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Abstract

It is well-known that there is no safety without security. That
being said, a sound investigation of security breaches on Ma-
chine Learning (ML) is a prerequisite for any safety concerns.
Since attacks on ML systems and their impact on the security
goals threaten the safety of an ML system, we discuss the im-
pact attacks have on the ML models’ security goals, which
are rarely considered in published scientific papers.
The contribution of this paper is a non-exhaustive list of pub-
lished attacks on ML models and a categorization of attacks
according to their phase (training, after-training) and their im-
pact on security goals. Based on our categorization we show
that not all security goals have yet been considered in the lit-
erature, either because they were ignored or there are no pub-
lications on attacks targeting those goals specifically, and that
some are difficult to assess, such as accountability. This is
probably due to some ML models being a black box.

Introduction
During the last few years scientists and researchers have
published a variety of different attacks on Machine Learning
(ML) systems. However, the papers only rarely mention se-
curity goals—such as integrity, availability, confidentiality,
reliability, authenticity, and accountability—that are endan-
gered by these attacks. Even if a paper explicitly mentions
the violation of a security goal it is not clear if the breach
refers to the whole system in which the ML model is em-
bedded or rather the ML model itself or parts of it.

The contribution of this paper is a non-exhaustive list
of published attacks on ML and a derivation of different
groups of attacks. We further elaborate on the breaches of
known security goals (integrity, availability, confidentiality,
etc.) caused by the listed attacks to justify our categorization
and show the security goals mentioned in published papers
about attacks on ML. Our categorization clarifies that there
are some security goals, such as accountability, which are
yet difficult to evaluate due to the complex operations within
ML models.

Security Goals
The six main security goals as described in [21] are summa-
rized as follows:
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• Confidentiality ensures that private or confidential infor-
mation is not made available or disclosed to unauthorized
users, and that users can control (or influence) what in-
formation related to them may be collected, used, and
to whom it is disclosed. Confidentiality is often imple-
mented through cryptography / encryption.

• Integrity ensures that information is not changed (mod-
ified) or destroyed unauthorizedly. Integrity can be com-
promised even if the information or system produces the
correct output.

• Availability ensures that a system works promptly, ser-
vice is not denied to authorized users, and access to and
use of information is timely and reliable.

• Authenticity is the characteristic of being genuine
and verifiable and trustworthy. Authenticity is ensured
through authentication processes that verify whether users
are who they say they are (entity authenticity). Authentic-
ity is often enabled through cryptography / cryptographic
signatures.

• Reliability is the property of a system such that reliance
can be justifiably placed on the service it delivers, i.e., the
system adheres to the specification it was engineered to
address.

• Accountability refers to the requirements for actions of
an entity to be traced uniquely to that entity (e.g., non-
repudiation of a communication that took place). Ac-
countability allows a certain degree of transparency to
what happened when and what was performed by whom.

Attacks on Machine Learning Algorithms
Important criteria that influence the applicability of certain
attacks on ML models at this level of detail are the learn-
ing type (supervised, unsupervised, reinforcement learning)
and if the algorithm undergoes lifelong learning. Different
attacks are designed to target combinations of different cri-
teria. The implications to the security goals of the ML model
are equivalent to the security goals corresponding to the cat-
egorization of the attack.

In Table 1 the first column names the ML algorithm in al-
phabetical order, followed by the learning type and whether
the model is capable of lifelong learning or not. Lifelong
learning is a criterion that is often ignored by researchers



Table 1: Published attacks on ML categorized by ML algorithms. The listed ML algorithms are derived from the publications
of the attacks, therefore, there might be attacks aimed at, e.g., neural networks in general but also attacks on specific sub-types
of neural networks, e.g., convolutional neural networks. The columns “Learning Type” and “Lifelong Learning” do not solely
refer to what the algorithm is capable of but to the premises the ML algorithm must meet to render the attack effective

ML Algorithm Learning Type Lifelong L. Attack
Complete-linkage Hierarchical Clustering Unsupervised No Poisoning Attack [9]
Single-Linkage Hierarchical Clustering Unsupervised No Poisoning Attack [13]

Obfuscation Attack [13, 14]
Decision Tree/Random Forest Supervised Yes/No Poisoning Attack [46]

No Path-finding Attack [72]
Model Inversion [26]
Ateniese et al. Attack [4]
Adversarial Examples [31, 52, 66]

Hidden Markov Model Supervised No Ateniese et al. Attack [4]
k-Nearest Neighbors Supervised Yes/No Poisoning Attack [46]

No Adversarial Examples [31]
k-Means Clustering Unsupervised No Ateniese et al. Attack [4]
Linear Regression Supervised Yes/No Poisoning Attack [8, 35, 41]

No Model Inversion [27]
Lowd-Meek Attack [44, 72]

Logistic Regression Supervised No Equation-solving Attack [49]
Hyperparameter Stealing [73]
Adversarial Examples [52, 70, 71]

Multi-class Logistic Regression Supervised No Equation-solving Attack [49]
Maximum Entropy Models Supervised No Lowd-Meek Attack [44]
Naive Bayes Supervised No Classifier Evasion [3, 22]

Lowd-Meek Attack [44]
Neural Network Reinforcement Unclear Strategically-timed Attack [40]

Learning Enchanting Attack [40]
Adversarial Examples [33, 40]

Neural Network Supervised No Model Inversion [26]
Membership Inference [63]
Hyperparameter Stealing Attack [73]
Ateniese et al. Attack [4]
Adversarial Examples [29, 31, 45, 52, 62, 70]
Trojan Trigger [43]

Multi-layer Perceptron Supervised Yes/No Poisoning Attack [46]
No Equation-solving Attack [49]

Ateniese et al. Attack [4]
Convolutional Neural Network Supervised No Side-channel Attack [74]

Training Data Extraction [18]
Adversarial Examples [50, 52, 70]

Recurrent Neural Network Supervised No Training Data Extraction [18]
Classifier Evasion [3]
Adversarial Examples [57]

Support Vector Machine Supervised Yes/No Poisoning Attack [12, 46]
Adversarial Label Flips [76, 77]

No Hyperparameter Stealing [73]
Lowd-Meek Attack [44, 72]
Ateniese et al. Attack [4]
Evasion Attack [3, 24, 30, 61, 66]
Feature Deletion [28]
Adversarial Examples [31, 52, 66, 71]



or at least not explicitly mentioned in papers. We comple-
mented this information wherever necessary according to
the definition in common text books. There are four possi-
ble values for lifelong learning: Yes, No, Yes/No (when both
can be the case) and unclear (when we simply do not know).
In the last column we list the attacks with corresponding lit-
erature.

We also identified attacks that are employable against sev-
eral ML algorithms. Attacks we consider applicable to sys-
tems regardless of the ML algorithm, learning type, and life-
long learning capability are, for example, poisoning attacks
[8, 46] as these attacks do not focus on the model but the
training data; therefore, poisoning attacks are considered in-
dependent of the ML algorithm.

Another group of attacks that tamper with data fed into
the ML model, and thus are applicable on a wide range of
different ML algorithms, are adversarial examples [5, 6, 17,
34, 51, 59], evasion attacks [23, 78], and feature deletion
attacks. These attacks exploit weaknesses in the ML model
without changing the model itself by simply perturbing the
input to falsify the output.

Shokri et al. [63] claim their attack, membership infer-
ence, to be generic, although they only apply it to classifica-
tion algorithms. We also think the attack is only applicable to
ML algorithms that are not capable of lifelong learning, as
membership inference relies on computing multiple inputs
via the ML model to extract information about the training
data. If the model adapts with every given input, this ap-
proach can be aggravated.

Categorization of ML Attacks with Regard to
Security Goals

In software security it is well-established to distinguish be-
tween attacks with regard to their effects on security goals
(see Section “Security Goals”). The attacks described in Ta-
ble 2 affect one or more security goals of a system (here:
an ML component). A categorization of the published at-
tacks according to security goals compiles an overview of
clusters of similar attack scenarios as well as of missing but
expected attack clusters. These gaps in the categorization of
attacks may result from unknown publications about attacks
on ML components, from unpublished attacks or attacks that
have not yet been executed but which are all conceivable and
therefore executable in principle. Therefore, these gaps in
the categorization are particularly revealing.

Of particular relevance for the categorization of attacks
developed here is the violation of security goals, which af-
fect the ML component as a whole. Thus, the violation of the
integrity for an ML component means that the ML compo-
nent itself is changed (in some form). In the publications on
the attacks on ML components analyzed here (and also listed
in Table 2), statements are partly made on the violations of
the security goals, but these sometimes refer (only) to par-
tial areas of an attack. Thus, the attack adversarial examples
[69], which manipulates data fed into the model, targets—
according to the authors—integrity, namely the integrity of
the input data; as the integrity of the ML model itself is not
attacked because it has not been changed, it is not catego-

rized in Table 2 under integrity.
Table 2 shows our mapping of the analyzed attacks listed

in Table 1 to the six security goals described in the Secu-
rity Goals section. While Table 1 focused on the ML algo-
rithms Table 2 brings the attacks into focus. The assignment
in Table 2 is based on the description of the attacks in the
respective publications. In the table, an “X” indicates which
security goal (related to the ML component as a whole) is
affected by which attack.

In addition, many attacks have been published that relate
to pre- and post-processing units of ML components (their
environment). These attacks do not differ from those on tra-
ditional software, therefore they are not described in this pa-
per.

An obvious peculiarity of ML components compared to
traditional software is their training, so there are two essen-
tial phases in their life cycle: the training phase (T) and the
deployment phase that we prefer to call the after-training
phase (A), as this also considers lifelong learning ML al-
gorithms, which are trained with every input even after de-
ployment. This continuous learning process makes attacks
in deployment time possible, which are also applicable in
training time (such as poisoning attacks [60]) and, on the
other hand, disables the applicability of attacks that require
a fixed target model (e.g., model inversion [26]).

Unlike previous research (e.g., [7, 55]) we do not consider
whether an attack is targeted, whether the opponent causes a
certain wrong output or not, whether a wrong output is gen-
erated, or whether the opponent has white box or black box
knowledge. At this point we also do not distinguish between
different types of learning (supervised, unsupervised, rein-
forcement learning). Considering all these kinds of criterion,
a blurred categorization would be created that contradicts a
clear distinction between attacks. Instead, we propose con-
sidering the above criteria within each of our main groups in
order to add further dimensions and form sub-groups. This
is not within the scope of this paper, although we consider
the learning type in Table 1, which can be used as a starting
point for further investigations.

By analyzing the security goals that are breached by the
attacks and the time the attack takes place, we can create
different categories of attacks. The names of the categories
are derived from whether the attack takes place during train-
ing time (T) or after-training time (A) followed by a dash
(-) and the first one or two letters of the main security goals,
which are breached by the attacks. Grey “X”s indicate the
main assignments of attacks to security goals.

First of all, it is noticeable that all attacks at training time
affect both integrity and reliability. This also makes sense
immediately: if only the integrity was corrupted during train-
ing time, the system could be corrected conform to the spec-
ification via the existing reliability. If only the reliability was
corrupted, the unchanged behavior would result in a differ-
ence to the specification, which would result in a correction
of the specification. Only a simultaneous attack on both se-
curity goals can therefore be successful during the training
phase. Confidentiality is not a main security goal for attacks
during the training phase, but most of the identified attacks
have attacked the confidentiality as well. However, success-



Table 2: Mapping of published attacks on ML on the security goals violated. The attacks are categorized according to the
security goals they breach. The first column “Att. Cat.” (Attack Category) labels the categories. The names are derived from the
time of the ML algorithm lifecycle (Training, After-training) the attacks take place and the security goals the attack brakes that
are most relevant for the specified category

Att.
Cat.

Published Attacks Confiden-
tiality

Availa-
bility

Integrity Reliability Authen-
ticity

Accoun-
tability

T-
IR

Poisoning Attack [60] X [14, 47] [10, 13, 14,
35, 39, 47]

X [10, 14, 35,
36, 39, 47, 55, 67]

X

Adversarial Label Flips [76] X X [56] X
Strategically-timed Attack [40] X X X
Enchanting Attack [40] X X X
Obfuscation Attack [13] X [13] X

A
-

IR Trojan Trigger [43] X X X

A
-C

Model Inversion [26] X [26, 27,
32, 56, 72, 75]

X

Membership Inference [63] X [63, 65] X
Side-channel Attack [74] X [74] X
Lowd-Meek Attack [44] X [55]
Training Data Extraction [18] X [18] X
Ateniese et al. Attack [4] X [4] X
Path-finding Attack [49] X X
Equation-solving Attack [49] X
Hyperparameter Stealing [73] X [73]

A
-R

Classifier Evasion [11] X [7, 48] [20, 48, 55, 68] X
Adversarial Examples [69] X [15] [15, 17, 52, 53,

54, 55]
X [25,

64]
Feature Deletion [28] X X



ful attacks during the training phase that relate exclusively to
integrity and reliability would also be conceivable. Attack-
ing the security goal availability makes no sense during the
training phase.

Attacks on integrity and reliability during the deployment
phase are theoretically meaningful and have been published
pertinently. They represent the mirroring of attacks on in-
tegrity and reliability from the training phase. An essential
group with a particularly large number of published attacks
in the deployment phase refers to confidentiality. The fact
that these attacks are often accompanied by restrictions in
availability is rather a side effect than a main aspect. A cat-
egory of attacks on ML components that mainly refers to
availability (think of DoS attacks on traditional software)
makes little sense in theory and has not been published. The
frequently cited adversarial examples attack group is among
others in the category of reliability attacks during the de-
ployment phase; typically, integrity is not corrupted because
the ML components themselves are not modified.

The lack of assignments to the security goals authentic-
ity and accountability are also particularly informative. In
our research we could not find any attacks on these secu-
rity goals of the ML components. Authenticity is usually
implemented in the environmental components surrounding
an ML component. This will probably change in the future,
however, when comprehensive tasks will be implemented in
a network of ML components and it becomes necessary to
establish the ML components as mission-critical communi-
cation partners. Accountability of ML is considered—even
in the community of ML experts—to be mostly inaccessi-
ble (especially with the so-called black box ML components
such as deep neural networks), because these components
cannot be read like traditional software and cannot be se-
mantically deduced from the structure. Nevertheless, we be-
lieve that a new field of attacks on ML components will
open up in this field in the future because initiatives such
as eXplainable AI (layer-wise relevance propagation [16],
Black Box Explanations through Transparent Approxima-
tions (BETA) [37], LIME [58], Generalized Additive Model
(GAM) [19], etc.) and the political demand for comprehensi-
ble AI decisions will ensure greater comprehensibility in the
area of the black box ML, which will ultimately also help
the attackers.

The Peculiarity of Accountability
It is yet unclear, how the concept of accountability applies
to ML. Accountability in traditional software engineering
means an action can always be retraced to the entity per-
forming the action. An entity is usually a human or a digital
agent, however, the definition of an entity is not clear in the
field of ML. An entity could be an input feature which leads
to a certain output of the ML model (this meets the defini-
tion made by Papernot et al. [56]). An entity could also be
an element within in the ML model, e.g., each single neuron
within a neural network, which makes its own decision that
influences the final output of the model. From a different
point of view even the software developer could be consid-
ered the entity.

The entity, which can not deny an action, is ultimately rel-
evant in a legal context, namely in case of finding the party
liable for a specific action. It is not relevant, however, how
a single element of an algorithm contributed to the system’s
decision, but whether the wrong decision was caused due to
faulty training, biases in the training data or malicious at-
tacks.

We find that there is no clear definition of accountabil-
ity and that it is difficult to transfer existing definitions to
the field of ML. In order to guarantee accountability at all,
changes in the system, e.g., in traditional software this could
be changes in the database, must be recorded. Without a
form of audit that promises some form of tracing, account-
ability cannot be broken, because the goal was not even
reached in the first place. With a ML system, the changes
within a system do not necessarily have to be recorded.
Rather the decisions of the system or of parts of the system
should be made assignable to a distinct entity.

In the context of ML, a distinction between accountability
and liability should be considered. Both focus on retracing
an action to an entity. Liability, however, concentrates on the
assignment of blame or debt relief of individual entities and
is also possible without an audit of the actions and decision
made by inner components within the ML algorithm. For
liability it is sufficient to record the final decision of the ML
system solely.

Accountability, on the other hand, is only possible by log-
ging the internal processes. The definition of an “entity”,
however, is still unclear. Furthermore, logging requires a cer-
tain understanding of the model, which is difficult up until
now. However, if ML algorithms become comprehensible in
the future, accountability could be achievable and this also
means that accountability—as a security goal—can be bro-
ken by attackers.

Assume it will be possible to identify which nodes in
a neural network are responsible for a particular decision.
E.g., we know which nodes in an image recognition sys-
tem are responsible for detecting certain objects, such as
stop signs. If these nodes are regarded as entities, they can
be made accountable for their decisions. Accountability al-
lows ML algorithms to be developed and validated more ef-
ficiently maybe even to the point where they become similar
to the code of traditional software development. This is de-
sirable in any case, as it greatly simplifies development and
troubleshooting. If this knowledge about accountability is
leaked, adversaries can also take advantage of it and launch
more targeted attacks, which might ultimately also target ac-
countability. A breach in accountability will most likely be
the first step to sophisticated attacks that violate other secu-
rity goals as well.

It is unclear what types of attacks might be possible once
ML models can be fully explained to humans, though.

Related Work
Barreno et al. [7] give relevant properties they consider im-
portant when conducting attacks on ML. The properties are
grouped into three categories: the influence of the attack on
the target system, the specificity (targeted or untargeted) and



the security violation (integrity, availability). Their paper fo-
cuses mostly on countermeasures against attacks. Papernot
et al. [55] also review attacks and distinguish them into black
box and white box attacks. They focus on attacks on classi-
fication algorithms and list theoretical countermeasures. Liu
et al. [42] also discuss different attacks and propose interest-
ing points to consider in future research. Biggio et al. [15]
take a different view on attacks on ML. They focus on how
the field has developed during the years since its first men-
tion in 2004. They also review published countermeasures.

Alabdulmohsin et al. [2] sort attacks into causative or ex-
ploratory attacks. A survey of attacks against deep learning
in computer vision was conducted by Akhtar and Mian [1].
They list several published countermeasures against adver-
sarial examples. Laskov and Kloft [38] propose a “frame-
work for quantitative security analysis of ML models”.

Conclusion
In this paper we give an overview of the current state-of-the-
art ML algorithms and their respective attacks. This list is es-
pecially interesting when considering some of the more crit-
ical fields ML is used in, such as autonomous driving. Au-
tonomous driving uses ML models in safety-critical applica-
tions. Ignoring known attacks on pertinent ML algorithms is
hazardous as human life is at stake. Likewise, regular soft-
ware development, security by design has to be applied to
the development of ML algorithms as well.

We also propose a classification of published attacks on
ML models based on security goals and life cycle phase.

Our research shows that accountability is not covered by
literature as there have not yet been any attacks published.
This is probably due to the fact that accountability for ML
is difficult to attack as ML models are yet beyond human
understanding and, therefore, the security goal is not com-
pulsory.

Although, there are already some papers working on a
solution to improve comprehensibility of ML models, we
think there is still a long way to go until humans are able
to completely understand ML models. If accountability can
be guaranteed for all kinds of ML models this will enable a
wide range of new yet unknown attacks.

Further research will elaborate the implications of vulner-
able ML models. It will also discuss whether and how the
security goal accountability can be transferred to the field
of ML and if proper accountability of ML models has to be
considered in liability claims.
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