
Robust Motion Planning and Safety Benchmarking in Human Workspaces

Shih-Yun Lo, Shani Alkoby, Peter Stone
{yunl,shani,pstone}@cs.utexas.edu

Learning Agent Research Group, The University of Texas at Austin

Abstract
It is becoming increasingly feasible for robots to share a
workspace with humans. However, for them to do so robustly,
they need to be able to smoothly handle the dynamism and
uncertainty caused by human motions, and efficiently adapt
to newly observed event. While Markov Decision Processes
(MDPs) serve as a common model for formulating cost-based
approaches for robot planning, other agents are often modeled
as part of the environment for the purpose of collision avoid-
ance. This practice, however, has been shown to generate
plans that are too inconsistent for humans to confidently inter-
act with. In this work, we show how modeling other agents as
part of the environment makes the problem ill-posed, and pro-
pose to instead model robot planning in human workspaces
as a Stochastic Game. We thus propose a planner with safety
guarantees while avoiding overly conservative behavior. Fi-
nally, we benchmark the evaluation process in the face of
pedestrian modeling error, which has been identified as a
major concern in state-of-the-art approaches for robot plan-
ning in human workspaces. We evaluate our approach with
diverse pedestrian models based on real-world observations,
and show that our approach is collision-safe when encounter-
ing various pedestrian behaviors, even when given inaccurate
predictive models.

1 Introduction
Planning has a long history in the robotics community,
where efficiency, environmental uncertainty, and motion fea-
sibility all central concerns. Cost-based approaches that use
the MDP formulation (Watkins and Dayan 1992) can be suc-
cessful for robot planning in static workspaces (Quinlan and
Khatib 1993). When planning in highly-dynamic environ-
ments, however, this formulation is limited by its lack of
consideration of the dynamic environmental properties.

More specifically, in MDPs, there exist intrinsic static en-
vironment assumptions, upon which the solutions are built.
Those assumptions are: 1.a time-invariant state transition
function, 2. a time-invariant state-action reward function,
and therefore 3. a time-invariant state value function. As
those assumptions no longer hold in dynamic environments,
the accuracy of policy evaluation for long-horizon planning
deteriorates when using these methods. As a result, MDP-
based approaches for the traditional motion planning litera-
ture suffer from poor performance when applied in the wild.
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Common solutions to the above disadvantages include
frequent replanning and finite-horizon planning; those ap-
proaches update local information of the environment based
on online observations, and replan periodically based on
newly observed environmental conditions. Nevertheless, the
lack of awareness of future conditions causes the plan-
ner to make shortsighted decisions (which leads to so-
cially incompetent behavior for human interaction (Kruse
et al. 2012)), or overly conservative behavior when con-
sidering long-horizon planning (referred to as the freezing-
robot problem (Trautman and Krause 2010)). One example
is the commonly-seen flow-following strategy in crowd nav-
igation (Helbing and Molnar 1995), where people follow
one another to reach shared short-term subgoals. This strat-
egy relies on policy evaluation based on the future paths of
nearby agents. With static cost formulation being applied in
dynamic environments, the inaccuracy of policy evaluation
makes traditional planning algorithms fail to produce paths
with similar performance.

Therefore, in this work, we first propose to formu-
late robot planning in human environments as a multi-
agent planning problem using Stochastic Games, or Markov
Games (Littman 1994), to compute the dynamic state-action
values that are also influenced by the states and actions of
other agents (here, the humans). We use this formulation
to design an online algorithm which incorporates the other
agents’ actions into the planning process for action evalua-
tion.

For achieving the goal of robots being able (and allowed)
to smoothly steer around humans, safety guarantees are also
critically important. Traditional methods often use a worst-
case assumption to ensure safety. This assumption, however,
leads to overly conservative planning behaviors, degrading
the smoothness of the robot motions among humans. Lever-
aging the notion of Stochastic Games, we propose to plan
based on worst-case predictions only in period games that
have a critical impact on the termination values; we seek to
plan carefully only when it matters and achieves safe yet not
overly conservative behavior.

Finally, we evaluate our approach using the crowd naviga-
tion domain, and discuss potential performance metrics for
robot planning in human workspaces. As humans are adap-
tive and have heterogeneous behaviors, a perfect human be-
havior model is likely never available; modeling error then



seems inevitable for robots to deal with on-the-fly, and we
need to quantify its impact on plan quality into the evalua-
tion process. To evaluate this before deploying robots into
the wild, we simulate different human behaviors, which are
based on real-world observations of pedestrian interactions
with robots, and use them to evaluate our approach in unan-
ticipated scenarios caused by modeling errors. We use these
scenarios to benchmark the evaluation process in simula-
tion, and show that our planner maintains collision-safe even
evaluated with different pedestrian models.

2 Related Work
In crowd navigation domains, the freezing robot problem
arises from the challenge of planning while considering
the time-variant crowd-interactive dynamics in the environ-
ment (Trautman and Krause 2010). Despite efforts to in-
troduce human factors into the planning process, traditional
planning approaches which incorporate humans as a part of
the environment for collision avoidance have been shown
to generate motions that are neither interpretable nor so-
cially competent (Lichtenthäler, Lorenzy, and Kirsch 2012;
Kruse et al. 2012).

For incorporating the future motions of other agents to
avoid collisions, the reciprocal n-body collision avoidance
approach has had success in the multi-agent setting (Van
Den Berg et al. 2011), where individuals assume the oth-
ers move at constant speeds. This approach, and the dynamic
window approach (Fox, Burgard, and Thrun 1997), are com-
monly used for low-level safety checks when planning in
dynamic environments. However, due to the constant-speed
assumption, the approach is overly conservative when inter-
acting with real-world pedestrians, who are interactive and
respond to the robot’s motions.

Recently, a community proposed to solve robot plan-
ning in human workspaces as a joint multi-agent dynam-
ics learning problem, and uses the predicted motions of all
agents to plan for the robot, as if it was one of the mem-
bers of the crowd (Trautman and Krause 2010; Kuderer
et al. 2012; Mavrogiannis and Knepper 2016). Such joint
modeling methods have been shown to be effective at out-
putting smooth human-mimicking trajectories, as they can
capture the interactive dynamics among pedestrians. One
major drawback of these approaches, however, is that the
multi-agent interactive dynamics are typically learnt from
data collected by human demonstrations while interacting
with other humans; but humans do not act the same way
around a robot compared to how they act in fully human en-
vironments. This problem has been shown to render those
methods ineffective in scenarios where humans exhibit dif-
ferent behaviors around robots – behaviors that humans will
not present in front of another human (Pfeiffer et al. 2016).

To model joint behaviors among agents – how one’s ac-
tion affects that of the others – another approach is to in-
corporate other agents’ actions into the formulation of the
individual’s action value function. Such joint behavior for-
mulation is widely studied in Game theory: with different
player strategies, the interaction among agents evolve over
time and result in different outcomes.

Figure 1: (a) the robot platform passing pedestrians, used
in this research to collect human responses. (b) A robot’s
sequence of replanned paths, resulting in trajectories that
change over time (marked by dash black lines, fading over
the replanning time horizon) and erratic motion (highlighted
by solid blue curve). Such behavior is considered incompe-
tent in the social navigation literature.

For interactive agent designs in video games, the dynam-
ics of other agents have been introduced into MDP mod-
els to simulate multi-agent planning performance (Nguyen
et al. 2011; Macindoe, Kaelbling, and Lozano-Pérez 2012).
In these formulations, the AI agent’s current actions are as-
sumed to be known by the humans to forward simulate their
potential policies. This assumption implies a turn-taking
setting, assuming full observability of the past strategies
of others, including the current action. This assumption is
however not valid when planning in the real world, as hu-
mans and robots act simultaneously (Sadigh et al. 2016).
The turn-taking formulation is therefore not accurate for de-
scribing real-time interaction. For the game-theoretic formu-
lation to be introduced along with Markov Decision Pro-
cesses, Markov Games have been proposed as a framework
for multi-agent reinforcement learning (Littman 1994), to
study the interactions among multiple learning agents. In
this formulation, as in Stochastic Games in Game Theory,
agents act at once and contribute to the joint reward of one
another. A number of studies have been proposed in this
field, such as on how one agent’s learning affects the final
outcome and how the other agents should learn at the same
time (Foerster et al. 2018). However, to accurately simu-
late human interactions with the robot, one requires agents
modeled after humans, who have different learning mech-
anisms and decision-making processes from reinforcement
learning agents. As humans present heterogeneous behav-
iors, prior work has proposed to estimate pedestrian types
online based on pre-defined models (Godoy et al. 2016);
here, instead of trying to perfectly predict humans, we ad-
dress the inevitable modeling errors by evaluating our ap-
proach with various pedestrian models. This evaluation pro-
cedure helps bridge the gap between simulation and real-
world deployment by evaluating plans under unexpected
conditions (Fraichard 2007). Our proposed planner experi-
enced zero collision under this evaluation procedure; with
the demonstrated robustness under modeling errors, we sug-
gest this criteria better ensures safety in real-world deploy-
ment, where unanticipated scenarios are of major concerns.



3 Problem Formulation
In this section, We first consider a general cost-
minimization-based formulation for robot planning in hu-
man workspaces. We then introduce the dynamic environ-
ment dilemma which is the motivation for our proposed new
framework. Finally, we discuss the multi-agent nature of the
problem and provide the solution formulation of multi-agent
planning problem.

General Cost-Minimization-Based Formulation
The robot has its state xt at time t defined in the state space,
xt ∈ X , and its action at at time t defined in the action
space, at ∈ A. The collision-free workspace is defined as
a subset of the overall workspace Wfree ⊂ W , which is
defined as the feasibly reachable space given robot kinemat-
ics. The robot motion planning problem is defined to min-
imize the accumulated travel cost Ct, such that the robot’s
final state xT ends in the specified goal configuration set
XG ⊂Wfree:

a∗t:T = argmin
at:T

ΣTt Ct,

s.t. xT ∈ XG,

xt:T ∈Wfree,

xt+1 = T (xt, at),∀t,

(1)

where T is the state transition function (or robot dynamics
function). The sequence of a variable v from t to T is de-
noted by vt:T .

A common approach for solving the motion planning
problem is to assumeCt is a function of the state-action pair,
xt and at, represented by Cost(xt, at); we can then assign
a negative end state cost CT for arriving at the goal, repre-
sented by Costto−go(xT ), and transitions out of free space
Wfree to be of high cost to ensure safety. For example:

a∗t:T = argmin
at:T

ΣTt Cost(xt, at) + Costto−go(xT ),

s.t. xt+1 = T (xt, at),∀t
(2)

where

Costto−go(xT ) = −1000, xT ∈ XG,

Cost(xt, at) =∞,∀xt /∈Wfree,

to encourage goal-reaching and collision-avoidant behavior.
We then can apply some sequential optimizer to solve for
the optimal action sequence a∗t:T which follows the state
transition constraint and minimizes the overall travel cost,
with guarantees to reach the goal in a collision-safe manner.
This common formulation follows the MDP setting, which
we later refer to as the single-agent MDP formulation and
its solution at time t is the single-agent optimal policy.

The Dynamic Environment Dilemma
The general formulation for robot planning in human work-
spaces laid out above relies on the assumption that objects in
the robot’s environment are static. In many scenarios how-
ever, this does not hold. When encountering dynamic objects
in the environment, Wfree changes over time. This means

Figure 2: A robot blocked by a flow of the crowd from
reaching its destination. Despite the current infeasibility of
finding a path all the way to the goal, crowd configurations
change over time, yielding space for it to pass through when
going closer.

that the optimal sequence solved for time t may no longer
hold at time t+ 1. An illustration of this challenge is shown
in Fig. 1-Right. The problem raised by introducing dynamic
objects into the environment is referred to here as a violation
of the static environment assumption in the MDP formula-
tion: with Wfree being time-variant, Cost becomes time-
variant as well.

In the motion planning literature, online replanning
is a common practice to deal with dynamic environ-
ments (Koenig and Likhachev 2002; Quinlan and Khatib
1993), which however leads to inefficient, inconsistent, and
even awkward motions for humans to confidently interact
with (Lichtenthäler, Lorenzy, and Kirsch 2012; Kruse et al.
2012), as shown in Fig. 1. For long-horizon planning, to
ensure collision safety, overly-conservative behavior arises,
due to the inability to incorporate future variations into the
cost function formulation, as shown in Fig. 2.

We refer the situation as the dynamic environment
dilemma. To resolve this, instead of introducing other
agents as part of the environment and solving the problem
in a single-agent MDP setting, we propose to re-define the
planning domain using a multi-agent MDP setting, which
restores the validity of the static environment assumptions
by considering the simultaneous actions of other agents and
their joint state space.

Multi-agent MDPs vs. Stochastic Games
In interactive agent design and human-robot interaction,
multi-agent MDPs (MAMDPs) can be used to forward sim-
ulate human policies by chaining human policy simula-
tion after robot state transitions (Macindoe, Kaelbling, and
Lozano-Pérez 2012; Nikolaidis et al. 2016). This model as-
sumes that human agents have access to the action the AI
agent is about to make, as if they are omniscient. The un-
derlying game setting follows the turn-taking formulation.

However, in reality, agents act at the same time (illus-
trated in Fig. 3); in the literature of robot planning in hu-
man workspaces (Kretzschmar, Kuderer, and Burgard 2014;
Trautman and Krause 2010; Mavrogiannis and Knepper
2016), state-of-the-art approaches generate smooth motions
in real-world interaction by planning while concerning the
effects of the simultaneous actions of other agents(Sadigh et
al. 2016). Our proposed dynamic environment dilemma gen-



Figure 3: The linked dash line is applied to denote agents
sharing the same history information, which exclude the cur-
rent actions of the other agents (here, the robot). This is
applied since in real-time interactions agents act simultane-
ously and thus each agent does not know the current actions
of the others.

eralizes the issues addressed in these work to improve real-
world planning in human environments. And to resolve the
dilemma, we propose to model the problem using Stochas-
tic Games from the Game Theory literature, in which the
cost/reward received after one acts is dependent on other
agents’ states and actions at the same time. This is also true
for the state-action value functionQ and state value function
V .

In Stochastic Games, N agents act at the same time t:
the joint-action at = (a1t , a

2
t , ..., a

N
t ) ∈ A is defined in the

joint action spaces of all agents A = A1 × A2...× AN ; the
joint-state xt = (x1t , x

2
t , ..., x

N
t ) ∈ X is defined in the joint

state space of all agents X = X1 ×X2... ×XN . The state
transition function: T : X × A → X affects the utility of
each agent under the same joint-action over time. Time is
discretized, and game periods are defined as follows. At the
start of each period t, each agent selects an action ait, i =
1 : N ; the transition function T takes in the current state xt
and determines (probablistically) the state at the beginning
of the next period xt+1. The game starts at the initial period
t = 0 and terminates at the final period t = T . The duration
of each period is selected along with the lookahead H based
on the computation can be afforded while maintaining real-
time performance, described in detail in Sec. 5. 1

In Markov Games, the time-variant utilities are referred
to as rewards (inverse of Cost), which depend on the joint-
states xt.2 The reward rit ∈ R of an agent i at time t is de-
fined as follows: rit = ri(xt, a

i
t, a
−i
t ),where ri is the agent’s

reward function, and a−it denotes actions of all agents ex-
cept agent i. This formulation conveniently incorporates xt,
the time-variant states of other agents, into the reward/cost
formulation, which resolves the dynamic workspace issue.
It brings out the notion of planning while considering the
effects of the simultaneous actions of other agents, upon
which we base our solution to robot planning in human
workspaces.

1Here we use periods instead of horizons as in the planning
literature, to distinguish our multi-agent formulation from the tra-
ditional single-agent setting.

2We start with Cost for consistency with traditional planning
literature, and continue with the notion of reward for convenience
of consistency with MDP planning literature.

The Optimal Solution Formulation

To find the optimal policy of this multi-agent MDP planning
problem, we first define a multi-agent policy of agent i as
πi, which takes in the joint-state xt and outputs agent ac-
tion ait at time t. We first consider the known policies of the
other agents π−i; the state-action value function Q of agent
i executing policy πi while other agents follow policy π−i
is defined as3:

Qπ
i|π−i

(xt, a
i
t, a
−i
t ) = ri(xt, a

i
t, a
−i
t )+Ext+1

[V π
i|π−i

(xt+1)],
(3)

where V π
i|π−i

is the value function V of agent i executing
policy πi while others using π−i. Note that the expectation is
taken over xt+1 conditioned on the state transition function
T , which is omitted throughout the paper for simplicity. The
value function of the optimal policy of agent i, when other
agents execute π−i, is defined as:

V i|π
−i

(xt) = max
ait

Ea−i
t ∼π−i(xt)

[Qi|π
−i

(xt, a
i
t, a
−i
t )], (4)

whereQi|π
−i

, the optimal state-action value of agent i given
π−i, is defined recursively:

Qi|π
−i

(xt) = max
ait

Ea−i
t ∼π−i(xt)

[ri(xt, a
i
t, a
−i
t )+V i|π

−i

(xt+1)].

(5)
The optimal action of agent i at time t is therefore:

ai∗t = argmax
ait

Ea−i
t ∼π−i(xt)

[Qi|π
−i

(xt, a
i
t, a
−i
t )]. (6)

Note that the optimal action ai∗t is defined in the joint state
space X , and it depends on agent i’s estimate of other
agents’ policies π−i.

Planning in Real World

Despite the benefits of the Stochastic Game framework for
robot planning in human environments, there remain chal-
lenges to deploying robots in the real world. In this work,
we propose solutions through planning and evaluation ap-
proaches, to address safety guarantees, and evaluation under
modeling errors, as detailed below:

Imperfect Prediction of Human Behaviors While in
principle, optimizing Eq. 6 leads to an optimal solution to
robot planning, note that it relies on having an accurate
model of pedestrian motion π−i. In practice, there is no
easy way to obtain such a model, as people exhibit het-
erogeneous (Godoy et al. 2016) and highly adaptive behav-
ior (Nikolaidis et al. 2016). Since planning with incorrect
models could lead to safety concerns in human workspaces,
in this paper we seek planning methods that are robust to
modeling errors in the pedestrian transition function.

3The state-action value function Q in the single-agent setting is
generally defined as: Q(xt+1) = rt(xt, at) + V (xt+1). We later
refer Qi as the single-agent state-action value of agent i.



Figure 4: Comparison of single-agent MDPs (Top-Left) and
stochastic games (Top-Right). A tree with all-agent simula-
tion expands its node xt (Bottom-Left) with choice of ac-
tions (here, ai,t or ai,,t ) to the children nodes (here, x,t+1 or
x,,t+1). Since actions of other agents a−it are unknown, to ex-
pand from a node xt, the state transition function T needs to
first sample potential actions of other agents â−it to estimate
the reward r̂it after taking action ait and arriving at the next
state x̂t+1 (Bottom-Right).

Performance Degrades for Safety Guarantees To en-
sure collision safety, traditional robust planning often for-
mulates the problem through the maximin operation, often
leading to overly conservative behaviors. This property pre-
vents the robot from navigating agilely and smoothly among
human crowds, for which we propose improvement while
still guaranteeing safety. This is detailed in Sec. 4. Here, we
define safety guarantees as ensuring that the robot does not
go within a safety margin from any human while exceeding
a critical safety speed, as detailed in Sec. 5.

Evaluation in Simulation Due to the inevitable predic-
tion errors in planning in human environments, evaluation
results in simulation often cannot provide sufficient informa-
tion for real-world deployments. We therefore seek new met-
rics that better inform the smoothness, efficiency, and safety
criteria from simulation trials. The proposed metrics and the
experimental results of our proposed approach are shown in
Sec. 6 and Sec. 7.

4 Methodology
In this section, we first introduce our proposed planning
method based on Stochastic Games. We use tree search, for
the convenience of forward simulation/state transitions in
MDPs with robot non-holonomic constraints, upon which
we introduce an approach featuring robust collision-safe
planning, to resolve the challenges raised in Sec. 3 regarding
robot planning in the real world.

Tree Structure with All-agent Rollout
A tree starts with a root node xt, and it expands by forward
simulating the state-action pair (possibly through a stochas-
tic function): xt+1 ∼ T (xt, at), and a reward rt = r(xt, at)
is received. An illustration of a graphical model of single-
agent MDP is shown in Fig. 4: Top-Left.

However, when planning in Markov Games, both the
reward function ri(xt, a

i
t, a
−i
t ) and the transition function

T (xt, a
i
t, a
−i
t ) involve other agents’ actions, which are not

available until they are observed (Fig. 4: Top-Right). There-
fore, we need to sample their potential actions for reward
estimate r̂it and state transition estimate x̂t+1 ∈ X , (Fig. 4:
Bottom-Right), to expand the tree with all-agent rollout
(Fig. 4: Bottom-Left). Each node then maintains a number
of samples of belief actions of other agents, which can be
later corrected online when new observations come in. The
reward rit is then estimated through the unweighted sample
averages: r̂it = 1

K

∑K
k=1 r

i(xt, a
i
t, a
−i
t,k); and the joint state

xt+1 follows the same fashion:

x̂t+1 =
1

K

K∑
k=1

T (xt, [a
i
t, a
−i
t,k]). (7)

The approach is closely related to Partially Observable
Monte Carlo Planning (Silver and Veness 2010), where the
belief state is maintained by K samples.

Compared to the turn-taking formulation introduced in
Sec. 3, to roll out the multi-agent state transition, our all-
agent rollout better captures the simultaneous-action nature
of real-time interactions, as illustrated in Fig. 3.

Planning for Collision Coordination: A
Finite-period Game
When sharing a workspace, agents have to plan to avoid col-
liding with one another; in situations where they are aware
of a potential collision, agents should adjust their motions
early, to coordinate passing smoothly. The value of the fi-
nal passing depends on the joint-actions of previous periods;
planning lasts for a finite number of periods until the colli-
sion threat is resolved. We define the game to terminate once
agents’ goal-oriented policies no longer lower the values of
each other 4.

During the period before termination, which we refer to
as the final period, agents receive immediate penalties (neg-
ative reward signals) due to the expected collision when fol-
lowing their goal-oriented policies. They therefore need to
make sure they coordinate in the final period, to avoid this
high cost. Beyond that point, agents can safely recover back
to their goal-oriented policies. Therefore, when planning for
collision coordination, we only need to consider the cumu-
lative rewards up to time t = T − 1, and the final-period
coordination value QiT :

ai∗0:T = argmax
ai
0:T

E
a−i
0:T

,x0:T |π−i [

T−1∑
t=0

ri(xt, a
i
t, a
−i
t ) +Qi

T (xT , a
i
T , a

−i
T )].

(8)

Note that, instead of Qi|π
−i

T , we use QiT , since we expect no
interaction after the final period 5. An example of the final-
period action value is shown in Fig. 5.

4The goal-oriented policy is the single-agent optimal pol-
icy without considering the dynamic objects (here, humans) in
the environment for Wfree construction. It maintains the static-
environment assumptions, resulting in a policy that acts as if no
other agents are around

5This assumption holds among goal-oriented agents, but does



Figure 5: An example final-period value of two-agent cross-
ing: as the advancing agent has higher time delay to yield to
the other, it has the format as an asymmetric Chicken game.

A Game-theoretic Decision-making Model
Robust Planning for Safety Guarantees
To ensure collision safety, a common practice is to use
a worst-case analysis for reward estimates. Following our
finite-period planning, the objective becomes:

ai∗0:T = argmax
ai0:T

min
a−i
0:T

Ex0:T
[

T−1∑
t=0

ri(xt, a
i
t, a
−i
t ) +QiT (xT , a

i
T , a

−i
T )],

(9)
which however results in overly conservative behavior, com-
monly seen in robust planning. To avoid such behavior, we
leverage the following observation: when planning for colli-
sion coordination, the large collision penalty does not apply
until the final period, and thus the planner does not need to
plan conservatively until then. Therefore, for collision-safe
yet not overly conservative planning, we propose to use the
average reward for t = 0 : T − 1 as in Eq. 8, and use the
worst-case state-action value estimate at t = T :

ai∗0:T = argmax
ai0:T

Ea−i
0:T ,x0:T |π−i [

T−1∑
t=0

ri(xt, a
i
t, a
−i
t )]

+min
a−i
T

Qi(xT , a
i
T , a

−i
T ),

(10)

We refer this notion as to plan carefully only when it mat-
ters.

5 Problem Instantiation
We instantiate our problem formulation in the navigation
domain, where a robot moves in a shared workspace with
humans. This scenario is motivated by service or guidance
robots in malls and museums. Although service robots are
designed to assist humans, they have specified users who
may have conflicting interests with other users. For example,
a guidance robot may have path conflicts with people it is
not leading. We therefore define robot reward function to re-
flect a weighted value (by parameter w) among the individ-
ual interests of all parties involved. With the weight mostly
on the robot itself, it leads to aggressive behavior; with it
evenly on all agents, it leads to collaborative behavior; and
with it mostly on others, it presents altruistic behavior. An
example is shown in Fig. 6. In this section we consider ways

not hold among adversarial agents, who intentionally block the oth-
ers even when their paths are clear. We do not consider adversarial
agents here.

Figure 6: Example trajectories under different robot objec-
tive functions (x-y in meters): a robot goes from −x toward
+x while avoiding a human going from −y toward +y at
x = 4.8 (indicated by the solid blue line). Trajectories end
after 12 sec. In the initial condition the robot will arrive at
the intersection slightly later than the human. The altruis-
tic setting optimizes the pedestrian’s efficiency much more
than that of the robot, resulting in yielding behaviors that
always waits until the pedestrian passes and results; the ag-
gressive setting is the opposite, resulting in high robot travel
efficiency by reaching the furthest at the end. The cooper-
ative setting puts equal weights on the efficiency of both
agents, and produces passing behaviors that less hinder the
pedestrian considering his/her future trajectories.

to reduce the computational complexity while planning on-
line, and provide a description of the search algorithm used.
Since pedestrian modeling is centrally important to our ex-
periments, we devote a separate section to it (Sec. 6).

Robot Motion Generation
In our implementation, a robot stays at a nominal speed
during normal navigation, and can vary its speed between
[0.3, 1.3]m/s and its acceleration between [-0.4, 0.4]m/s2,
in collision-dangerous situations. Collision-dangerous situa-
tions are defined as a potential collision will occur within 3s
when both agents follow self-interested policies. Our choice
of speed, acceleration and time frame prior to a collision
follows the study on pedestrian crossing for crowd simula-
tion (Paris, Pettré, and Donikian 2007), in which it is found
that humans start adapting their motions about 2.5s ahead of
a potential collision in the most collision-dangerous situa-
tions (with two pedestrian having the same estimated arrival
time at their path intersection).

In the nominal operation phase, we sample navigation ac-
tions with constant heading acceleration (rotation around
z axis) of [-15, 15] deg/s2. This encourages path explo-
ration under constant speed (0.7 m/s). In collision avoid-
ance phases, we sample quartic (4th-order) polynomials
with safety margin (estimated minimum distance with the
other agent, using his/her current speed) of [0.2, 1.8] m.

During node expansions, new robot actions and human
actions are sampled, and potential collisions are checked
under the condition that the distance between two agents
is within 0.9 m while the velocity of the robot is greater
than 0.3 m/s. We define the critical safety speed as 0.3 m/s
(defined as the safety action as) instead of stopping, since



people are very capable of avoiding low-speed objects. Ad-
ditionally, full stops are considered to be unnatural in hu-
man crowds (Trautman and Krause 2010). Only valid nodes
(those satisfying a collision-free check) are added into the
tree.

Online Computation
We plan in a receding-horizon fashion. This means that the
planner replans online at each period, up to the final period,
estimated based on forward simulation. To ensure search is
complete and the solution is returned at each period, the
planner needs to balance the computation of each run, which
depends on the number of particles K, sampled actions |A|,
and search depth H (or lookahead, periods to t = T ), with
the complexity of: K|A|H 6.

Here we use K = 1 in our implementation when t < T ,
which leads to the nominal/most-likely actions being se-
lected, as if we assume maximum likelihood observations
in belief space planning (Platt Jr et al. 2010). We do so until
it is the final period t = T , and apply K = 10 to sam-
ple for worst-case estimates, to maintain the safety mecha-
nism from Eq. 10. We sample 5 − 15 actions depending on
how crucial the state is to collision coordination. Finally, we
consider H = 3, to keep the worst-case complexity under
500 nodes to search for for real-time computation. The time
duration of each period is 1 sec, to ensure the robot starts
planning 4 secs before the estimated collision timing, since
humans usually reacting to collision threats 2.5s ahead on
average (Paris, Pettré, and Donikian 2007). Due to the tree
structure, once a node is visited, it is put in the closed set
(for the evaluated nodes), but not considered in the future
for re-evaluation.

6 Human Behavior Modeling
It is known that humans have heterogeneous behaviors.
Moreover, as suggested in state-of-the-art approaches that
have been deployed for real-world interactions (Trautman
et al. 2015; Pfeiffer et al. 2016), humans interact with robots
much differently than with other humans. As a result, no suf-
ficiently accurate human model is available for robot plan-
ning. Thus, in order to obtain a level of assurance that the
robot will behave safely when deployed in the wild, it is im-
portant to evaluate it when its human simulation model is in-
accurate. To construct such scenarios, and to evaluate a plan-
ner on simulated humans in general, it is important to know
the behavior assumptions to interpret the results accordingly.
It is dangerous to evaluate an approach using a similar sim-
ulated human behavior to what being used in the planner
for forward simulation (Macindoe, Kaelbling, and Lozano-
Pérez 2012), as it hides the effect of modeling inaccuracy.
Therefore, in this section, we leverage pedestrian simula-
tors, specifically, social force models with explicit collision
avoidance (Karamouzas et al. 2009), interpret their underly-
ing behavior assumptions using a game-theoretic decision-
making model, and then modify those assumptions to sim-
ulate behaviors we observed in real-world interactions. We

6If we maintain K samples and do not apply sample average for
rollouts, as suggested in Eq. 7, the complexity will be |K|H |A|H

use them to evaluate our approach, and discuss about the per-
formance brought by model inaccuracy, to benchmark the
worst-case scenario.

Popular approaches for behavior modeling are data-
driven, either from the behavior cloning community (super-
vised learning), or inverse optimal planning community. In
the latter, agents are assumed to be rational, which means
their decisions optimize a certain objective. Here, we con-
sider the agent-based models in crowd simulation (Hel-
bing and Molnar 1995; Paris, Pettré, and Donikian 2007;
Karamouzas et al. 2009). Among those models, nomi-
nal goal-driven navigation and interactive collision avoid-
ance motions are simulated through reactive policies. We
adapt the social force model with collision prediction (SF-
CP (Karamouzas et al. 2009)) to sample avoidance motions.
In their work, collision avoidance behaviors are based on
the relative position at their closest point, which can be cat-
egorized into two groups: one is anticipated to pass the path
intersection earlier, which then accelerate (to attempt to pass
in front); the other is anticipated pass later, which then de-
celerate (to attempt to yield).

In real world, however, those reactions are not based on
perfect timing estimates, and people make attempts based
on other criteria as well. Therefore, we sample avoidance
motions for both attempts, by sampling relative velocity es-
timates for both earlier and later arrival timings, and use a
game-theoretic decision-making model to decide which at-
tempt to go for, to simulate heterogeneous behaviors we ob-
serve in real world.

For generating the worst case scenario we model the
pedestrian collision-avoidance (crossing) scenario as an
(two-agent) asymmetric game of Chicken, shown in Fig. 5,
where each agent knows the value estimates Qi,−i of their
last-period actions aT , and their decisions are based on the
design of their own objectives, and the inference of the other
agents’ strategies, as listed in Eq. 6.

When agents share the same objective and it is of com-
mon knowledge to all agents i.e., all agents know they share
an objective and they all know others know that and so on,
all agents share the same optimal policy. In order to solve
this case, we can treat it as if one agent has full control to
the others, which all optimize that agent’s state-action value
function Qi:

ai∗0:T = argmax
ai0:T

max
a−i
0:T

Ex0:T
[

T−1∑
t=0

ri(xt, a
i
t, a
−i
t ) +QiT (xT , a

i
T , a

−i
T )].

(11)
If an agent’s policy is to maximize the social welfare and
it assumes the others know that and do the same, the over-
all function in Eq. 11 converges to the coordination policy
where agents yield whenever it has later arrival timing and
vice versa, such that the joint efficiency is maximized. This
behavior, which is simulated in SF-CP, is referred here as the
reciprocal behavior, as agents are cooperative and assume
the others are the same. In the real world, there are many
cases in which humans act strategically and thus do not al-
ways act according to the reciprocal behavior assumptions.
Some people constantly yield and wait for the others to pass
first, while others are doing the opposite. This can be ob-



served not only among crowds, but also among pedestrians
who encounter a robot for the first time 7. Among pedestri-
ans who exhibit the constant-yielding behavior, some sug-
gested that they do not know how to predict what the robot
will do; we therefore refer those pedestrians as being cau-
tious, and simulate their decisions through the maximin op-
eration, as suggested in Eq. 9. Among the pedestrians who
exhibited the non-yielding behavior, some strong provided
feedback that the robot should have waited for them. We
simulate such behavior through Eq. 11, with self-interested
objective and altruistic assumptions for the other agent. We
refer to such behavior as being aggressive, which assumes
both parties attempt to maximize the one agent’s individual
efficiency.

7 Performance Metrics and Experiments
In this section we evaluate our proposed robust planner un-
der randomized initial conditions, with the proposed three
types of pedestrian behaviors in simulation. We consider
plan safety, efficiency, and smoothness as performance met-
rics. We show performance deterioration when different
types of pedestrians are simulated, and collision safety is
still ensured among all scenarios. We sample 100 initial con-
figurations for testing in a two-agent crossing scenario, with
the robot starting at its nominal speed, 0.7 m/s, the human
at a speed range of [0.9, 1.3] m/s, and the initial positions
controlled such that the estimated arrival timing difference
range of [-0.8, 0.8] s. We evaluate the planner using re-
ciprocal human model (SF-CP) for forward simulation, and
compare the performances among crossing 1. aggressive,
2.cautious, and 3. reciprocal pedestrians. As suggested in
Eq. 11, we expect optimal joint efficiency among reciprocal-
reciprocal agents with equal travel time, highest pedestrian
individual efficiency with the aggressive model and the op-
posite with the cautious model.

We consider the safety metric as: the distance between
two agents never comes within 0.6mwhile the robot speed is
greater than 0.3m/s. Efficiency is measured by travel time.
We look into number of executed minimum-speed actions
(as) as an indicator of how smooth the crossing interaction
is. The result can be seen in Fig. 7. We can see the planner
experiences zero collisions among the three types of sim-
ulated pedestrians 8. Due to the conservative prediction at
final periods, the expected safety actions as in the first peri-
ods of planning are more than the executed ones at the final
periods. This is true with both reciprocal (of accurate predic-
tion) and cautious pedestrian models, but the opposite occurs

7We put a robot in a public space, running a policy that never
slows down until imminent threat of collision is detected. We ob-
served pedestrian responses, and ask them questions about what
they thought of the robot’s behavior afterwards.

8In real-world interactions, another worst-case scenario is to en-
counter a robot-interested pedestrian, who follows the robot after it
has passed, and block the robot when passing in front. We acknowl-
edge but do not explicitly consider this behavior here for perfor-
mance evaluation. A potential colliding situation when simulating
this adversarial type of agents for crossing is when they continue
with high speed while the robot has passed in front and slowed
down out of safety concern.

Figure 7: Comparison of robot planning with different sim-
ulated humans: cautious (Left), reciprocal (Middle), and ag-
gressive (Right). The bar graph lists three metrics: counts of
collisions, counts of as planned at first period, and counts
of as executed at final period. The lower starred solid line
indicates the robot’s average travel time, and the upper
triangular-marked solid line indicates the average joint travel
time.

when encountering aggressive agents, where the robot’s in-
dividual travel efficiency deteriorates due to frequent slow-
downs. Although it appears to have highest joint efficiency
on average, unexpected slow-downs in general cause non-
smooth interaction; along with the frequent close-distance
interaction, we expect extra delays to both agents in the real
world.

8 Conclusion and Future Work
We introduce a method for robot planning in human
workspaces as a Markov Game, to resolve the dynamic en-
vironment dilemma in the motion planning literature when
planning in dynamic workspaces. We then proposed an algo-
rithm that provided safety guarantees in simulated environ-
ments yet prevented the robot from exhibiting overly conser-
vative behavior through final-period worst-case simulation,
seeking to plan carefully only when it matters. We also
proposed pedestrian behavior assumptions based on real-
world observations, to benchmark the worst-case scenarios
caused by modeling inaccuracy, which is one of the most
difficult issues to deal with for state-of-the-art approaches
as they have been deployed in the real world. The proposed
approach relies on accurate modeling of the action space
of other agents A−i for safety guarantee (as computed in
Eq. 10), which can not be validated for real-world appli-
cation unless deployed in real human workspaces. Evalua-
tion in real environments is then necessary to better support
the safety guarantee in the real world. We did not detail the
choice of heuristic in this paper, and desire to better lever-
age those applied in grid-based multi-agent path coordina-
tion and scheduling for fast online computation. Lastly, there
is limited literature on human behavior using multi-agent
decision-making models; we desire to extend the models to
incorporate more diverse interactive behavior, including be-
havior adaptation, which is commonly seen in human-robot
interaction.
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