
It Takes Three to Tango: Requirement, Outcome/data,

and AI Driven Development

Jan Bosch1, Helena H. Olsson2 and Ivica Crnkovic1

1Chalmers University of Technology, Department of Computer Science & Engineering,

Göteborg, Sweden
2Malmö University, Department of Computer Science and Media Technology,

Malmö, Sweden

Abstract. Today’s software-intensive organizations are experiencing a

paradigm-shift with regards to how to develop software systems. With the

increasing availability and access to data and with artificial intelligence (AI) and

technologies such as machine learning and deep learning emerging, the

traditional requirement driven approach to software development is becoming

complemented with other approaches. In addition to having development teams

executing on requirements specified by product management, the development

of software systems is progressing towards a data driven practice where teams

receive an outcome to realize and where design decisions are taken based on

continuous collection and analysis of data. On top of this, and due to artificial

intelligence components being introduced to more and more software systems,

learning algorithms, automatically generated models and data is replacing code

and the development process is no longer only a manual effort but instead a

combination of human and automated processes. In this paper, and based on

multi-case study research in embedded systems and online companies, we see

that companies use different approaches to software development but that they

often take a requirement driven approach even if they would benefit from one of

the other two. Also, we see that picking the wrong approach results in a number

of problems such as e.g. inefficiency and waste of development efforts. To help

address these problems, we develop a holistic development framework and we

provide guidelines on how to improve effectiveness in development. The

contribution of this paper is two-fold. First, we identify that there are three

distinct approaches to software development; (1) Requirement driven

development, (2) Outcome/data driven development and (3) AI driven

development and we outline the typical problems that companies experience

when using the wrong approach for the wrong purpose. Second, we provide a

holistic framework with guidelines for when to use what approach to software

development.

Keywords: Requirement driven development, outcome/data driven

development, AI driven development, holistic development framework.

1 Introduction

Today’s software-intensive business is in the midst of profound changes in relation to

development of software systems. With rapid pace, and across industry domains,

SiBW 2018 177

sophisticated technologies for data collection and analysis are implemented to provide

developers with real-time input on how the systems they develop perform in the field.

Also, this data helps developers understand what functionality is used by customers and

it allows product managers to confirm whether feature prioritizations were accurate [1],

[2], [3], [4]. With automated practices for data collection and analysis, queries can be

processed frequently to provide software developers and managers with rapid feedback

and as a result, continuous improvements can be made to the systems. This reflects an

interesting shift in that traditional requirement driven development practices that have

been the de fault approach for decades [5], are being complemented by data driven

development practices where teams use data to continuously improve and optimize the

system to a certain outcome [4], [6]. As reported in previous research, the challenges

with data driven development are numerous [7], but we can already now see that

companies that are adept at acquiring, processing and leveraging data become more

profitable as decision-making and prioritization based on accurate data from the filed

can have a profound impact on annual revenue [4], [8].

Fueled by the increasing availability and access to data, artificial intelligence (AI)

and technologies such as e.g. machine learning and deep learning are rapidly adopted

in a variety of domains [9]. Although these methods and techniques have been in use

for decades, recent years show an increasing use of these in industry with companies

such as e.g. Google, Apple and Facebook leading the way but with software-intensive

companies in the financial, the medical and the manufacturing domain as fast adopters.

For these companies, and for any company with massive amounts of data, deep learning

techniques are becoming a necessity and artificial intelligence components are rapidly

complementing the traditional software components in a software system.

However, despite the rapid growth of data and the emergence of complementary

approaches to software development, most companies have a strong tradition in

requirement driven development. In this approach, system requirements are specified

in the early stages of development, and although more agile requirements engineering

practices are increasingly applied [10], the approach is characterized by a waterfall style

of development that works well for systems where requirements are well understood

and where revenue is based on delivering a complete product rather than continuous

updates of software.

In our research, we see that companies use different approaches to software

development but that there are a number of problems associated with selecting the most

suitable approach. First, companies with a strong tradition in requirement driven

development often take this approach even if they would benefit from an alternative

approach. Second, proponents of outcome/data and AI driven development approaches

tend to neglect other approaches and instead argue for their approach being the only

right one. Third, picking the wrong approach for the wrong purpose results in a number

of problems such as e.g. inefficiency and waste of development efforts. In this paper,

and based on multi-case study research in companies in the embedded systems and in

the online domain, we develop a holistic development framework including three

distinct development approaches and we provide guidelines for how to improve

effectiveness in development by selecting the optimal one.

The contribution of this paper is two-fold. First, we identify that there are three

distinct approaches to software development; (1) Requirement driven development, (2)

Outcome/data driven development and (3) AI driven development and we outline the

SiBW 2018 178

typical problems that companies experience when using the wrong approach for the

wrong purpose. Second, we provide a framework with guidelines for when to use what

approach to software development.

The paper is organized as follows. In section 2, we detail the background of our

research. In section 3, we describe the research method and the case companies

involved in our research. In section 4, we report on the software development

approaches in the case companies and we summarize our empirical findings. In section

5, we first identify three distinct development approaches and outline the key problems

companies experience when picking the wrong approach for the wrong purpose.

Second, we provide guidelines for when to use what approach. In section 6, we

conclude the paper.

2 Background

Although the saying that things keep getting faster might sound a little worn-out, the

fact is that the software business of today is experiencing bigger, and more rapid,

transformations than ever before. The driving force of this is the increasing

digitalization of industry that is disrupting companies and society in large to an extent

that we have only seen the early beginnings of. As defined by Gartner [11],

digitalization is …” the use of digital technologies to change a business model and

provide new revenue and value-producing opportunities; it is the process of moving to

a digital business”. To survive this rapid change, companies need new capabilities such

as e.g. ‘speed’ in terms of continuous deployment of software functionality. This allows

for continuous collection of customer and product data to use as the basis for

determining customer value of new products and services. Moreover, companies need

‘data’ to allow for artificial intelligence technologies such as e.g. machine learning and

deep learning solutions to decrease the time it takes to manually shift through vast

amounts of data and to have systems run automatic experiments to help identify,

improve and even predict customer value. Finally, access and transparency to data

allows for ‘empowerment’ and autonomy of teams that is critical for any company in

order to advance and accelerate team performance and impact [12].

Interestingly, the transformations we see as a result of digitalization have an

enormous impact not only on the products and the services that companies produce but

also on the ways in which these products and services are produced, i.e. the

development approaches themselves. As a result of digitalization and connectivity of

products, the traditional requirements engineering process that has been the primary

approach for software development for decades is being complemented with other

approaches in which continuous use of data, rather than specification of requirements,

informs development teams and software systems. As well-known to most software

businesses, requirements engineering includes the identification of requirements and

the modeling of these in order to develop an agreed upon understanding of what a future

software system will look like in order to provide value to the customer and there exist

a wide range of techniques to help the development team ensure that the requirements

are complete [5]. As recognized in previous research, the goal of the requirements

engineering process is to identify what functionality to build before development starts

SiBW 2018 179

in order to avoid, or at least reduce the risk, of costly rework [5]. The reasoning is that

mistakes that are revealed in the later stages of the development process are more

expensive to correct, and that this can be avoided by identifying a stable set of

requirements before development resources are allocated and system design and

implementation activities start. More recently, agile practices have been adopted to

improve flexibility and adaptability of the traditional requirements engineering process

and to help software-intensive companies cope with increasing complexity in their

software development processes [10].

However, with systems being connected to the Internet and technologies that

facilitate data collection and analysis, we see that companies are increasingly

complementing their traditional development approaches with other approaches. As

one of the most influential trends in software industry, continuous deployment of

software is challenging traditional ways-of-working in that it by-passes the notion of

early requirements specification. Continuous deployment is a software engineering

practice in which incremental software updates and improvements are developed, tested

and deployed to the production environment on a continuous basis and in an automated

fashion [13]. In this way, customer preferences and needs can be continuously

collected, analyzed and deployed and rather than the traditional view of a system being

finalized when delivered to customers continuous deployment allows for systems to

evolve and improve over time and with delivery to customers as the starting-point for

this. In online companies, continuous deployment of software and customer data from

A/B tests are the norm for evaluating ideas and understanding customer value and with

companies such as e.g. Amazon, eBay, Facebook, Google and Microsoft running

thousands of parallel experiments to evaluate and improve their sites at any point in

time [4, 13].

The trends described above reflect an interesting shift from a situation where

traditional requirements engineering practices inform development of new features,

towards a situation in which customer and product data is continuously collected and

where companies use this data to inform development during run-time [1], [2], [4].

Also, this leads to interesting opportunities in the field of artificial intelligence as

companies today possess such large data sets that manual processing of these become

impossible. Today, machine learning and deep learning technologies are emerging as

common components in what used to be traditional software systems and the

development, production and organizational challenges associated with this shift are

far from trivial [9]. Regardless, the software industry is in the midst of a transformation

and in order for companies to stay competitive they need to understand, adopt and

maximize the benefits from a number of different development approaches. As the

systems they develop become connected and will include data collection and processing

capabilities, artificial intelligence components and with continuous deployment of

functionality as the way to deliver to customers, the approaches they use to develop

these systems will advance too. With this in mind, we see the need for guidance on how

to complement traditional requirement driven approaches to software development with

other approaches as long-term success is seldom achieved by only substituting the

former with the later but instead complementing existing expertise with new technology

and skills.

SiBW 2018 180

3 Research method

The research reported in this paper builds on multi-case study research [14] in software-

intensive companies in two industrial domains. The first domain is the embedded

systems domain and here we studied companies in the context of Software Center (for

detailed information please visit https://www.software-center.se/). These companies

are large product development companies in e.g. the telecom, the automotive, the

security camera, the defense and the manufacturing domains. As a common

characteristic, the embedded systems companies are experiencing a challenging

transition from being traditional product development companies to delivering products

with associated services, and also purely digital services, and where connectivity and

data are essential components for innovation and new business models. All companies

in the embedded systems domain have significant experience and expertise in relation

to requirement driven development as this has been the primary development approach

for decades. Typically, the products and systems they develop are highly complex as

they involve both hardware and software. In addition, they often have strict rules and

regulations to follow as many of their products and systems operate in safety critical

environments where standards such as e.g. ISO 26262 defines design, implementation,

integration, verification, validation, and release. However, with increasingly connected

products and with digital services that generate vast amounts of data, the embedded

systems companies are starting to explore other development approaches that help them

maximize the benefits associated with data. Although in complex and restricted

environments, there are a number of emerging business opportunities and streams of

revenue associated with data driven and digitalized services where traditional

requirements driven approaches do not capture the potential of rapid feedback cycles

and continuous deployment of software.

Over the years, our research collaboration with the Software Center companies has

been reported in a large number of publications, e.g. [1], [2], [4], [15], [16] where

additional details and careful company descriptions can be found. As reported in these

papers, the transition towards digital products and services results in a number of

challenges. As one of the most interesting ones, we see that the embedded systems

companies seek to complement their traditional and requirement driven development

approaches with other approaches in order to reap the benefits of the data they collect.

In this paper, and based on our previous research in the Software Center companies, we

explore the transition they are in and how the different development approaches they

use complement each other.

The second domain is the online domain and here we studied companies developing

online games, online payment services, media streaming services, travel and

accommodation services, online search services and tools for developing artificial

neural networks and adaptive systems. These companies are pure Software-as-a-

Service companies and with revenue based on license fees, transaction fees and the

digital products and services they produce. They continuously add software

functionality to their products and they collect and use data as a basis for product

development and improvements. In similar to the embedded systems companies, the

online companies have access to large amounts of data and they are exploring different

development approaches in order to maximize the benefits of this data. In contrast to

the embedded systems companies, the online companies have less of a legacy in terms

SiBW 2018 181

of requirement driven development. Even if this approach exists also here, they

typically use data as the basis for development with teams receiving a quantitative

target to realize and are asked to experiment with different solutions to improve a

certain metric. In addition, some companies [e.g. …] use artificial intelligence and deep

learning technologies as part of development in order to automate tasks and improve

speed in problem-solving.

Our research collaboration with the online companies has been reported in a number

of publications, e.g. [1], [4], [15], [16] and as reported in these papers, we see that data

driven development practices including A/B testing and controlled feature experiments

are well-established practices where collection and analysis of data works as the basis

for decision-making and feature prioritization. In this paper, and based on our previous

research in online companies, we explore the different development approaches they

use and how these complement each other. In particular, we recognize how

development approaches involving artificial intelligence and technologies such as e.g.

machine learning and deep learning are emerging as critical components in many of the

software systems they produce.

In total, our research collaborations with the different companies in these two

domains cover a time period of more than seven years (2011 – 2018). The collaboration

with the embedded systems companies has been an on-going engagement since 2011,

and in relation to a number of different topics such as e.g. agile transformation,

development feedback cycles, data driven development and value modeling of software

features. The specific work on data collection and analysis, and how data can help

improve software development, was initiated in 2015 and is on-going. The

collaboration with the online companies was initiated in 2015 and is on-going. In all

companies, and throughout this period, we have run frequent meetings, interview

sessions and workshops involving project managers, product managers, product

owners, software developers, software and system architects, data scientists, data

analysts and a number of agile team coaches and scrum masters. Meetings are typically

scheduled for one hour, workshop sessions for two – three hours and interviews for one

hour. The empirical data we build on consists of hundreds of pages of interview

transcripts, as many meeting and workshop notes, notes from informal meetings,

thousands of e-mails and frequent telephone conversations. Throughout our research,

we adopted an interpretive approach to data analysis with the intention to identify

recurring elements and concepts in the transcribed interview protocols [17].

In this paper, we build on our previous findings from the embedded systems and

from the online companies when exploring the different development approaches they

use. In particular, we are interested in exploring how the development approaches they

have traditionally been using are being complemented with other approaches.

4 Case study findings

In this section, and based on our previous research in embedded systems and online

companies, we summarize our empirical findings in relation to existing and emerging

approaches to software development. With selected examples from the two domains,

we present the current state as well as the transition that the case companies are

SiBW 2018 182

experiencing with regards to how to develop software products and services. In Table

1, we provide a summary where we generalize the characteristics of the development

approaches in the two domains. It should be noted that the summary does not reflect

details and deviations but rather it captures the dominant characteristics of each domain.

4.1 Software development approaches: The embedded systems domain

The embedded systems companies are in the midst of a challenging transition where

the products they develop are rapidly becoming digitalized and where connectivity is

key for future innovation and revenue. In this fast-changing environment, the hardware

dependencies make development complex as the feedback cycles for hardware are slow

while the software cycles are rapid. In most of the companies, the traditional and

waterfall approach to development is applied in large parts of the organization while

agile practices and methods such as e.g. Scrum are well-established in other parts. It

should be noted that many of these companies offer a broad product portfolio which

implies that the competence and expertise cover the development and delivery of

physical products based on hardware components as well as digital services based on

software components. To manage such a disparate product portfolio, the embedded

systems companies apply a wide range of development methods and they need to

constantly adopt new skills and ways-of-working. Still, and as the most common

development approach, requirement driven development characterize both the mind-

set and the organizational set-up in these companies. As a common practice, teams

receive a requirements specification from product management, and the task for the

team is to deliver according to specification. Even if many companies apply agile

practices today, they have a long-standing and strong culture where requirements

dictate development and where decisions and prioritizations are made based on

previous expertise and experience. Typically, qualitative approaches are used to learn

about customers with interviews, prototypes and observations being common

techniques for data collection. Also, and in line with this culture, requirements are

agreed upon in the early stages of development and with sudden changes being a costly

disruptor and viewed as something to avoid.

However, and co-existing with the requirement driven culture, the embedded

systems companies have been collecting data from their products well before they

became connected as many of them are today. For example, the automotive companies

started collecting diagnostics data from vehicles already in the early 90’s to use as the

basis for maintenance whenever a truck or a car was taken to a garage for service. More

recently, and as a result of vehicles becoming connected to the Internet and with

practices such as continuous deployment in place, car manufacturers can push software

updates to the vehicle on a continuous basis without taking the vehicle out of traffic.

This allows for preventive maintenance and has become key to prolong the lifetime of

a vehicle and avoid costly repairs. Also, effective use of data allows car manufacturers

to detect errors while the vehicle is running and before the customer is even aware of

them. In similar, telecom companies collect huge amounts of traffic and configuration

data as the basis for optimizing performance and operation of their systems as well as

for predictive maintenance and monitoring. Based on our research, we see that many of

the embedded systems companies are in the process of instrumenting their products to

increase and further improve data collection and analysis practices. Also, there are

SiBW 2018 183

examples of A/B testing initiatives where companies run experiments with customers

to determine whether version A or B of a software feature is the optimal and most

appreciated one [18]. In all the companies we studied, the collection and increasing use

of data has started to affect the traditional role of product management. With an

increasing flow of customer and product data, development teams get a new source

from which they learn about the products they develop. In similar, product management

get an opportunity to use this data for understanding what adds value to customers. In

previous work [2], we report how traditional roles such as e.g. product management

change as new roles such as e.g. data scientists emerge. In this research, we see that as

companies advance in extracting value from the data they collect, this data will become

an effective means for decision-making, as well as work as a basis for product

improvements and innovations.

Based on our most recent interactions with the embedded systems companies, we

see an emerging interest in artificial intelligence and associated technologies. With

connected systems and with large data sets available, new opportunities arise in terms

of how to manage, process and utilize this data. For many of the companies, automated

practices for collection and analysis of data are already in place as continuous

integration and deployment are becoming critical components of their software

development approaches. Still, however, supporting infrastructures for increasingly big

volumes of data that can handle complexity in terms of variety and velocity [9] are rare

and something that would be needed for effective use of solutions such as e.g. deep

learning. In our experience, and based on current practices in the case companies, real-

time processing of data and artificial intelligence components for supporting this will

have a significant impact on future business opportunities as well as for the way in

which these companies develop software.

4.2 Software development approaches: The online domain

In contrast to the embedded systems companies, the online companies are less frequent

users of requirement driven practices. Although they exist, they don’t serve their

purpose as the products and systems the online companies develop are inherently

different in characteristics and therefore, require other development approaches.

Instead, practices such as continuous integration and deployment are fully in place and

with products being digital there are no hardware dependencies that slow down the

development cycle. This reduces complexity and increases speed and in the majority of

the companies, new software functionality is released on a daily or weekly basis.

Instead of requirements, the online companies use data collected from their products as

the basis for understanding customer needs and preferences. In our experience, most of

the online companies have instrumented their products in order to collect relevant data

and they have software tools that help them analyze this data. As the basis for data

collection, they run A/B tests in which hypotheses on what adds customer value are

validated. A/B tests are experiments where two versions of software functionality are

compared to determine which one performs the better in relation to predefined criteria

such as e.g. conversion rate, click rate or time to perform a certain task [4]. To collect

relevant data, users’ interaction with the system is instrumented and data on e.g. page

views, clicks etc., is collected. In this way, the online companies monitor click-through

rates, number of sessions per user, revenue per user and other metrics and use statistical

SiBW 2018 184

analysis to determine which variant performs better for a given conversion target [8],

[15], [19]. In some of the companies, hundreds of experiments are run in parallel at any

point in time and a large number of metrics are used to track product performance and

user behaviors. With this data available, the online companies have the opportunity to

respond fast and base decisions and prioritizations on data rather than on previous

experience and expert opinions in the company. Currently, A/B testing is the dominant

technique for optimizing performance, validating new concepts and test new ideas.

Despite the many advantages with using data as the basis for development, the online

companies experience challenges with this approach just like the embedded systems

companies experience challenges with their requirements driven practices. As reported

in our previous research [4], [15], [16] to scale the impact of experiments, to identify

and agree on key metrics to optimize for and to find effective mechanisms for

evaluating the success of an experiment are difficulties that the online companies face.

Also, and as the volume of the data sets increases, there is the need to advance the

storage and processing capabilities as well as adopt mechanisms that manage variety

and velocity of data.

In our most recent research, we have had the opportunity to learn about some of the

emerging trends in these companies and especially about their rapid adoption of

artificial intelligence and deep learning solutions. These technologies enable radical

improvements in the development cycle by increasing the effectiveness of development

and by reducing development time of novel functionality. In one of the case companies

[9], deep learning components are developed to provide companies in a variety of

domains (e.g. real estate, bookkeeping, weather forecasting etc.) with a platform and

with tools for processing, modelling and recognize and predict patterns in large data

sets. However, and as recognized in [9], [20], there are no systematic and repeatable

methods for creating, evolving and maintaining software systems using these

technologies and although successful instantiations exist there are a number of

challenges to solve before online companies, as well as embedded systems companies,

can fully benefit from artificial intelligence as part of their daily development practices.

Table 1. Generalization of characteristics of the current software development approaches in the

two domains.

Characteristic Embedded Systems Domain Online Domain

Development cycle Long (project based) Short (sprint based)

Requirements cycle Project/sprint Sprint/continuous

Quality assurance cycle Discontinuous Continuous

Release frequency Monthly/yearly Daily/weekly

Decision-making Expert driven Data driven

Value creation Infrequent (product/system) Frequent

(feature/functionality)

Value assessment Internal validation External validation

SiBW 2018 185

5 Towards a holistic development framework

In this paper, we explore the transition that companies in the embedded systems and in

the online domain are experiencing due to digitalization of products and services. Based

on our previous research in a large number of companies, we see that companies are

complementing their traditional development approaches with other approaches and

that this requires a careful understanding of when to use what approach. Below, we

identify three distinct development approaches that we see exist in the companies we

studied. We summarize the approaches in Table 2. Furthermore, and as an inductively

derived model from generalizing our case study findings, we provide a holistic

development framework (Figure 1) with guidelines for when to use what approach to

software development.

5.1 Three software development approaches

Based on our case study research, we identify that companies use three different

approaches to software development. First, they use a requirement driven development

approach where software is built to specification and where product management is

responsible for collecting and specifying requirements as input for the development

teams. As can be seen in the empirical examples, this development approach is

predominantly used when the new features or new functionality are well understood

and defined and where business revenue is not based on frequent releases of new

functionality. Especially in the embedded systems companies, there is a long and well-

established practice of developing software systems based on requirements. In all these

companies, requirements are collected, specified and carefully documented as the main

input for development teams and as the mechanism to confirm that a system is

developed and delivered according to customer preferences and needs [5], [10]. Over

the years, and as experienced in our case companies, a number of limitations have been

recognized in relation to the requirement driven development approach with the

assumption that customer requirements can be identified before development starts as

the most questioned one. Also, techniques and tools for eliciting customer requirements

are often insufficient as these tend to focus on what customers say they want rather than

what they do in practice which causes a situation in which requirements that can be

made explicit are the only ones that can be captured while the more implicit ones remain

invisible. Finally, the companies we studied confirm that with techniques such as e.g.

brainstorming, interviews, focus groups, observations and prototyping, the amount of

data that is collected is relatively small and primarily qualitative in nature which makes

it difficult to generalize and identify patterns of behaviors of a large customer group.

However, the requirement driven development approach is well suited for situations

in which features and functionality are well-understood and where there is a long-term

agreement between the customer and the development organization. Typically, this

approach applies for products and services that are intended to last over time and where

there is less frequent change imposed on the system. When applied in fast changing

environments where customer requirements fluctuate, the requirement driven

development approach should be avoided as it falls short on managing frequent

iterations and short development cycles.

SiBW 2018 186

The second approach companies use is the outcome/data driven development

approach where development teams receive a quantitative target, i.e. an outcome, to

realize and are asked to experiment with different solutions to improve the metric. This

development approach is predominantly used for development are new features that are

used frequently by customers, and for innovation efforts when there is uncertainty on

how to realize a new feature. As can be seen in the empirical examples, this approach

is the dominant approach in the online companies where development teams are

assigned a certain metric, e.g. conversion rate, and are responsible for improving this

metric. To do so, a team typically runs A/B tests with selected customers to identify

what version of a website that improves the metric and that moves the needle in the

direction set by the business. The decision is based on data that is collected during the

experiment and the approach differs from the requirement driven development

approach in that continuous collection and analysis of customer and product data

informs development rather than requirements specified in the early stages of

development. Also, while the requirement driven approach is characterized by smaller

amounts of qualitative data as the basis for decision-making, the outcome/data driven

approach uses large and quantitative data sets collected at run-time and by

instrumenting the code to monitor specific metrics. In our research, we see example of

this approach also in the embedded domain where experimentation with different

software solutions are becoming increasingly important to determine and validate

customer value [1], [2], [21]. The companies we studied report on a number of

challenges involved in outcome/data driven development. Often, these relate to the

challenge with accumulating and scaling the impact of experiments [4]. In the

companies we studied, experiments support smaller improvements of features rather

than having an impact on high-level business decisions such as larger re-designs, new

product development or innovation initiatives and impact of an experiment is limited.

In combination with poor evaluation criteria, the trustworthiness of the experiment

might be low. Still, the outcome/data driven development approach is well suited for

situations where there is a need to test different hypotheses and where the solution to a

problem is unclear. Also, the approach is often applied in innovation efforts as there is

the need to test and trial with customers in order to identify the potential value of a new

feature, a new product or a new service.

The third approach companies use, and that is rapidly emerging as a new approach

to software development, is the AI driven development approach where the company

has a large data set available and uses artificial intelligence techniques such as machine

learning and deep learning to create components that act based on input data and that

learn from previous actions. In the case companies we studied, AI is perceived as a very

powerful approach with the potential to take on far more complex assignments humans

by augmenting our skills, talents and abilities. Examples of this type of development

include e.g. object recognition is autonomous cars as well as speech recognition in

modern user interfaces. As another example, one of the case companies refers to the

use of AI for predicting business sales by pulling data from sales tools together and by

using patterns found in this historical and rich data set. Typically, this approach applies

for product and service development in which a company has access to a large data set

with very many data points and where minimizing prediction errors is critical. Also,

and as recognized in the case companies, it is an approach well suited for development

situations in which there are too many potential alternatives that manual processing of

SiBW 2018 187

these would be either too difficult, too time consuming or too expensive. As the AI

approach is fundamentally different from traditional software development in that

much of the responsibility for finding a solution to a problem is left to the computer,

problems arise when an organization e.g. lack mechanisms and infrastructures for

running experiments, has limited resources for large and complex data sets and when

the organizational culture, skills and interests do not align with the cross-functional

collaboration that is critical for building a production-ready AI system. As recognized

in [9], there are additional challenges related to development, production and

organization and as this development approach is still in its infancy in many of the

companies we studied we foresee significant work in the area of defining systematic

and repeatable methods for creating, evolving and maintaining systems using AI

techniques.

Table 2. Summary of the current software development approaches that are used in the two

domains.

Development approach Definition

Requirement driven

development

Software is built to specification. This development

approach is predominantly used when new features or

functionality are well understood and defined.

Outcome/data driven

development

Development teams receive a quantitative target to realize

and are asked to experiment with different solutions to

improve the metric. Examples of this development approach

are new features (used frequently by customers) and

innovation efforts.

AI driven development A company has a large data set available and use artificial

intelligence techniques such as machine learning and deep

learning to create components that act based on input data

and that learn from previous actions. Examples of this

development approach include e.g. object recognition in

autonomous cars and speech recognition in modern user

interfaces.

5.2 Holistic development framework

As reported above, and due to the increasing access and availability to data, companies

are starting to complement their requirement driven development approaches with other

approaches. With the adoption of agile development practices [22], [23] the companies

we studied have been able to shorten their internal development cycles and, in many

cases, integrate development with product operation. In these companies, it is possible

to iteratively build new functionality and continuously measure to what extent this

functionality is delivering on the expected outcomes. In addition, recent developments

in artificial intelligence allow for radical improvements in the development cycle in

terms of effectiveness and exploration of novel functionality.

However, and as recognized in this research, the integration of these development

approaches is not well understood and there exist little guidance for when to select one

approach over another. In addition, and as future systems will include both traditional

software components as well as artificial intelligence components, the combination of

SiBW 2018 188

approaches will be critical as most software organization will have to manage not only

one approach but all three.

To help address this challenge, and to provide companies with a framework on when

to select what approach, we present a holistic development framework (Figure 1).

Based on a generalization of our case study findings, we outline the three development

approaches and we identify the purposes for which each approach is optimal. As can

be seen in this framework, the (1) requirement driven development approach is well

suited for regulatory features, for competitor parity features and for commodity

features, the (2) outcome/data driven development approach is well suited for value

hypotheses, development of new “flow” features, i.e. features used frequently by

customers and for innovation and the (3) AI driven development approach is well suited

when aiming to minimize prediction errors, when there are many data points and when

there is a combinatorial explosion of alternatives.

The framework pictures an overall development environment where the system in

operation consists of traditional software components as well as AI components, and

where continuous deployment practices allow for behavior data to be continuously

collected and used as the basis for development. In this environment, and with systems

involving different components, the key challenge is to effectively select, combine and

deploy different development approaches. Although successful instantiations exist in

research and industry, there are no systematic, repeatable methods for creating,

evolving and maintaining systems using these techniques.

SiBW 2018 189

Figure 1. The ‘Holistic DevOps Framework’ including the three approaches to software

development.

6 Conclusions

Today’s software industry is in the midst of dramatic transformations with

digitalization challenging existing ways-of-working. With increasingly connected and

intelligent products, and with availability and access to massive amounts of data, the

traditional requirement driven approach to software development is being

complemented with other approaches that reflect these new opportunities and

technologies. However, in our research we see that companies often take a requirement

driven approach even if they would benefit from one of the other two. Also, we see that

picking the wrong approach results in a number of problems such as e.g. inefficiency

and waste of development efforts.

In this paper, and based on multi-case study research in embedded systems and

online companies, we identify three distinct approaches to software development: (1)

Requirement driven development, (2) Outcome/data driven development and (3) AI

driven development and we provide a framework with guidelines for when to use what

approach to help minimize the problems associated with using the wrong approach for

the wrong purpose. With this framework, we aim to help companies effectively select,

combine and deploy different development approaches in order to manage the digital

transformation they are in.

In our future work, we intend to further validate this framework and explore how

software-intensive companies in different domains can benefit from complementary

development approaches and how successful selection of approaches can become key

for competitive advantage.

Requirements driven
development
- Regulatory features
- Competitor parity features
- Commodity features

Outcome/data driven
development
- Value hypothesis
- New ”flow” features
- Innovation

AI driven development
- Minimize prediction errors
- Many points in data set
- Combinatorial explosion of

alternatives

continuous
deployment

behavior
data

System in operation

AI component

SW component

continuous deployment

behavior data

Holistic DevOps Framework

SiBW 2018 190

References

1. Olsson, H.H., and Bosch, J. (2017). Towards Evidence-Based Development: Learnings

from Embedded Systems, Online Games and Internet of Things. IEEE Software, October

2017, Issue 99.

2. Olsson, H.H., and Bosch, J. From Opinions to Data-Driven Software R&D: A Multi-Case

Study on How to Close The ‘Open Loop’ Problem. In Proceedings of EUROMICRO,

Software Engineering and Advanced Applications (SEAA), August 27-29, Verona, Italy,

2014.

3. Bosch, J. 2012. Building Products as Innovations Experiment Systems. In Proceedings of

3rd International Conference on Software Business, June 18-20, Cambridge,

Massachusetts.

4. Fabijan, A., Dmitriev, P., Olsson, H. H., and Bosch J. (2017). The Evolution of Continuous

Experimentation in Software Product Development: From Data to a Data-driven

Organization at Scale. In Proceedings of the 39th International Conference on Software

Engineering (ICSE), May 20 – 28th, Buenos Aires, Argentina.

5. Pohl, K. (2010). Requirements engineering: fundamentals, principles, and techniques.

Springer Publishing Company, Incorporated.

6. Bosch, J. (2016) Future Trends in Software Engineering. IEEE Software.

7. Dmitriev, P., Frasca, B., Gupta, S., Kohavi, R., and Vaz, G. (2016). Pitfalls of Long-Term

Online Controlled Experiments. In Proceedings of IEEE Conference on Big Data,

December 5 – 8, Washington.

8. Kohavi, R., and Longbotham, R. (2015). Online Controlled Experiments and A/B Tests, In

Encyclopedia of Machine Learning and Data Mining, pp. 1–11.

9. Arpteg, A, Brinne, B, Crncovic-Friis, L, Bosch (2018). Software Engineering Challenges of

Deep Learning, In Proceedings of the 44th Software Engineering and Advanced Applications

Conference (SEAA), August 29 – 31, Prague, Czech Republic.

10. Paetch, F., Eberlein, A., and Maurer, F. (2003). Requirements Engineering and Agile

Software Development. In Proceedings of the 12th IEEE International Workshop on

Enabling Technologies, p. 307-313.

11. https://www.gartner.com/it-glossary/digitalization (Accessed October 5th, 2018).

12. Bosch, J. (2016). Speed, Data, and Ecosystems: Excelling in a Software-Driven World.

Chapman & Hall/CRC Innovations in Software Engineering and Software Development

Series. CRC Press.

13. Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., and Stumm, M. (2016).

Continuous deployment at Facebook and OANDA. In Proceedings of the 38th International

Conference on Software Engineering Companion, pp. 21-30.

14. Maxwell J. A. 2005. Qualitative Research Design: An interactive approach, 2nd Ed.

Thousands Oaks, CA: SAGE Publications.

15. Fabijan, A., Dmitriev, P., Olsson, H.H and Bosch, J (2018). Effective Online Experiment

Analysis at Large Scale. In Proceedings of the 44rd Euromicro Conference on Software

Engineering and Advanced Application, SEAA'18, Prague, Czech Republic, 2018.

16. Mattos, I. D, Dmitriev, P., Fabijan, A., Bosch, J and Olsson, H.H (2018). Beyond Ad-Hoc

Experiments: A Framework for the Online Controlled Experimentation Process. In

Proceedings of the 19th International Conference on Product-Focused Software Process

Improvement, (PROFES). November 28 – 30, Wolfsburg, Germany.

17. Walsham, G. (1995). Interpretive case studies in IS research: Nature and method, European

Journal of Information Systems, vol. 4, pp. 74-81.

18. Bosch, J., and Eklund, U. (2012). Eternal embedded software: Towards innovation

experiment systems, In Leveraging Applications of Formal Methods, Verification and

Validation. Technologies for Mastering Change, p. 19-31, Springer; Berlin, Heidelberg.

SiBW 2018 191

19. M. Kim, T. Zimmermann, R. DeLine, and A. Begel, (2015). The Emerging Role of Data

Scientists on Software Development Teams, No. MSR-TR-2015–30, pp. 1–10

20. Submitted paper…

21. Olsson H. H., and Bosch J. 2013. Towards Data-Driven Product Development: A Multiple

Case Study on Post-Deployment Data Usage in Software-Intensive Embedded Systems. In

Proceedings of the Lean Enterprise Software and Systems Conference (LESS), December

1-4, 2013, Galway, Ireland.

22. Highsmith, J., and Cockburn, A. (2001). Agile Software Development: The business of

innovation, Software Management, September, pp. 120-122.

23. Larman, C. (2004). Agile and Iterative Development: A Manager's Guide. Addison-Wesley.

SiBW 2018 192

