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Abstract

The robustness of Deep neural networks (DNNs) has been re-
cently challenged by adversarial attacks State-of-the-art de-
fending algorithms improve DNNs’ robustness by paying
high computational costs. Moreover, these approaches are
usually designed against one or a few known attacking tech-
niques only. The effectiveness to defend other types of attack-
ing methods cannot be guaranteed. In this work, we propose
Bamboo – the first data augmentation method designed for
improving the general robustness of DNN without any hy-
pothesis on the attacking algorithms. Our experiments show
that Bamboo substantially improve the general robustness
against arbitrary types of attacks and noises, achieving bet-
ter results comparing to previous adversarial training meth-
ods, robust optimization methods and other data augmenta-
tion methods with the same amount of data points.

Introduction
In recent years, deep neural network (DNN) models (e.g.,
CNNs) have been widely used in many real-world applica-
tions (LeCun et al. 1998; Simonyan and Zisserman 2014).
However, they exposed a high sensitivity to input data sam-
ples and therefore are vulnerable to adversarial attacks. A
“small” perturbation can be applied on input samples, which
is visually indistinguishable by humans but can result in
the misclassification of DNN models (Szegedy et al. 2013;
Carlini and Wagner 2017; Madry et al. 2018), indicating a
serious threat against the systems using DNN models.

Many approaches have also been proposed to defend
against adversarial attacks. However, adversarial training
methods (Goodfellow, Shlens, and Szegedy 2014; Madry
et al. 2018) won’t guarantee the performance against pre-
viously unseen attacks (Carlini and Wagner 2017). While
solving the min-max problem used in Optimization based
methods (Sinha, Namkoong, and Duchi 2017; Yan, Guo, and
Zhang 2018) often generates a high computational load.

Generally speaking, defending against adversarial at-
tacks can be considered as a special case of increasing the
generalizability of DNN to unseen data points. Therefore
data augmentation method may also be effective. Previ-
ous studies show that training with additional data sampled
from a Gaussian distribution centered at the original train-
ing data can enhance the model robustness against natural
noise (Chapelle et al. 2001). The recently proposed Mixup

method (Zhang et al. 2017) surprisingly improved the DNN
robustness against adversarial attacks. However, these data
augmentation may not offer the most efficient way to en-
hance the adversarial robustness of DNN as they are not de-
signed against adversarial attacks.

In this work, we propose Bamboo—a ball shape data aug-
mentation technique aiming for improving the general ro-
bustness of DNN against adversarial attacks from all direc-
tions. Without requiring any prior knowledge of the attack-
ing algorithm, Bamboo can effectively enhance the general
robustness of the DNN models against the adversarial noise.
Bamboo can offer a significantly enhanced model robustness
comparing to previous robust optimization methods, without
suffering from the high computational complexity. Compar-
ing to other data augmentation method, Bamboo can also
achieve further improvement of the model robustness using
the same amount of augmented data. Most importantly, as
our method makes no assumption on the distribution of ad-
versarial examples, it can work against all kinds of noise.

Background
Measurement of DNN robustness
A metric for measuring the robustness of the DNN is nec-
essary. (Szegedy et al. 2013) propose the fast gradient sign
method (FGSM) noise, which is one of the most efficient and
most commonly applied attacking method. FGSM generates
an adversarial example x′ using the sign of the local gradi-
ent of the loss function J at a data point x with label y as:
x′ = x+ε sign(∇xJ(θ, x, y)), where ε controls the strength
of FGSM attack. For its high efficiency in noise generation,
the classification accuracy under the FGSM attack with cer-
tain ε has been taken as a metric of the model robustness.

As FGSM attack leverages only the local gradient for
perturbing the input, if is found that even a DNN model
achieves high accuracy under FGSM attack, it may still
be vulnerable to other attacking methods (Papernot et al.
2016). (Madry et al. 2018) propose projected gradient de-
scent (PGD), which attacks the input with multi-step vari-
ant FGSM that is projected into certain space x + S at
the vicinity of data point x for each step. A single step of
the PGD noise generation can be formulated as: xt+1 =
Πx+S(xt + ε sign(∇xJ(θ, x, y))). Their work shows that
comparing to FGSM, adversarial training using PGD adver-



sarial is more likely to lead to a universally robust model.
Therefore the classification accuracy under the PGD attack
would also be an effective metric of the model robustness.

Besides these gradient based methods, the generation of
adversarial examples can also be viewed as an optimization
process. (Szegedy et al. 2013) describe the general objective
of untargeted attacks as:minimizeδ D(x, x+δ), s.t. C(x+
δ) 6= C(x). Where D is the distance measurement, which
we use L2 distance here; C is the classification result of
the DNN; and x′ = x + δ is the adversarial example to
be found. CW attack (Carlini and Wagner 2017) defines an
objective function f such that C(x+ δ) 6= C(x) if and only
if f(x + δ) ≤ 0. With the use of f , the optimization can be
formulated as: minimizeδ D(x, x+ δ) + c · f(x+ δ). Such
objective can lead to a higher chance of finding the optimal
δ efficiently (Carlini and Wagner 2017). Since the objective
of CW attack is to find the minimal possible perturbation
strength of a successful attack, the average strength required
for a successful CW attack can be considered as a reasonable
measurement of the model robustness.

Previous works increasing network robustness
There are previous attempts to derive a bound of the DNN
robustness theoretically (Peck et al. 2017; Hein and An-
driushchenko 2017), but these obtained bounds are often too
loose or too complicated to be used as a guideline for robust
training. A more practical approach is adversarial training.
For example, we can generate adversarial examples from
the training data and then include their classification loss to
the loss function (Goodfellow, Shlens, and Szegedy 2014;
Madry et al. 2018). This method can be efficiently opti-
mized for the limited types of known adversarial attacks.
However, it may not promise the robustness against other at-
tacking methods, especially those newly proposed ones. Al-
ternatively, the defender may online generate the worst-case
adversarial examples of the training data and minimize the
loss of such adversarial examples by solving a min-max op-
timization problem during the training process. For instance,
the distributional robustness method (Sinha, Namkoong,
and Duchi 2017) use the objective minimizeθ F (θ) :=
E[supx′{L(θ;x′) − γD(x′, x)}] to train the weight θ of
a DNN model that minimize the loss L of adversarial ex-
ample x′ which is near to original data point x but has
supremum loss. This method can achieve some robustness
improvement, but suffers from high computational cost for
optimizing both the network weight and the potential ad-
versarial example. Also, this work only focuses on small
perturbation attacks, so the robustness guarantee may not
hold on the improvement of robustness under large attack-
ing strength (Sinha, Namkoong, and Duchi 2017).

Proposed Approach
Vicinity risk minimization for robustness
Most of the supervised machine learning algorithms follow
the principle of empirical risk minimization (ERM), which
is based on the hypothesis that the testing data has a similar
distribution as the training data, so minimizing the loss on

the training data would naturally lead to the minimum test-
ing loss. However, the distribution of adversarial examples
generated by attacking algorithms may be different from the
original training data. Thus the DNN models trained with
ERM would have unsatisfactory performance on adversarial
examples (Goodfellow, Shlens, and Szegedy 2014).

Instead of ERM, the vicinity risk minimization (VRM)
principle targets to minimize the vicinity risk R̂ on the vir-
tual data pair (x̂, ŷ) sampled from a vicinity distribution
P̂ (x̂, ŷ|x, y) generated from the original training set distri-
bution P (x, y) (Chapelle et al. 2001). Consequently, the op-
timization objective of the VRM-based training can be de-
scribed as: minimizeθ R̂(θ) := E(x̂,ŷ)L(f(x̂, θ), ŷ).

For most of the attacking algorithms, there is a con-
straint on the strength of the perturbation, so the adversar-
ial example x̂ can be considered as within a r-radius ball
around the original data x. Without any prior knowledge
of the attacking algorithm, we can consider the adversarial
examples as uniformly distributed within the r-radius ball:
x̂ ∼ Uniform(||x̂− x||2≤ r). However, directly sampling
the virtual data point x̂ within the ball may be data inef-
ficient. Here we propose to further improve the data effi-
ciency by utilizing the geometry analysis of DNN model.
Previous research shows that the curvature of DNN’s deci-
sion boundary near a training data point would most likely
be very small (Goodfellow, Shlens, and Szegedy 2014;
Fawzi, Moosavi-Dezfooli, and Frossard 2016). These obser-
vations show that minimizing the loss of data points sampled
within the ball can be approximated by minimizing the loss
of data points sampled on the edge of the ball. Formally, the
vicinity distribution can be modified to:

P̂ (x̂, ŷ|x, y) = Uniform(||x̂− x||2= r) · δ(ŷ, y). (1)
By optimizing the VRM objective with this vicinity distri-
bution, we can improve the robustness of DNN against ad-
versarial attacks with higher data efficiency in sampling the
virtual data points for augmentation.

Bamboo and its intuitive explanation
We propose Bamboo, a ball-shape data augmentation
scheme that augments the training set with N virtual data
points uniformly sampled from a r-radius ball centered at
each original training data point. Algorithm 1 provides a for-
mal description of the proposed method.

Since the decision boundary of the DNN model tends
to have small curvature around training data points (Fawzi,
Moosavi-Dezfooli, and Frossard 2016), including the aug-
mented data on the ball naturally pushes the decision bound-
ary further away from the original training data, therefore in-
creases the robustness of the learned model. Figure 1 shows
the effect of Bamboo with a simple classification problem.
Here we classify 100 data points sampled from the MNIST
class of the digit “3” and digit “7” each using a multi-layer
perceptron with one hidden layer. PCA is used for visual-
ization. Figure 1a shows the decision boundary without data
augmentation, where the decision boundary is more curvy
and is overfitting to the training data. In Figure 1b, the de-
cision boundary after applying our data augmentation be-
comes smoother and is further away from original training



Algorithm 1: Bamboo: Ball-shape data augmentation
Input : Augmentation ratio N , Ball radius r, Original

training set (X,Y )

Output: Augmented training set (X̂, Ŷ )
1 n := length(X);
2 X̂ := X , Ŷ := Y ; . Initialization with training set data
3 count := n;
4 for i = 1 : n do
5 x := X[i], y := Y [i];
6 for j = 1 : N do
7 count := count+ 1;
8 Sample δ ∼ N (0, I); δr := δ

||δ||2
· r;

9 X̂[count] := x+ δr;
10 Ŷ [count] := y; . Augmenting the training set
11 end
12 end
13 return (X̂, Ŷ )

(a) Without data augmentation(b) Bamboo data augmentation

Figure 1: Bamboo’s effect on the DNN decision boundary

points, implying a more robust model with the training set
augmented with our proposed Bamboo method.

Experiment

Experiment setup

For evaluating the effect of parameter r and N on the per-
formance of our model, we use the average strength of suc-
cessful CW attack (Carlini and Wagner 2017) as the met-
ric of robustness. When comparing with previous work, we
use both CW attack strength (marked as CW rob in Table 1)
and the testing accuracy under FGSM attack (Szegedy et
al. 2013) with ε = 0.1, 0.3, 0.5 respectively (marked as
FGSM1, FGSM3 and FGSM5 in Table 1). The accuracy un-
der 50 iterations of PGD attack (Madry et al. 2018) with
ε = 0.3 is also evaluated here (marked as PGD3 in Table 1).
We also test the accuracy under Gaussian noise with vari-
ance σ = 0.5 (marked as GAU5 in Table 1), which demon-
strates the robustness against attacks from all directions.

To visualize the effect on decision boundary, we follow
the setting used in (He, Li, and Song 2018)’s work, where
we use 784 random orthogonal directions for MNIST and
1000 random orthogonal directions for CIFAR-10 to linear
search for decision boundary. For each testing data point, we
compute the average of the top 20 smallest distance across
all the testing data points, implying the overall effectiveness
of different methods on increasing the robustness.

(a) Testing accuracy (b) CW robustness

Figure 2: Performance result on MNIST dataset

(a) MNIST (b) CIFAR-10
Figure 3: Decision boundary comparison

Parameter tuning
Bamboo augmentation has two hyper-parameters: the ball
radius r and the ratio of the augmented data N . In figure 2a,
when we fix the radius r, the testing accuracy increases as
the number of augmented points grows up. Adjusting the
radius has little impact on the testing accuracy. Figure 2b
presents that when r is fixed, the robustness improves as
N increases. The effectiveness of further increasing N be-
comes less asN gets larger. Under the same data amount, in-
creasing the radius r can also enhance the robustness, while
the effectiveness of increasing r saturates as r gets larger.

Boundary visualization
Figure 3 shows the top 20 smallest decision boundary on
random orthogonal directions average across MNIST and
CIFAR-10 testing points respectively. Comparing to previ-
ous methods, our Bamboo data augmentation can provide
largest gain on robustness for the most vulnerable directions.

Performance comparison
Table 1 summarizes the performance of the DNN model
trained with Bamboo comparing to other methods. Bam-
boo achieves the highest robustness under CW attack on
both MNIST and CIFAR-10 experiments, and the lowest ac-
curacy drop when facing Gaussian noise. Bamboo demon-
strates a higher robustness against a wide range of attacking
methods and the performance of our method is less sensi-
tive to the change of the attacking strength. Also, the overall
performance of Bamboo is better than Mixup with the same
amount of data augmented. All these observations lead to
the conclusion that our proposed Bamboo method can ef-
fectively improve the overall robustness of DNN models, no
matter which kind of attack is applied or which direction of
noise is added. The ImageNet experiment results showed in
Table 2 show the same trend as well.



Table 1: Performance comparison: bold type marks the best performance, and italics type marks the second from the best performance

MNIST Original FGSM DIST PGD Mixup Ours

ε = 0.5 c = 0.01
ε = 0.3,

50 iterations
α = 0.12,
10×data

r = 8,
10×data

CW rob 2.442 2.390 2.5010 2.343 2.803 3.554
Test acc 0.9818 0.9817 0.9873 0.9869 0.9904 0.9904

FGSM1 acc 0.5382 0.6375 0.8542 0.7511 0.8323 0.9292
FGSM3 acc 0.2606 0.8963 0.1169 0.5840 0.2623 0.5558
FGSM5 acc 0.1423 0.9390 0.0244 0.1340 0.1344 0.2878
PGD 3 acc 0.0126 0.0258 0.0065 0.2534 0.0180 0.1281
GAU 5 acc 0.6358 0.6316 0.5735 0.5886 0.5813 0.9556
CIFAR-10 Original FGSM DIST PGD Mixup Ours

ε = 0.5 c = 0.01
ε = 0.3,

50 iterations
α = 0.12,
16×data

r = 10,
16×data

CW rob 38.010 38.210 38.503 38.108 37.648 38.746
Test acc 0.8395 0.7995 0.7935 0.7791 0.8521 0.8249

FGSM1 acc 0.4922 0.4927 0.3825 0.4588 0.7483 0.6853
FGSM3 acc 0.4463 0.6517 0.2241 0.3848 0.7287 0.6806
FGSM5 acc 0.4093 0.7572 0.1998 0.3405 0.7192 0.6721
PGD 3 acc 0.2987 0.2233 0.1871 0.5291 0.5018 0.4111
GAU 5 acc 0.3701 0.6356 0.6169 0.5390 0.3371 0.6961

Table 2: Performance comparison on ImageNet

Original Mixup Ours
Top-1 acc 57.336 58.213 60.520
Top-5 acc 80.647 81.452 83.216

Top-1 FGSM 11.342 12.947 14.062
Top-5 FGSM 22.860 26.400 26.562

Conclusion and future work
In this work we propose Bamboo, the first data augmentation
method that is specially designed for improving the overall
robustness of DNNs. Without making any assumption on the
distribution of adversarial examples, Bamboo is able to ef-
fectively improve the robustness of DNN models against dif-
ferent kinds of attacks, and can achieve stable performance
on large DNN models or facing strong adversarial attacks.

In future work we will discuss the theoretical relationship
between the resulted DNN robustness and the parameters
in our method, and how will the change in the scale of the
classification problem affect such relationship. We will also
propose new training tricks better suited for training with
augmented dataset.
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