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Abstract

Recently, security issues have become more and more impor-
tant to apply machine learning models to a real-world prob-
lem. It is necessary to preserve the data privacy for using sen-
sitive data and to protect the information of a trained model
for defending the intentional attacks. In this paper, we want to
propose a security-preserving learning framework using fully
homomorphic encryption for support vector machine model.
Our approach aims to train the model on encrypted domain to
preserve data and model privacy with the reduced communi-
cation between the servers. The proposed procedure includes
our protocol, data structure and homomorphic evaluation.

As machine learning models have been effectively applied
to various real-world problems, collecting data from vari-
ous sources became crucial for many service providers(Park,
Hah, and Lee 2017). In this situation, privacy issues have
become a major problem in the learning society. Therefore,
it is necessary to preserve the privacy of the data and the
security of the learning process without compromising the
performance of the learning algorithms.

Homomorphic encryption (HE) enables computations on
encrypted data (ciphertext) which are equivalent to oper-
ations on decrypted data (plaintext) (Gentry 2009). In re-
cent years, privacy-preserving machine learning applica-
tions have developed, but they have high computational cost
and huge memory burden. Cheon et al. developed a ho-
momorphic encryption scheme for approximate arithmetic
(HEAAN) (Cheon et al. 2017).

Support vector machine (SVM) is one of the most effec-
tive machine learning algorithms for classification (Cortes
and Vapnik 1995). The training data and the model param-
eters should be protected to apply the SVM model to the
security-preserving scenario. Therefore, in this paper, we
propose the implementation for the training phase of the
SVM classifier on the encrypted domain with the HEAAN
scheme.

Design Components
Fully Homomorphic Encryption
Fully homomorphic encryption (FHE) is a cryptographic
scheme which aims to enable homomorphic operations such
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as additions and multiplications on encrypted data. Recently,
HEAAN scheme (Cheon et al. 2017) was developed to carry
out approximate computations efficiently.

For the (leveled) HEAAN of depth L, we set the parame-
ters such as a power of two M ′, integers p, q0, qL = pL · q0,
h and P , and a real σ for λ-bit security. The specifications
of the algorithm are as follows.
- (pk, sk, evk)← KeyGen(1λ)
- ~c ←Encrypt(pk, m): Sample ~r ∈ R2 and e0, e1 ←
DGqL(σ2).
Output ~c← ~r · pk + (m+ e0, e1) ∈ R2

qL .
- m ←Decrypt(sk, ~c = (c0, c1)): Output m ← c0 + c1 · s
mod q`.
- cadd ←Add(~c1, ~c2): Output ~cadd ← ~c1 + ~c2 mod q`.
- ~cmult ←Mult(~c1, ~c2): Set c1 = (b1, a1) and c2 = (b2, a2).
Let (d0, d1, d2)← (b1·b2, a1·b2+a2·b1, a1·a2) ∈ R3

q`
. Out-

put ~cmult ← (d0, d1)+b 1P · (d2 ·evk (mod P ·q`))e ∈ R2
q`

.
- ~c′ ←Rescaling`→`′ (~c): For a level ` ciphertext ~c, output
~c′ ← b q`′q` · ~ce ∈ R

2
q`′

at level `′.
For more details, we recommend to see (Cheon et al. 2017).

Least Square Support Vector Machine
The SVM aims to find the maximum margin hyperplane,
given the training examples {(x1, y1), ..., (xn, yn)} ⊂ Rd×
{−1, 1}. To train the SVM model over encrypted data, we
used a nonlinear least-square SVM with a basis function
φ(x) : Rd → Rl that minimizes the following optimization
problem (Suykens and Vandewalle 1999):

min
w,b,ei

1
n

∑n
i=1 ei + λ‖w‖2 (1)

s.t. yi [w · φ(xi) + b] = 1− ei,∀i = 1, . . . , n,

where w ∈ Rl. To solve the problem (1), we con-
struct the Lagrangian function: L(w, b, e,α) = λ‖w‖2 +
1
n

∑n
i=1 e

2
i−
∑n
i=1 αi{[w·φ(xi)+b]+ei−1}. With the opti-

mality conditions of the Lagrangian function, the following
linear system is obtained by removing w and e:

Ab =

[
0 yT

y Ω + λIn

] [
b
α

]
=

[
0
1n

]
= 1̃ (2)

where Ω ∈ R(n+1)×(n+1) s.t. Ωi,j = k(xi, xj). We intro-
duce an additional least square problem with gradient de-
scent method for the system (2), which convergence can be



Figure 1: Our procedure with protocol

guaranteed by the well-posedness of. The matrix A can be
decomposed as follows:

A = (

[
1
y

] [
1 yT

]
)�

[
0 1T

1 Ω

]
+ η

[
0 0T

0 In

]
(3)

where � represents a Hadmard product. By Schur product
theorem, the first term becomes PSD with Mercer kernel.
Therefore, the linear system (2) is well-posed with some
η > 0, and the convergence of iterative method can be gau-
ranteed. With these design components, the intermediate dy-
cryptions for training the SVM model can be reduced.

Implementation
In this paper, we propose a protocol which can reduce the
communication to construct kernel matrix and to learn the
model parameters with FHE operations. Figure 1 illustrates
the whole procedure of our protocol which secures server-
side and data provider-side information because all opera-
tions can be performed on encrypted domain.

Data Structure
As mentioned previously, we first compute the kernel matrix
from the encrypted data. For simplicity, we assume that the
kernel matrix is encrypted as a ciphertext. We want to build a
parallelizable procedure because of computational cost and
large memory of ciphertext. The HEAAN scheme supports
slot-wise operation over ciphertext, so the operations of ma-
trices should be replaced with addition and Hadmard prod-
uct. We propose data structure for calculating the inner prod-
uct matrix. Assume that Z ∈ Rn×d and ZZT , Ẑj ∈ Rn×n.

ZZT = Ẑ1 � ẐT1 + · · ·+ Ẑd � ẐTd ,

Z =

z11 · · · z1d
...

. . .
...

zn1 · · · znd

 , Ẑj =

z1j z2j · · · znj
...

...
. . .

...
z1j z2j · · · znj

 .
The multiplication of cihpertexts in this operation can be
performed on d different machines in parallel.

Secure-Preserving Iterative Training
In this study, to efficiently implement the gradient descent
method, we utilize the symmetricity of the matrix (3) in

Table 1: Classification accuracy for real datasets

matrix multiplication. To learn b, the updated equation is
bk+1 = bk − αAT (Abk − 1̃). Matrix-vector multiplica-
tion on the encrypted domain is efficiently implemented by
rotating the slots. We used pre-computed ATA by using the
symmetric property instead of two matrix-vector multipli-
cations per iteration. Therefore, the resulting update equa-
tion is bk+2 = Mbk − c, where M = (I − αATA)2 and
c = ((1 + α)I− αATA)ATb are pre-computed.

Comparison
Our procedure replaces the dual convex optimization with
numerical gradient descent to implement the security-
preserving LSSVM. To illustrate the result of this replace-
ment, we compare the classification performances with RBF
and polynomial kernels for some real datasets used in
(Suykens and Vandewalle 1999). Table 1 shows that the re-
placement does not severely affect the performances. From
this results, we can expect to develop a secure-preserving
SVM without compromising the performance.

Conclusion
In this paper, we present a new framework to train the
LSSVM model using HEAAN. This framework includes
protocol, data structure and secure-preserving iterative train-
ing procedure. Our method considers the reduction of com-
putational cost and memory burden that are the common
problem for the application of HE scheme. The proposed
solution can be helpful to show the potential for the practi-
cal utilization of machine learning models without concerns
on security and privacy issues.
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