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Abstract

Developing safe and efficient methods for state abstraction
in reinforcement learning systems is an open research prob-
lem. We propose to address it by leveraging ideas from for-
mal verification, namely, bisimulation. Specifically, we gen-
eralize the notion of bisimulation by considering arbitrary
comparisons between states instead of strict reward matching.
We further develop a notion of temporally extended metrics,
which extend a base metric between states of an environment
so as to reflect not just the current difference but the extent to
which the distance is preserved through the course of transi-
tions. We show that this property is not satisfied by bisimu-
lation metrics, which were previously used to compare states
with respect to their longterm rewards. A temporal extension
can be defined for any base metric of interest, thus making
the construction very flexible. The kernel of the temporally
extended metrics corresponds precisely to exact bisimulation
(thus these metrics form a larger class of bisimulation met-
rics). We provide bounds relating bisimulation and tempo-
rally extended metrics and also examine the couplings of state
distributions which are induced.

1 Introduction

Building safe Al systems is crucial for a wide range of ap-
plications. This is especially difficult when the system relies
on reinforcement learning, in which an agent learns from its
own experience how to behave in the world. Because in most
applications of reinforcement learning, the environment is
very large or perhaps continuous, an agent is required to ab-
stract over its state space. However, this operation can re-
sult in putting together states that actually have very differ-
ent values, which can lead to suboptimal or even dangerous
behaviour. This is especially true if an agent relies only on
immediate observations to determine the similarity between
states, rather than long-term predictions or behaviour. For
example, a camera mounted on a car may show two very
similar images, but one may lead to the car going up the
curb and the other may be safe driving.

In reinforcement learning, we can leverage some structure in
the problem formulation to attempt to tackle this problem.
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Specifically, the environment of an agent is a Markov Deci-
sion Process (MDP) in which state similarity has been stud-
ied for a couple of decades. One long-studied notion used
to capture behavioral similarity of states in a Markov Deci-
sion Process (MDP) is called bisimulation. Bisimulation has
originated in the fields of concurrency and formal verifica-
tion for provably verifying the correctness and safety of pro-
cesses and systems (Milner 1980). An extension to MDPs
was proposed by (Givan, Dean, and Greig 2003). Bisimula-
tion is a canonical tool for analyzing the behaviour of transi-
tion systems and clustering equivalent states in overly large
systems. In the context of MDPs, bisimulation requires an
exact match of both rewards and transition distributions. As
this criterion is too brittle, a metric approach was developed
by (Ferns, Panangaden, and Precup 2004), which allows one
to measure “how bisimilar” two states are. These bisimula-
tion metrics assign distance of zero to states if and only if
they are bisimilar. Bisimulation metrics can be used for state
abstraction (by aggregating states that are € away), and doing
so provides one with formal (rather than statistical) safety
guarantees on the difference between the true optimal value
function and the approximated one. The bisimulation met-
ric can be computed iteratively, but each step requires one
to solve a linear program involving the transition distribu-
tions for every pair of states, which is not only computation-
ally expensive but also requires a full model of the MDP. In
this work, we investigate alternative metrics for behavioural
equivalence, with the goal of maintaining the useful theoret-
ical guarantees of bisimulation metrics while reducing the
computational burden and the need for knowledge of the
model.

Our contributions are two-fold: firstly, we propose a
coupling-based generalization of bisimulation which allows
for greater flexibility in the comparisons between states (in-
stead of strict reward matching), and consequently in the
properties being checked. Secondly, we consider the class of
quantitative bisimulations and show how this defines a no-
tion of temporally extended (TE) metrics. Intuitively, these
metrics compute the minimum value of a chosen base met-
ric for which the states s and s’ can remain in that range
throughout their dynamics. The TE metrics assign distance 0
to states if and only if they are bisimilar, much like the bisim-
ulation metrics previously defined. However, both the con-
struction and the resulting metric are quite different.



The rest of the paper is organized as follows. In the next sec-
tion we provide some necessary background. In Section 3
we characterize bisimulation via couplings and define the
extension of this characterization to arbitrary relations. In
Section 4 we define the temporally extended metrics. Sec-
tion 5 compares the two metrics by providing some bounds
relating them and analyzing the couplings induced by the
two metrics. Lastly, we wrap up with a discussion on the
benefits and disadvantages of these metrics, highlighting di-
rections for future work.

2 Background

Let D(S) denote the set of probability distributions on
S. A Markov decision process (MDP) is a 5-tuple M =
(8, A, {pa : S = D(S)}aca,r: S x A— R2%v) where
we emphasize that p,(s) € D(S) is to be read as a proba-
bility distribution over the states (one for each action). The
transition probability from s to a set of states X is writ-
ten pa(s)(X) = >, cx Pa(s)(z). In many practical appli-
cations, the state space of the MDP is simply too large to
allow one to compute the value functions exactly without
the use of state abstraction. Bisimulation is a canonical ex-
ample of a safe abstraction, in that the optimal policy and
optimal value functions will be preserved in the aggregated
MDP (Li, Walsh, and Littman 2006). Bisimulation is defined
in terms of equivalence classes, we write S/R for the set of
equivalence classes of an equivalence relation R.
Definition 2.1 (Bisimulation). A bisimulation relation U on
S is an equivalence relation such that si/s’ implies:

1. Va € A,r(s,a) =r(s',a) and
2. Va € ANC € S/U, p.(s)(C) = pa(s')(C).

We say that s and s are bisimilar and write s ~ s’ if there
is some bisimulation relation ¢/ relating them.

Thus bisimilar states will have equal rewards and there-
after transition with equal probability to more bisimilar
states.

Given a relation R between states, the lifting (R)# of that
relation allows one to naturally extend R to distributions on
states. Liftings are defined in terms of couplings, we will
later see that this notion will allow us to generalize bisimu-
lation.

Definition 2.2 (Couplings and Liftings). A coupling of two
distributions (¢, v) on S is a joint distribution A on S x S
such that the marginals are p and v:

A(s,8)=pu(s) & v(s')=A(S,s).
Moreover, a coupling of distributions (u, v/) is a lifting of R
if:

A(s,s") > 0= sRs', i.e. support(\) C R.
When there exists a lifting of 1 and v as above we write
n(R)*v.

A simple example: bisimulation and liftings We con-
sider the example of the bisimilar states in Figure 1. To

see that sg and ¢y are bisimilar, take the equivalence classes
S/U = {{s0,to},{s1,t1}, {s2,t2,t3}}. All states in each
class receive the same rewards and transition with equal
probability to all other classes, so ¢/ is indeed a bisimula-
tion relation. Now consider the coupling A of (p(sop), p(to))
given by the dashed arrows, i.e. A(s1,t1) = A(s2,l2) =
A(s2,t3) = +. This coupling is a lifting of U, since all sup-
ported states are U{-related. This is not a coincidence: the
fact that bisimulation is equivalent to the existence of a lift-
ing is the subject of Section 3. Not all couplings are liftings:
the trivial coupling w(s;,t;) = p(so)(si)p(to)(t;) is not a
lifting of U.

Figure 1: Rewards indicated in square brackets. Dashed ar-
rows give the weights of the coupling of p(sg) and p(to).
Colours represent different equivalence classes of ~.

Previous work on metric extensions of bisimulation is built
on the Kantorovich metric K (d)(, ) = minyea(,,)(A, d)
(also called the Wasserstein metric). The bisimulation met-
ric d. is the fixed point of the operator F(d)(s,s’) =
max, {(1 —7)[r(s,a) — r(s', a)| + VK (d)(Pa(s). Pa(s'))},
we refer the reader to (Ferns, Panangaden, and Precup 2004)
for further background.

3 Generalized Bisimulation via Liftings

In bisimulation, the rewards match at the first step and there-
after the states transition such that the bisimulation relation
is preserved. This definition can also be captured in terms of
couplings: our first result is that bisimulation is equivalent to
the existence of a particular lifting of the states.

Theorem 3.1. A relation !{ is a bisimulation relation <=
sUs' implies:

1. Yar(s,a) =r(s,a)
2. Ya pa(s)U)#pa(s)

The proofs of this result and later results are given in the
Appendix. The backward implication follows from the re-
markable Strassen’s theorem on couplings (see e.g. (Lind-
vall 1999)), which implies that for any R, u(R)7*v <=
VA C S, p(A) < v(R(A)). Applied to an equivalence
class C' and using that ¢/ is symmetric gives the bisimula-
tion property.



Building on the previous result, one can readily generalize
the first condition by using a generic relation between states
instead of demanding that the rewards match.

Definition 3.1 (R-bisimulation). Given a base relation R C
S x S, an R-bisimulation relation U C S x S is a new
relation where the states are R-related and their transition
distributions are U/-lifted. Formally, si/s’ implies:

1. sRs'
2. Va pu(s)(U)#pa(s')

We define R-bisimulation % to be the largest R-
bisimulation relation.

This allows one to define arbitrary properties that are pre-
served by the dynamics of the MDP in a systematic way. We
remark, firstly, that the second condition is much stronger
than merely requiring that the lifting is a coupling supported
by R, that is, p,(s)(R)#pa(s’). Requiring U to be lifted
also demands (in a coinductive manner) that the successor
states after a transition are R-related and can themselves ex-
hibit an appropriate coupling. Secondly, we note that Eis
well-defined, since the union of R-bisimulation relations is
itself an R-bisimulation relation. The well-behavedness of

‘R-bisimulations depends on their base relations, i.e. ~ is re-
flexive, symmetric, and transitive whenever R has the same
property (see Appendix).

4 Temporally Extended Metrics

Although the framework presented in Section 3 is agnos-
tic with respect to the base relation R, we will be focusing
on the setting of quantitative relations. These are relations
parametrized by the use of a real number e, which arise
from a base pseudometric § : S x S — RZ° on states
(or state-action pairs). More formally, given a base metric
§:8x8 = R2Y a quantitative relation d. is the rela-
tion 5. == 671 ([0,¢]) = {(s,5") | d(s,s") < e}. We note
the distinction between the metric § and the relations . de-
rived from the metric. We call a bisimulation arising from
such a quantitative relation a quantitative bisimulation, and

will abuse notation by writing is rather than 2. An exam-
ple of quantitative relations is approximate reward equality
spes’ 1= max, |r(s,a) — r(s’,a)| < e, derived from the
base metric p(s, s’) = max, |r(s,a) — r(s’,a)|.

In the context of quantitative bisimulations, we can define a
new metric by taking an infimum over the € parameter. We
call these the temporally extended (TE) metrics. The TE met-
ric finds the minimum ¢ such that the states are J.-bisimilar.
That is, the two states are a distance of € away (in the base
metric §) and can be coupled corecursively so that future
states are € away and can themselves be coupled. A tempo-
ral extension can be defined for any base metric.

Definition 4.1 (TE metric). Given a base metric ¢ and a cor-
responding collection of quantitative relations {J. }.>o, the
TE metric for ¢ is defined by

d°(s,s') = inf {z—: s 2. s'} .

This construction gives well-defined pseudometrics. The
proof follows from the symmetry, transitivity, and additiv-

ity! of the relations ig (see Appendix for details).
Theorem 4.1. Given a base pseudometric ¢, the TE metric
d? is indeed a pseudometric on S.

Moreover, the temporally extended metrics assign distance 0
to states if and only if they are perfectly bisimilar in the base
metric (i.e. they are dg-bisimilar). In the context of reward
differences, this implies:

Theorem 4.2. Classical bisimulation corresponds exactly to
the kernel of the temporal extension of p, i.e.

s~s = d’s,s)=0.

For reward differences, the bisimulation metrics share this
property, although our metrics are more general. Further-
more, despite the kernels matching, the TE metrics are not
the same as the bisimulation metrics, both in construction
and in the distances they assign.

Figure 2: Rewards indicated in square brackets. Dashed ar-
rows give the weights of the coupling of p(sg) and p(to).

A simple example revisited We consider the almost-
bisimilar states in Figure 2, examined with p as the base
metric. In this example, all states are p;-bisimilar, but
not pg-bisimilar. This is captured by the metric: one
needs to couple (so,t1), since the marginal onto ¢; has
to equal 1/3 + ¢ and s; only has 1/3 to spare. Since
(s2,t1) € support(A) and |r(s2) — r(t1)] = 1, then
dP(so,tp) = 1. This example highlights the discontinuous
behaviour of the TE metric — the states can either be coupled
with rewards O or 1.

5 Comparing Bisimulation Metrics and
Temporally Extended Metrics

In this section, we compare the temporally extended met-
rics with the bisimulation metrics. Results in this section are
given in terms of reward metric p but can be generalized to
arbitrary base metrics. The proofs (see Appendix) elucidate
the very useful properties of liftings.
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5.1 Bounds

Our first result relates the TE metric and the bisimulation
metric with a bound.

Theorem 5.1. The temporal extension of p upper bounds
the bisimulation metric: Vs, s’ € S,

d(s,s") < dl(s,s).

The bound is tight, and equality need not hold, as Figure
2 shows. Consequently, using bounds from (Ferns, Panan-
gaden, and Precup 2004), the TE metric gives a guarantee
on the difference in optimal value functions and on the ap-
proximation error for state-abstraction.

Corollary 5.1.1. Let V be the value function in the abstract
MDP of any abstraction ¢, not necessarily a bisimulation.?
Then, Vs, s’ € S:

[V*(s)=V"(s)] <

1
d’(s,s') and
L)
[V (6(s)) =V (s)| <
ol 1
max max

(1 —7)2 ¢(s") s'ed(s") |(s")

5.2 Optimal Couplings

In Figure 2, the same coupling minimized both the bisimu-
lation metric and the TE metric. Interestingly, the couplings
chosen need not be the same in general. This is the content
of the next theorem.

Theorem 5.2. A minimum coupling A €
argminA(pa(S),pu (s")) K(d,\,) (pa (S) s Pa (5/)) of the bisimu-
lation metric need not be a lifting of the optimal bisimulation
r’idg (s,s')- Conversely, A which lifts the optimal bisimulation
rﬁdg(&sl) need not be a minimizer of K (d-)(pa(s), pa(s')).

This highlights the different behaviours of the two metrics —
the TE metric aims to minimize the reward difference be-
tween coupled states at every step so as to ensure that a
single bisimulation relation holds, whereas the bisimulation
metric is not preserving a single relation and is willing to
couple large differences at an initial step. The couplings cho-
sen by the bisimulation metric do not give a (generalized)
bisimulation relation, and the best that one can do with a
(generalized) bisimulation relation is given by the temporal
extension.

6 Discussion

We have introduced the temporally extended metrics, a novel
class of metrics for behavioural equivalence, which are
based on a generalized notion of bisimulation. We have es-
tablished bounds and other connections with the more fa-
miliar bisimulation metric, and seen that they neither com-
pute the same values nor pick out the same couplings of

2we refer the reader to (Li, Walsh, and Littman 2006) for back-
ground on abstract MDPs

state distributions. After completing this work we discov-
ered that similar ideas for quantitative bisimulations have
successfully appeared in the control-theory literature (Gi-
rard and Pappas 2007), although in the different setting of
non-deterministic (rather than probabilistic) transition sys-
tems without rewards.

This work marks the beginning of an investigation into for-
mally safe, computationally tractable, and model-free met-
rics for behavioural equivalence. There are many interesting
avenues for future work that we intend to pursue. For com-
putational aspects, the TE metric involves the computation
of a bisimulation relation rather than a bisimulation metric,
which can be done exactly in O(].A||S|?) via partition re-
finements as opposed to approximated upto a degree of ac-
curacy ¢ in O(|A||S|* log |S| log €) (Ferns, Panangaden, and
Precup 2004). Deriving an exact algorithm, however, is left
for future work. The possibility of model-free computation
is hypothesized since the metric requires only the existence
of a lifting, as opposed to the exact weights of a coupling as
does the Kantorovich metric, thus should be easier to esti-
mate from samples.

A slightly disconcerting aspect of the TE metrics is their
discontinuity with respect to the transition distributions, ob-
served in Figure 2. This is because we require exact cou-
plings - we are currently investigating the use of approxi-
mate couplings to remedy this, which have recently surfaced
in the study of differential privacy (Barthe et al. 2016).
Finally, as the general notions of R-bisimulations and §-
temporal extensions can be considered for arbitrary rela-
tions and metrics, examining the interplay between differ-
ent notions of bisimulation (e.g. for optimal value functions
or policy value functions) promises to be a fruitful direc-
tion.
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A Proofs

Theorem A.l. A relation I/ is a bisimulation relation <= sls’
implies: 1. Va r(s,a) = 7(s', a) and 2. Va pa (s)(U)#pa(s')

Proof. The first condition is immediate in both cases. For
the forward implication, we pick the coupling A.(s',t') =
Loy (8)(5))pa(O)(') /pa () [')), where ['] 1= {t' | SUt'}
is the equivalence class of s’. The marginals match since:
Xa(s,8) = Yoy a()($)pa(W)(t) /pa(s)([8']) =
Pa(s)(s")pa(t)([s']) /pa(s)([s']) = pa(s)(s), as
pa(5)([s']) = pa(t)([s']) by the second condition of bisim-
ulation. Similarly for A\, (S,t'). To make )\, a lifting of U we
still need to check that support(A,) C U, which is evident
since A\q(s’,t') is only non-zero when s'Ut’. For the converse,
we use Strassen’s theorem. Let C' € S/U, note that we have
Pa(8)(C) < pa(t)(C) since U(C) = C. By symmetry of U, we
also have pq(t)(U)#pa(s), so that pa(t)(C) < pa(s)(C). So
s~ t. O

Theorem A.2. Given a base pseudometric §, the TE metric df is
indeed a pseudometric on S.

Proof. 1. Note that s 2o s (via the identity coupling A, s") =
T (s=s1Pa(5)(s")), thus di(s, s) = infe>o{s ig s} =0.

2. Note that s 2. ¢ = ¢ . s (via the mirror coupling ¥ (t',s") =
A(s', ), thus d(s,t) = inf.{s 2 t} = inf.{t 2 s} =
di(t, s).

3.Let A = A1 + Az = {e1 + e2s rigl w & w 352 t}, and
B = {¢|s 2. t}. Note A C B since s rigl+52 t (via the transitive
coupling Xa(s',1') = 3 coupport(pa (w)) Aa,,l(S;:l(J:j;\(r;,lﬁ)(w/,tl)).
So d2(s,t) = inf(B) < inf(A) = inf(A;) + inf(42) =
d2 (s, w) + d(w, t). O

Theorem A.3. The temporal extension of p upper bounds the
bisimulation metric: Vs, s’ € S,

do(s,8") < d2(s,s).

Proof. We proceed by induction, showing that Vs, t, dn (s
(1 — 7)) X" ,7'd2(s,s'). The base case is di(s,s
max, {(1 —7)|r(s,a) —r(s’;a)|} < (1 — 7)d2(s,s’), using
max, |r(s,a) — r(s’,a)| < d?(s,s). For the induction step we
upper bound the min-cost coupling from the minimization problem
with the liftings Ao € A (pa(s),pa(s’)) given by fﬁd;;(s,S/) (one
can show the infs are always attained).

) <

78/
/
)

dny1(s,8") = max{l —y)[r(s,a) — r(s',a)|

+ 'YK(dn)(pa(s)v pa(sl))}

< (L=7)d2(s,8") +7 Y Nalsk, 55)dn(sk, 55)
k.j

< (1=7)di(s,8")

+ ) Aalsky s5) <(1 =) > A2 (s, Sj)>
k,j i=0

(induction hypothesis)

Now we use the lifting property: the only non-zero terms in
the summation are those for which (sg,s;) € support(Aq) C

’Qdﬁ(s,s’)' Thus (sk,s;) € r’fadg(&s/), and we conclude that

d?(si,s;) = infe sp e 55 < d2(s, "), Ysk, s;.

dn+1(575/) < (1 - 7)d¢(3751)

+ ’VZ )\a(skv Sj) ((1 - ’Y) szdi(sa S,))
k,j i=0

n+1

=1 =d(s,8) > 7'
i=0
Thus the inequality holds for all n. Taking limits finishes the proof:
1—
d(s,8) < T dh (s, ) = di (s, ),

as desired. O

Theorem A4. A  minimum  coupling A €
argminy (. (<) p (s')) K(dN)(pa.(s),pa(s')) of the bisimu-
lation metric need not be a lifting of the optimal bisimulation
f/\]/d[r’(s’sl). Conversely, A which lifts the optimal bisimulation

,’Ldg (5,577 Need not be a minimizer of K (d~)(pa(s),pa(s’)).

Proof. Consider the following MDP, taking p as our base metric.

€, [01 —¢,[0]

=

=

)

=

0

And consider the following two couplings w~, - €
A(p(s0), p(to))-

w~ | 81 52 A | s1 S2
t1 e 0 t1 0 5
tz 0 1—¢ tz g 1—2¢

One can verify that w~ minimizes the bisimulation distance
and that A, minimizes the temporally extended metric. Indeed,
Y uwes W (U, v)do(u,v) = ed(s1,t1) + (1 — €)d(s2,t2) =
2¢{2(1 — ~)} and this coupling is optimal for K (d~ ). Meanwhile
wwes Ar(U,v)d(u,v) = edn(s1,t2) + ed(s2, 1) + (1 —
2e)d~(s2,t2) = ed~(s1,t2) + ed(s2,t1) = 2e{(1 —v)(1 +
7 +7)}
On the other hand, using w-., the best relation that can be lifted is
L,, since (s1,t1) € support(w~) and r(s1) — r(t1) = 2. Mean-
while, A\, lifts f/\)q and thus achieves the minimum lifting, since
(s1,t2), (s2,t1), (s2, t2) all have reward differences of 1. Thus w~.
minimizes the bisimulation metric but not the temporal extension
metric. Conversely, A minimizes the temporal extension metric
since it achieves the minimum lifting, but not the bisimulation met-
ric. O



