016), can be used to
model the knowledge that a neural network has acquired dur-
ing the training phase. These rules can be expressed as easy
to understand ‘if-then’ statements, that can either be manu-
ally verified owing to the human-readable format or can be
automated with a model checker. This method can be helpful
to establish trust in the system, as it augments the explain-
ability of the system (Gasser and Almeida 2017). It also aids
requirements traceability, as one can verify if the rules de-
pict functional requirements specified for the system. They
can also help to examine the various functional modes of
the system and ensure that a safe operation mode is induced
by certain inputs, while respecting the expected safety lim-
its. Though this method brings in enormous advantages, it
is more applicable for offline learning systems, wherein the
V&V practitioner can extract rules from the network after
training is complete.
Operational Phase
The solutions that fall under this category can be more ac-
curately referred to as ‘Online monitoring techniques’, that
involve the use of one or more monitors working as an oracle
to ensure continued proper functioning of the neural network
over time (Cukic et al. 2006). The goal here is to ensure that
the adaptation dynamics does not cause the network to di-
verge, thereby triggering unpredictable behavior.

Data Sniffing (Liu, Menzies, and Cukic 2002) is an ex-
ample based on the foregoing technique, which studies the
data entering and exiting a neural network. If a certain in-
put could pose negative results, then the monitors generate
an alert and could even possibly flag down the data, thereby
not allowing it to enter the system. This method is extremely
useful in cases where outliers could degrade the functioning
of the system.

Proposed Approach
Majority of the contemporary approaches, as evident from
“Related Work” section, relate to testing a developed model
before it is deployed in the operational environment. ML-
based components, however, suffer from problems like; op-
erational data/platform being different from what the model
was trained on, uncertainty about the new inferences gained
from operational data, and even wear-and-tear of hard-
ware/software. This leaves ML-based components vulnera-
ble to errors. Thus, it is necessary to focus on monitoring-
based approaches, which are starting to gain recent inter-
est (Fridman, Jenik, and Reimer 2017), to help alleviate the
safety concerns associated with such systems.

To elaborate on specifics of the proposed solution, an
end-to-end deep learning model for lane change maneuvers
has been chosen. Such a model uses a deep neural net that
takes input data from sensors that represent the environment
around the ego vehicle, and generate one of three actions
allowing the ego vehicle to continue driving in the current
lane or to switch to the left or right lane depending on the
presence of obstacles.

This proposed solution, referred to as ‘Crash Prediction
Network’, involves a neural network model, tasked with de-



Environment

RL-agent

Crash
Prediction
Network

Compareaction

state, reward

isCrashed

prediction

update

state

Figure 1: Training of Crash Prediction Network

NN-based
component
(Maneuver
Planning)

Crash
Predication

Network

Fail-safe
mode

Input Action

Invalid

Valid

Figure 2: Operation of Crash Prediction Network

termining the likelihood and severity of a crash at any given
time step (RQ3). The model takes into consideration multi-
ple features such as output of the perception module of the
vehicle, planned trajectory/action of the ego vehicle, pre-
dicted (or intended, if available via V2V communication)
trajectory of the obstacles, and possibly also information
such as number and severity of previous crashes that the ego
vehicle and obstacles were involved in. Specifics of the sys-
tem can be understood by distinguishing between the train-
ing and operational (after deployment) phases of the model.

The training phase (as shown in Fig. 1) relies on the model
receiving the required input values for the previously de-
scribed feature set, and also knowing whether a crash oc-
curred or not. Thus, the model requires an architecture that
involves a Reinforcement Learning environment, that would
allow the model to know the outcome at every time step for
a given set of feature values. This would also allow the ve-
hicle to crash often, as is characteristic of RL-agents, espe-
cially at the start of training. We, therefore, propose to train
the model by allowing it to spar with an RL-agent such that
the ego vehicle closely imitates a real-world vehicle that can
perform tasks similar to the lane change maneuver use-case
described above. At each time step, the RL-agent and the
Crash Prediction Network will have access to information
about the environment of the vehicle, the Crash Prediction
Network will predict whether a crash occurs or not, while
simultaneously, the RL agent would interact with the envi-
ronment to determine whether a crash really occurred or not.
Based on the differences in the output of the two networks,
the Crash Prediction Network would be updated to eventu-
ally be able to predict crashes with a high level of accuracy.

The operational stage (as show in Fig. 2) of this model
is designed such that the inputs as usual are fed to the ML-
based component responsible to determine the lane change
maneuver to be carried out by the ego vehicle. The vehicle,
however, does not act directly on the generated lane change

action command. The action command along with the en-
vironmental inputs in the form of sensor data are directed
to the Crash Prediction Network, which performs its task of
predicting the likelihood of a crash. Only if the likelihood
is low, is the vehicle allowed to perform the desired actions,
else the vehicle is pushed into Fail-safe mode which varies
depending on the predicted severity of the crash. It is im-
portant to note that for the model to stay relevant to the en-
vironment, it needs to learn and improve even in the opera-
tional stage. Thus, similar to the training stage the difference
between the actual output and predicted output are used to
update the model.

Crash Prediction Network is based on Bayesian Deep
Learning (BDL). The reason being that other Deep Learn-
ing methods in use currently are known to make hard clas-
sifications based on what they see and what they perceive.
The disadvantage with this method becomes apparent in a
system such as an AV where multiple components come to-
gether to form a complex whole, an error in one compo-
nent could have a snowball effect up the pipeline, leading to
catastrophic outputs in the later components. A way to get
over this problem is to use BDL (McAllister et al. 2017).
Bayesian models would provide better results (Kendall and
Gal 2017), owing to the fact that such models generate as
output a probability distribution with a consideration for un-
certainty, which can be exploited for the output regarding the
likelihood of a crash that the model is expected to generate.
Additionally, it would mean that the model would propagate
not only the classification output but also the uncertainty of
the model associated with the output, such that the higher-
level components can be developed to react in a way that the
system behaves conservatively when the uncertainty of the
previous components in the pipeline is high.

The proposed system has definite advantages. Most im-
portantly, such a system does not just focus on futuris-
tic autonomous vehicles, but, can even be used in current
day Advanced Driving Assistance Systems (ADAS) as well,
thereby allowing a smoother transition to Autonomous Ve-
hicles in future. Secondly, the model can be seen as making
an intuitively ‘informed decision’, by taking into considera-
tion data from multiple sources. Additionally, such a system
would also generalize and scale well to different scenarios
that the vehicle might encounter. One of the major problems
that would be encountered during the development of the
model, however, is the consideration of handling input data
received from different sources in varied formats. Next, re-
dundancy needs to be inbuilt to compensate for sensor fail-
ures/malfunctions in such a way that failure of a sensor does
not affect the accuracy of the system. Another major aspect,
apropos this methodology that needs experimentation and
validation is that of having one ML based component super-
vising another.

Conclusion
This work covered the different aspects of safety for in-
telligent components which employ machine learning tech-
niques in order to enable the integration of artificial intelli-
gence for autonomous driving. The focus was on the main
concerns and challenges to ensure safety in highly critical



applications which are based on machine learning methods,
with special emphasis on neural networks. Traditional safety
approaches are not sufficiently poised for such systems and
therefore, there is a need for more concrete methods like
monitoring techniques, such as the one proposed Crash Pre-
diction Network, which guarantees an acceptable level of
safety for the system functions. The team is in the process
of implementing and evaluating the proposed approach.

References
Bagschik, G.; Menzel, T.; and Maurer, M. 2017. Ontol-
ogy based scene creation for the development of automated
vehicles. arXiv preprint arXiv:1704.01006.
Broy, M. 2006. Challenges in automotive software engineer-
ing. In Proceedings of the 28th international conference on
Software engineering, 33–42. ACM.
Burton, S.; Gauerhof, L.; and Heinzemann, C. 2017. Making
the case for safety of machine learning in highly automated
driving. In International Conference on Computer Safety,
Reliability, and Security, 5–16. Springer.
Cheng, C.-H.; Diehl, F.; Hinz, G.; Hamza, Y.; Nührenberg,
G.; Rickert, M.; Ruess, H.; and Truong-Le, M. 2018. Neural
networks for safety-critical applicationsâĂŤchallenges, ex-
periments and perspectives. In Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2018, 1005–
1006. IEEE.
Committee, S. O.-R. A. V. S., et al. 2014. Taxonomy and
definitions for terms related to on-road motor vehicle auto-
mated driving systems. SAE Standard J 3016:1–16.
Cukic, B.; Fuller, E.; Mladenovski, M.; and Yerramalla, S.
2006. Run-Time Assessment of Neural Network Control Sys-
tems. Boston, MA: Springer US. 257–269.
Darrah, M., and Taylor, B. J. 2006. Rule Extraction as a
Formal Method. Boston, MA: Springer US. 199–227.
Fagnant, D. J., and Kockelman, K. 2015. Preparing a nation
for autonomous vehicles: opportunities, barriers and policy
recommendations. Transportation Research Part A: Policy
and Practice 77:167–181.
Fridman, L.; Jenik, B.; and Reimer, B. 2017. Arguing ma-
chines: Perceptioncontrol system redundancy and edge case
discovery in real-world autonomous driving. arXiv preprint
arXiv:1710.04459.
Fu, L. 1994. Rule generation from neural networks.
IEEE Transactions on Systems, Man, and Cybernetics
24(8):1114–1124.
Fuller, E. J.; Yerramalla, S. K.; and Cukic, B. 2006. Stability
properties of neural networks. In Methods and Procedures
for the Verification and Validation of Artificial Neural Net-
works. Springer. 97–108.
Gasser, U., and Almeida, V. A. 2017. A layered model for
ai governance. IEEE Internet Computing 21(6):58–62.
Kalra, N., and Paddock, S. M. 2016. Driving to safety:
How many miles of driving would it take to demonstrate au-
tonomous vehicle reliability? Transportation Research Part
A: Policy and Practice 94:182–193.

Kendall, A., and Gal, Y. 2017. What uncertainties do we
need in bayesian deep learning for computer vision? In
Advances in neural information processing systems, 5574–
5584.
Koopman, P., and Wagner, M. 2016. Challenges in au-
tonomous vehicle testing and validation. SAE International
Journal of Transportation Safety 4(1):15–24.
Liu, Y.; Menzies, T.; and Cukic, B. 2002. Data sniffing-
monitoring of machine learning for online adaptive systems.
In Tools with Artificial Intelligence, 2002.(ICTAI 2002). Pro-
ceedings. 14th IEEE International Conference on, 16–21.
IEEE.
McAllister, R.; Gal, Y.; Kendall, A.; Van Der Wilk, M.;
Shah, A.; Cipolla, R.; and Weller, A. V. 2017. Con-
crete problems for autonomous vehicle safety: Advantages
of bayesian deep learning. International Joint Conferences
on Artificial Intelligence, Inc.
Monkhouse, H.; Habli, I.; McDermid, J.; Khastgir, S.; and
Dhadyalla, G. 2017. Why functional safety experts worry
about automotive systems having increasing autonomy. In
International Workshop on Driver and Driverless Cars:
Competition or Coexistence.
Ray, S. 2010. Scalable techniques for formal verification.
Springer Science & Business Media.
Salay, R.; Queiroz, R.; and Czarnecki, K. 2017. An analysis
of ISO 26262: Using machine learning safely in automotive
software. CoRR abs/1709.02435.
Seshia, S. A.; Sadigh, D.; and Sastry, S. S. 2016.
Towards verified artificial intelligence. arXiv preprint
arXiv:1606.08514.
Taylor, B. J.; Darrah, M. A.; and Moats, C. D. 2003. Ver-
ification and validation of neural networks: a sampling of
research in progress. In Intelligent Computing: Theory and
Applications, volume 5103, 8–17. International Society for
Optics and Photonics.
Taylor, B. J. 2006. Automated Test Generation for Testing
Neural Network Systems. Boston, MA: Springer US. 229–
256.
Thrun, S. 1995. Extracting rules from artificial neural
networks with distributed representations. In Tesauro, G.;
Touretzky, D.; and Leen, T., eds., Advances in Neural Infor-
mation Processing Systems (NIPS) 7. Cambridge, MA: MIT
Press.
Yerramalla, S.; Fuller, E.; Mladenovski, M.; and Cukic, B.
2003. Lyapunov analysis of neural network stability in
an adaptive flight control system. In Symposium on Self-
Stabilizing Systems, 77–92. Springer.
Zilke, J. R.; Mencía, E. L.; and Janssen, F. 2016. Deepred–
rule extraction from deep neural networks. In International
Conference on Discovery Science, 457–473. Springer.


