CEUR-WS.org/Vol-2307/paper2.pdf

Logic as a Path to Enlightenment
(Work in Progress Report)

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner@risc.jku.at

Extended Abstract

A core principle of enlightenment is to reject claims that are based on dogma respectively on an appeal to
authority (the medieval ipse dizit argument: “he (Aristotle) said so”). On the contrary, enlightenment accepts
as sources of truth only empirical evidence (observation) and well-formed arguments (reasoning), both of which
are freely accessible to every human being. This principle is the source of modernity (and the main difference
to the antique/medieval world) and must therefore be in the focus of education of every new generation to be
enlightened. This is also of particular importance, because the principle (although it should be self-evident) must
be perpetually defended against attacks from many parties (who explicitly or implicitly represent pre- or even
anti-modern views). However, it is actually frequently neglected in education, even in “purely rational” disciplines
as mathematics or computer science, where (more often than not) students are confronted with propositions,
rules, methods, and algorithms whose validity is only justified by ipse dixit: “he (the teacher) said so”.

Logic is the science of reasoning and should be therefore considered as a “path to enlightenment”, i.e., as a
necessary basis for a rational discourse. In particular, the language of predicate logic (introduced in the 19th
century by Frege in his “Begriffsschrift”) is rich enough to give a precise meaning, not only to most of mathematics,
but also to a large part of natural language. This makes it possible to describe complex realities in a precise way
as formal models, state propositions in such models as formal sentences, and not only derive a valid argument
proving the truth of a proposition, but also judge whether such an argument is indeed valid or not. Teaching the
effective use of the language of logic as a practical working language for modeling and reasoning about realities is
therefore a valuable endeavor. Unfortunately, not many curricula recognize the importance of this goal, partially
also because logic is too often presented in a classical “paper and pencil” style as a dry and purely theoretical
topic; consequently, this discipline (if being represented at all in a curriculum) is often confined to some “esoteric
corner” with little or no relationship to other subjects.

LOGTECHEDU

However, logic has a “trump in the backhand”: by essential advances in computational logic (automated reason-
ing, model checking, satisfiability solving), a considerable part of it can be nowadays well supported (partially
completely automated) by computer software. The (well considered and carefully prepared) application of such
software may help to demonstrate the practical usefulness of logic and thus increase the motivation of students
to study this subject and its relationships to other ones. Most importantly, it allows students to actively engage
with the material by solving concrete problems; ultimately, if the software provides adequate feedback, students
may be enabled to train themselves in the use of logic as a working tool.

The seed project “LOGTECHEDU: Logic Technology for Computer Science Education” of the Linz Institute
of Technology (LIT) at the Johannes Kepler University Linz [LOGI8| aims to foster this development in the
context of computer science education (with an initial focus on academic undergraduate education that may

Copyright (© by the paper’s authors. Copying permitted for private and academic purposes.

In: O. Hasan, W. Neuper, Z. Kovacs, W. Schreiner (eds.): Proceedings of the Workshop CME-EI: Computer Mathematics in
Education - Enlightenment or Incantation, Hagenberg, Austria, 17-Aug-2018, published at http://ceur-ws.org

Wolfgang.Schreiner@risc.jku.at

RISC Algorithm Language (RISCAL) - o X

File Edit Help

File: /usr2/schreine/repositories/RISCAL/trunk/spec/ged.txt Analysis
(I = >0 e]

L/ o = . =
2 // Computing the greatest common divisor by the Euclidean Algorithm Translation: [+ Nondeterminism Default Value: g Other Values: |=|
S R e R
4 Execution: [Silent [Trace Inputs: Per Mille: Branches:
sval N ;
G type nat = M[N]; . — X — i
7 Parallelism: || Multi-Threaded Threads: 4 [_| Distributed Servers: ||

gpred divides(m:nat,n:nat) = dp:nat. m'p = n;

16 fun gcd(m:nat,n:nat): nat Operation: gedp(Z,7)
11 requires m# 8 v n # 8; —

12= choose result:nat with

13 divides(result,m) a divides({result,n) a RISC Algorithm Language 2.0 (June 18, 20818)

14 -dr:nat. divides(r,m) A divides(r,n) A r > result; http://www.risc.jku.at/research/formal/software/RISCAL

15 (C) 2016-, Research Institute for Symbolic Computation (RISC)
16val g:nat = gcd(N,N-1); This is free software distributed under the terms of the GNU GPL.
17 Execute "RISCAL -h" to see the available command line options.

12 theorem ged@(m:nat) = m#0 = gcd(m,@) = m; oo

19 theorem gcdl{m:nat,n:nat) = m # @ v n # 8 = gcd(m,n) = gcd(n,m); Reading file /usr2/schreine/repositories/RISCAL/trunk/spec/gcd. txt
20 theorem gcd2{m:nat,n:nat) = 1 = n A n=m= gcd(m,n) = gcd(m%n,n); Using N=28.
21 Computing the walue of g...
22proc ggdp(m:nat,n:nat): nat Type checking and translation completed.
23 requires m#0 Vv n#0; Executing gcdp(Z,Z) with all 441 inputs.
ensures result = gcd(m,n); Execution completed for ALL inputs (1813 ms, 448 checked, 1 inadmissible).

var a:nat = m;

var b:mat = n;

while a > @ A b > 0 do
invariant a # @ v b # 8;
invariant gecd(a,b) = ged(old a,old b);
decreases a+b;

if a > b then
a = a%b;
else
b = b%a;
H

return if a = 8 then b else a;

10

41 fun gedf(m:nat,n:nat): nat
42 requires m#0 v n=z0;

43 ensures result = ged(m,n);
44 __decreases m+n:

Figure 1: The RISCAL User Interface

later move “upwards and downwards” to graduate education and to high school education). For this purpose,
the project simultaneously pursues various research strands on

e Solver Guided Exercises,

e Teaching Solver Technology,

e Proof Assistants for Education (Theorema),

e Specification and Verification Systems for Education (RISCAL), and

e Logic across the Subjects in Primary, Secondary and Higher Education.

The ultimate goal of these strands is to pave the way to a form of self-directed learning where the role of the
teacher becomes that of an “enabler” that provides the necessary background knowledge and the basic skills to
allow students to “educate themselves” by the use of logic-based software for actively solving problems in the
form of (voluntary) quizzes, (mandatory) assignments, and possibly even (graded) exams. One of these strands
pursued by the author of this abstract is presented below in somewhat more detail.

RISCAL

The RISC Algorithm Language (RISCAL) |[RIS17,[Sch17] is a formal modeling language and associated software
system (see Figurefor its graphical user interface) that allows the formulation of mathematical models, theorems
that are supposed to hold in these models, and algorithms that are expected to solve particular problems in these
models, all of this in such a way that errors in models, theorems, and algorithms can be quickly detected in a
fully automatic way, before correctness proofs are attempted [Schi8]. This work is triggered by the observation
that most of the time in proofs (e.g., the proof of the correctness of an algorithm) is wasted in vain because
due to errors (in the algorithm’s specification, implementation, or meta-knowledge such as loop invariants) the
supposed theorem actually does not hold. However, from a failed proof attempt (usually performed with the

val N: N; type nat = N[N];

pred divides(m:nat,n:nat) < dp:nat. mp = n;
fun gcd(m:nat,n:nat): nat
requires m # 0 V n # 0;
= choose result:nat with
divides(result,m) A divides(result,n) A
—dr:nat. divides(r,m) A divides(r,n) A r > result;

theorem gcdO(m:nat) < m#0 = gcd(m,0) = m;
theorem gcdl(m:nat,n:nat) & m # 0 V n # 0 = gcd(m,n) = gecd(n,m);
theorem gcd2(m:nat,n:nat) < 1 < n A n < m = gcd(m,n) = gcd(m)n,n);

proc gcdp(m:nat,n:nat): nat
requires m#0 V n#0;
ensures result = gcd(m,n);
{
var a:nat := m; var b:nat := n;
while a > 0 A b > 0 do
invariant gcd(a,b) = gcd(old_a,old_b);
decreases atb;

{

if a > b then a := a)b; else b := bla;
}
return if a = 0 then b else a;

Figure 2: The Greatest Common Divisor and the Euclidean Algorithm

help of an interactive proof assistant) it is hard to see whether the failure is the result of an inadequate proof
strategy or of some error in the formal model; this substantially hampers the progress of learning the use of logic
for formal modeling and reasoning.

To overcome this problem, RISCAL is based on a restricted form of predicate logic that bounds the size of
models by (user-declared) parameters. For every set of concrete values assigned to these parameters, the resulting
model instance is finite; this allows to evaluate in that instance all functions and predicates, fully automatically
decide the truth of all propositions, and to check the correctness of all algorithms for all possible inputs.

As an example (included in the distribution as file gcd.txt, see Section 2 of [Schi7] how to run it), Figure
displays a RISCAL model that, in the domain nat of all natural numbers less than equal the model parameter N,
formulates the theory of greatest common divisors (a predicate divides, an implicitly defined function ged, and
three theorems gcd0, gedl, and ged?2); it also defines a procedure gedp that implements Euclid’s algorithm to
compute the greatest common divisor.

We can quickly check for N = 20 that e.g. theorem gcd?2 is valid

Executing gcd2(Z,Z) with all 441 inputs.
Execution completed for ALL inputs (256 ms, 441 checked, O inadmissible).

and that the procedure gcdp satisfies its specification:

Executing gcdp(Z,Z) with all 441 inputs.
Execution completed for ALL inputs (933 ms, 440 checked, 1 inadmissible).

If the theorem were not true or the algorithm would violate its specification or loop invariants, these errors would
be automatically reported.

Experience shows that errors in theorems and algorithms can be usually quickly detected in small model
instances; if such a falsification is not possible, theorems and algorithms are validated, i.e., our confidence in
their correctness is so much increased, that we have sufficient incentive to subsequently attempt their proof-based
verification for models of arbitrary size (with the help of a suitable proving assistant).

To aid the subsequent proof-based verification of the general correctness of algorithms in models of arbitrary
size, RISCAL also includes a verification condition generator that produces logical formulas whose validity implies

Tasks

Is result uniquely determined?
Verify specification preconditions
Does operation precondition hold?
Verify correctness of result
& |s result correct?
Verify iteration and recursion
% Does loop invariant initially hold?
% Does loop invariant initially hold?
% Does loop invariant initially hold?
s loop measure non-negative?
@ 1s loop invariant preserved?
3 1s loop invariant preserved?
@ 1s loop invariant preserved?
@ ls loop invariant preserved?
@15 loop invariant preserved?
@ ls loop invariant preserved?
% 1s loop measure decreased?
@ 1s loop measure decreased?
Verify implementation preconditions
% Does operation precondition hold?
% Does operation precondition hold?
% Does operation precondition hold?
% Does operation precondition hold?
% Does operation precondition hold?
% Does operation precondition hold?
% Does operation precondition hold?

% Does operation precondition hold?

Tasks

-

-

-

-

Is result uniquely determined?
Verify specification preconditions
Does operation precondition hold?
Verify correctness of result
Is result correct?
Verify iteration and recursion
Does loop invariant initially hold?
Does loop invariant initially hold?
Does loop invariant initially hold?
Is loop measure non-negative?
Is loop invariant preserved?
Is loop invariant preserved?
Is loop invariant preserved?
Is loop invariant preserved?
Is loop invariant preserved?
Is loop invariant preserved?
Is loop measure decreased?
Is loop measure decreased?
Verify implementation preconditions
Does operation precondition hold?
Does operation precondition hold?
Does operation precondition hold?
Does operation precondition hold?
Does operation precondition hold?
Does operation precondition hold?
Does operation precondition hold?

Does operation precondition hold?

Figure 3: Verification Conditions Before and After their Checking

the correctness of the algorithm; since these formulas are interpreted in the same finite model as the algorithm,
they can be checked within the RISCAL software (see Figure . If they pass the check, this gives evidence to
believe that they the algorithm annotations (loop invariants, etc.) are also sufficient to carry a correctness proof
for models of arbitrary size.

In the context of the LOGTECHEDU project, the goal of RISCAL is to develop a systematic catalog of
material where students can, in a step-by-step fashion, train their proficiency in the use of formal logic to model
realities, state propositions, and specify algorithms; we will elaborate a suitable collection of assignments where
the capabilities of the RISCAL software are utilized to give students suitable feedback in the case of errors. This
material shall cover selected areas of computer science, (discrete) mathematics, computer algebra, and logic;
example content has been (and currently is being) produced in the frame of some bachelor theses [SBF18].

In the mid-term, we plan to utilize this material in (own) courses such as “Logic”, “Formal Modeling”, and
“Formal Methods in Computer Science” reshaping the way how these courses are taught by shifting them towards
computer-supported self-directed learning. On the long term, we also hope to convince other lectures in areas
such as introductory courses on algorithms and software development; here the initial focus may be to enable
students to self-check the correctness of algorithms/programs with respect to given specifications; later the
focus may shift towards the formulation of own specifications. We hope to contribute in that way towards an
“enlightenment” of students which is based on rational thinking rather than on an uncritical belief in authorities.

Acknowledgments

Supported by the Johannes Kepler University, Linz Institute of Technology (LIT), project LOGTECHEDU, and
by the OEAD WTZ project SK 14/2018 SemTech.

References
[LOG18] JKU LIT Project LOGTECHEDU, May 2018. http://fmv.jku.at/logtechedu/.

[RIS17] The RISC Algorithm Language (RISCAL), March 2017. |https://www.risc.jku.at/research/formal/
software/RISCALL

[SBF18] Wolfgang Schreiner, Alexander Brunhuemer, and Christoph Fiirst. Teaching the Formalization of Math-
ematical Theories and Algorithms via the Automatic Checking of Finite Models. In Post-Proceedings
ThEdu’17, Theorem proving components for Educational software, volume 267 of EPTCS, pages 120-
139, 2018. |https://doi.org/10.4204/EPTCS.267.8.

[Sch17] Wolfgang Schreiner. The RISC Algorithm Language (RISCAL) — Tutorial and Reference Manual (Ver-
sion 1.0). Technical report, RISC, Johannes Kepler University, Linz, Austria, March 2017. Download
from [RIS17].

[Sch18] Wolfgang Schreiner. Validating Mathematical Theories and Algorithms with RISCAL. In F. Rabe,
W. Farmer, G. Passmore, and A. Youssef, editors, CICM 2018 — 11th Conference on Intelligent
Computer Mathematics, August 13-17, 2018, volume 11006 of Lecture Notes in Computer Sci-
ence/Lecture Notes in Artificial Intelligence, Hagenberg, Austria, 2018. Springer, Berlin. |https:
//doi.org/10.1007/978-3-319-96812-4 21l

http://fmv.jku.at/logtechedu/
https://www.risc.jku.at/research/formal/software/RISCAL
https://www.risc.jku.at/research/formal/software/RISCAL
https://doi.org/10.4204/EPTCS.267.8
https://doi.org/10.1007/978-3-319-96812-4_21
https://doi.org/10.1007/978-3-319-96812-4_21

