
On the Syntax and Semantics of CAP

Sebastian Gutsche
Department of Mathematics

University of Siegen
sebastian.gutsche@uni-siegen.de

Sebastian Posur
Department of Mathematics

University of Siegen
sebastian.posur@uni-siegen.de

Øystein Skartsæterhagen
Department of Mathematical Sciences

Norwegian University of Science and Technology
oystein.skartsaterhagen@ntnu.no

Abstract

The Cap project (Categories, Algorithms, Programming) is a frame-
work for implementing and computing with constructive categories. In
this paper we explain the syntax and semantics of Cap by means of
an example: the implementation of cokernels in the category of finitely
presented modules. Although this example is quite simple, it reveals
the necessary usage of dependent types for an appropriate specification
of categorical constructions as well as the requirement to model homo-
morphisms as setoids rather than sets in our constructive framework
for category theory.

1 Introduction
Category theory, a fundamental branch in mathematics, has two remarkable features that make it a valuable
asset for computer algebra. First, as a meta theory of mathematical contexts, it provides a highly abstract
and widely accepted language revealing links between seemingly different mathematical worlds. Second, despite
of their abstractness, categorical theorems and constructions are often inherently algorithmic: many proofs in
category theory claiming the existence of a mathematical object actually present a (sometimes hidden) way for
its construction. Making the constructive aspects of category theory accessible on the computer is the central
motivation of the on-going Cap project [GSP18] (the name Cap is an acronym for Categories, Algorithms,
Programming).

The Cap project is a collection of software packages for category theory implemented in the computer algebra
system GAP [GAP18]. Its purpose is to facilitate the implementation of concrete instances of categories, generic
categorical algorithms, and category constructors, i.e., operations that create new categories out of given input
categories. Cap’s core system provides templates for categories possessing or equipped with extra structure, e.g.,
direct products, addition for morphisms, kernels and cokernels, tensor products, et cetera. On the one hand,
these templates can be used to create instances of categories, for example the category of finite dimensional
vector spaces over a computable field k or the category of finitely presented modules over a computable ring R
(see [BLH11] for a definition of computable fields and rings). On the other hand, these templates provide the

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
In: O. Hasan, M. Pfeiffer, G. D. Reis (eds.): Proceedings of the Workshop Computer Algebra in the Age of Types, Hagenberg,
Austria, 17-Aug-2018, published at http://ceur-ws.org



syntax for implementing generic categorical algorithms, such as the computation of specific differentials on a
page of a spectral sequence in the context of an arbitrary abelian category.

The purpose of this paper is to explain the syntax and semantics of these templates by means of an example:
we look at the categorical construction of a cokernel in a model for the category of finitely presented modules over
a computable ring R. We will see that a convenient way to express the interdependencies in the specifications
of a cokernel can be conveniently addressed by the usage of dependent types (Section 2). Moreover, modeling
finitely presented modules in a constructive way will demonstrate the requirement to model homomorphisms as
setoids rather than sets (Section 3).

The development of Cap started in December 2013. So far, four Cap related software packages1 are distributed
via the current GAP release2, more packages still under development are available on the GitHub page3 of the
Cap project. Even more packages developed for Cap can be found on the GitHub page4 of the homalg-project
[hom17], these packages are usually marked with the suffix ForCAP. For a deeper discussion of Cap and its
functionalities we refer the reader to [Gut17, Pos17b].

2 Syntax
Cap supports lots of important notions of category theory, which we also call categorical constructions. From
a theoretical point of view, the specifications of a categorical construction may be expressed using dependent
types. As a simple set-theoretic model for dependent functions and types in this paper, we will use the following
definition.

Definition 2.1. Let A be a set and let pBaqaPA be an A-indexed family of sets. Then we denote the set of
all sections of the natural projection ZaPABa Ñ A by

ź

aPA

Ba :“ tσ : AÑ ZaPABa | σpaq P Bau.

An element σ P
ś

aPABa is called a dependent function of dependent type (or simply of type)
ś

aPABa.
As an example of a categorical construction and its specifications, we will discuss the notion of a cokernel. Note

that a cokernel can be defined in the context of a category enriched over abelian groups, i.e., its homomorphism
sets are abelian groups, and composition of morphisms distributes over addition.

Definition 2.2. Let A be a category enriched over abelian groups. Given objects A,B P A and a morphism
φ P HomApA,Bq, a cokernel of φ consists of the following data:

1. An object C P A.

2. A morphism π : B Ñ C such that π ˝ φ “ 0.

3. A dependent function u mapping any pair pT, τq consisting of an object T P A and a morphism τ : B Ñ T
such that τ ˝ φ “ 0 to a morphism upT, τq : C Ñ T which has to be uniquely determined by the property
τ “ upT, τq ˝ π.

The category A has cokernels if it comes equipped with a dependent function mapping any morphism φ P
HomApA,Bq for A,B P A to a cokernel pC, π, uq of φ.

Cap provides the following three primitives accessing the three components of the triple pC, π, uq for an
additive category A having cokernels:

1. CokernelObject :
HomApA,Bq Ñ ObjA : φ ÞÑ C.

1 These packages are:
• CAP (the core system)
• LinearAlgebraForCAP (an implementation of the category of finite dimensional vector spaces)
• ModulePresentationsForCAP (an implementation of the category of finitely presented modules)
• GeneralizedMorphismsForCAP (an implementation of additive relations in abelian categories)

2 Version 4.9.1, as of May 2018
3 https://github.com/homalg-project/CAP_project
4 https://github.com/homalg-project

https://github.com/homalg-project/CAP_project
https://github.com/homalg-project/CAP_project
https://github.com/homalg-project
https://github.com/homalg-project


2. CokernelProjection :
ź

φPHomApA,Bq

HomA pB,CokernelObjectpφqq : φ ÞÑ π.

3. CokernelColift :
ź

φPHomApA,Bq
τPtσPHomApB,T q|σ˝φ“0u

HomA pCokernelObjectpφq, T q : pφ, τq ÞÑ upT, τq.

We also wrote down the dependent types of these primitives for given objects A,B, T , in order to highlight their
interdependencies. For example, the dependent type of the primitive CokernelProjection tells us that given a
morphism φ : A Ñ B, the output CokernelProjectionpφq will be a morphism B Ñ CokernelObjectpφq, i.e., a
morphism with range depending on the primitive CokernelObject.

These three primitives suffice for building up other functionalities of the cokernel, e.g., its functoriality.
Example 2.3. Given a commutative diagram in A of the form

A B

A1 B1

D :“

α

α1
ν µ

the functoriality of the cokernel is given by the term

CokernelFunctorialpDq :“ CokernelColift
`

α,CokernelProjectionpα1q ˝ µ
˘

. (:)

A B

A1 B1

CokernelObjectpαq

CokernelObjectpα1q

α

α1
ν µ

CokernelProjectionpαq

CokernelProjectionpα1q

CokernelFunctorialpDq

The primitives for categorical constructions provided by Cap are powerful enough for a functorial implementa-
tion of a spectral sequence algorithm working in the context of an arbitrary abelian category. Such an algorithm
takes as arguments a morphism of (linearly) descending filtered cochain complexes F ‚A‚ Ñ F ‚B‚ and a triple
of integers pr, p, qq where r ě 0. The output is the pp, qq-th differential on the r-th page of the associated spectral
sequence connected in a commutative diagram of the form

F ‚A‚Epqr F ‚A‚Ep`r,q´pr´1q
r

F ‚B‚Epqr F ‚B‚Ep`r,q´pr´1q
r

B

B

induced by the functoriality of spectral sequences. To see how an implementation of such a high-level categorical
construction can be realized with Cap’s primitives see [Pos17b, Chapter 2].

3 Semantics
The purpose of Cap is to model categories. Classically, a set of objects ObjA and a set of morphisms HomApA,Bq
for all pairs A,B P ObjA are part of the data defining a (small) category A.

Cap models a slightly more general and computer-friendlier notion of a category: homomorphisms
HomApA,Bq are not only sets but setoids, i.e., a set equipped with an equivalence relation on it as an ex-
tra datum. The formal definition of this kind of category looks as follows:



Definition 3.1. A Cap category A consists of the following data:

1. A set ObjA of objects.

2. For every pair A,B P ObjA, a set HomApA,Bq of morphisms. If two morphisms α, β P HomApA,Bq are
equal as elements of this set, we say they are equal.

3. For every pair A,B P ObjA, an equivalence relation „A,B on HomApA,Bq. If α „A,B β for two morphisms
α, β P HomApA,Bq, we say they are congruent.

4. For every A P ObjA, an identity morphism idA P HomApA,Aq.

5. For every triple A,B,C P ObjA, a composition function

˝ : HomApB,Cq ˆHomApA,Bq Ñ HomApA,Cq

compatible with the equivalence relation, i.e., if α, α1 P HomApA,Bq, β, β1 P HomApB,Cq, α „A,B α1 and
β „B,C β1, then β ˝ α „A,C β1 ˝ α1.

6. For all A,B P ObjA, α P HomApA,Bq, we have

pidB ˝ αq „A,B α

and
α „A,B pα ˝ idAq .

7. For all A,B,C,D P ObjA, α P HomApA,Bq, β P HomApB,Cq, γ P HomApC,Dq, we have

ppγ ˝ βq ˝ αq „A,D pγ ˝ pβ ˝ αqq

Remark 3.2. As it will be illustrated in Example 3.4, an implementation of a Cap category A does not need
data structures for the sets ObjA or HomApA,Bq for two A,B P ObjA, as they are not necessary to carry
out the computations Cap is designed for. A proper implementation of a category A needs a data structure
for the elements of these sets, i.e., for the objects A P ObjA and for the morphisms φ P HomApA,Bq for all
objects A,B P ObjA. Note that the data structure for φ P HomApA,Bq must be the same for all pairs of objects
A,B P ObjA.
Remark 3.3. In terms of higher category theory, a Cap category is a 2-category such that the 2-morphism sets
are either empty or a singleton, and such that its underlying object class is a set. Using this point of view, we
can derive the notion of a functor between Cap categories: a Cap functor consists of an object and a morphism
function such that the usual axioms of a functor hold up to congruence.

Given a Cap category A, passing to the quotient sets HomApA,Bq{„A,B gives rise to a classical category
A, because all constructions and axioms respect the congruence for morphisms. It is usually the case that we
actually want to compute with A, but that it is easier to implement a Cap category A giving rise to A. We
demonstrate this principle by means of an example.

Example 3.4. Let R-fpmod be the category of finitely presented left R-modules for a computable ring R.
We are going to model R-fpmod by a Cap category R-fpres. We define ObjR-fpres as the set of all matrices with
entries in R. Note that each such matrix A P Rmˆn can be interpreted as a homomorphism between free modules
R1ˆm A

ÝÑ R1ˆn P R-fpmod presenting its cokernel. For A P Rmˆn, B P Roˆp, we define HomR-fpmodpA,Bq as
the set of matrices M P Rnˆp such that the following diagram can be completed to a commutative diagram by
inserting a matrix ν on the left:

R1ˆm R1ˆn

R1ˆo R1ˆp

A

B

Dν M



Note that by the functoriality of the cokernel, such a diagram induces a morphism between the modules presented
by A and B independent of the choice of ν (since ν does not appear in the Cap term (Example 2.3, (:)) defining
CokernelFunctorial). Conversely, every morphism in R-fpmod between the cokernels can be lifted to such a
diagram since row modules are projective.

In our definition of the homomorphism sets, two morphisms M,N P HomR-fprespA,Bq are equal if they are
equal as matrices. We say M and N are congruent if and only if they induce equal morphisms between the
modules presented by A and B, which is the case if and only if there exists a matrix rendering the diagram

R1ˆn

R1ˆo R1ˆpB

D
M ´N

commutative (this is a direct consequence of the comparison theorem [Wei94]).
Thus, we equipped the homomorphism sets HomR-fprespA,Bq with an equivalence relation such that passing

to the quotient yields a category R-fpres equivalent to R-fpmod. We can see the advantage of the model R-fpres
over R-fpres when we start defining the function

CokernelObject : HomR-fprespA,Bq Ñ ObjR-fpres

for given A,B P R-fpres. In the case of R-fpres, for M P Rnˆp, we can simply set

CokernelObjectpMq :“
ˆ

M
B

˙

which yields a function since equal input yields equal output. The same mapping rule in the context of R-fpres
does not yield a function: For example, M1 “ p0q and M2 “ p2q both represent the same module homomorphism
in

0 Z1ˆ1

Z1ˆ1 Z1ˆ1
p2q

Mi

for i “ 1, 2, but

CokernelObjectpM1q “

ˆ

0
2

˙

­“

ˆ

2
2

˙

“ CokernelObjectpM2q

on the level of matrices and thus on the level of objects in R-fpres. This issue can be fixed by making (possibly
unnatural) choices of representatives, but this can be very expensive in an actual implementation.

We further define
CokernelProjectionpMq :“ Ip

where Ip denotes the pˆ p identity matrix, and

CokernelColiftpM,T q :“ T

which are dependent functions of the correct types for our model R-fpres.
The following interpretation underlines the naturality of our model R-fpres: not only is CokernelObject a

function in the context of R-fpres, but actually a functor between Cap categories. This can be made precise
as follows: HomR-fprespA,Bq equipped with its equivalence relation can be seen as a category, where there is a
morphism from M to N if and only if M „ N . Furthermore, every category trivially can be turned into a Cap
category, so HomR-fprespA,Bq is also a Cap category. The primitive CokernelObject can now be regarded as a
Cap functor

CokernelObject : HomR-fprespA,Bq Ñ R-fpres
whose action on morphisms CokernelObjectpM „M 1q is given by



CokernelObjectpMq CokernelObjectpM 1q.
CokernelColiftpM,CokernelProjectionpM 1qq

It is well-defined since it respects composition and identities up to congruence and thus defines a Cap functor.
Problems similar to the issues with the cokernel arise when we want to deal with other categorical con-

structions, like kernels, pullbacks, or pushout, and the Cap category R-fpres provides a natural solution for all
them.
Remark 3.5. In Example 3.4 we described concrete constructions for the three primitives

CokernelObject,CokernelProjection,CokernelColift

in a particular model of the category of finitely presented modules over a computable ring R. As we have seen
in Example 2.3, from these primitives we can derive a generic algorithm for the primitive CokernelFunctorial.
The core system of Cap offers various such automatic derivations, which come in handy in the implementation
of concrete instances of categories. However, note that whenever performance is crucial, it is wise to substitute a
primitive with a faster non-generic algorithm that might take advantage of attributes specific to the computational
model in question.
Remark 3.6. The category of finitely presented modules can be seen as a special instance of the so-called Freyd
category, which first appeared in [Fre66]. For a given additive category P, its Freyd category ApPq can be
constructed as a certain quotient category of the category of arrows in P. The process of forming the Freyd
category can be seen as a category constructor, it takes an additive category as input and constructs an additive
category with cokernels as output:

additive categories Ap´q
ÝÑ additive categories with cokernels

If we apply this category constructor to RowsR, i.e., the full subcategory of left R-modules generated by row
modules R1ˆn for n P N0, we get the Cap category of finitely presented modules as output as it is modeled in
Example 3.4.

The power of this abstraction lies in the fact that we can apply the category constructor Ap´q not only to
RowsR, but to any additive category, in particular to ApRowsRq itself. One can show that ApApRowsRqq is
equivalent to the category of contravariant finitely presented functors on R-fpmod, i.e., contravariant functors
mapping from R-fpmod to the category of abelian groups that arise as cokernels of natural transformations
between representable functors. Thus, a proper implementation of the category constructor Ap´q in Cap enables
us to work computationally with such functors. For a detailed discussion of the constructive aspects of Freyd
categories we refer the reader to [Pos17a].

Acknowledgements

Sebastian Gutsche and Sebastian Posur are supported by Deutsche Forschungsgemeinschaft (DFG) grant SFB-
TRR 195: Symbolic Tools in Mathematics and their Application.

References
[BLH11] Mohamed Barakat and Markus Lange-Hegermann, An axiomatic setup for algorithmic homologi-

cal algebra and an alternative approach to localization, J. Algebra Appl. 10 (2011), no. 2, 269–293,
(arXiv:1003.1943). MR 2795737 (2012f:18022)

[Fre66] Peter Freyd, Representations in abelian categories, Proc. Conf. Categorical Algebra (La Jolla, Calif.,
1965), Springer, New York, 1966, pp. 95–120. MR 0209333

[GAP18] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.9.1, 2018, (http://www.
gap-system.org).

[GSP18] Sebastian Gutsche, Øystein Skartsæterhagen, and Sebastian Posur, The CAP project – Categories, Al-
gorithms, Programming, (http://homalg-project.github.io/CAP_project), 2013–2018.

[Gut17] Sebastian Gutsche, Constructive category theory and applications to algebraic geometry, Ph.D. thesis,
University of Siegen, 2017, (http://dokumentix.ub.uni-siegen.de/opus/volltexte/2017/1241/).

http://arxiv.org/abs/1003.1943
http://www.gap-system.org
http://www.gap-system.org
http://homalg-project.github.io/CAP_project
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2017/1241/
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2017/1241/


[hom17] homalg project authors, The homalg project – Algorithmic Homological Algebra, (http://
homalg-project.github.io), 2003–2017.

[Pos17a] Sebastian Posur, A constructive approach to Freyd categories, ArXiv e-prints (2017),
(arXiv:1712.03492).

[Pos17b] Sebastian Posur, Constructive category theory and applications to equivariant sheaves, Ph.D. thesis,
University of Siegen, 2017, (http://dokumentix.ub.uni-siegen.de/opus/volltexte/2017/1179/).

[Wei94] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathemat-
ics, Cambridge University Press, 1994. MR MR1269324 (95f:18001)

http://homalg-project.github.io
http://homalg-project.github.io
https://arxiv.org/abs/1712.03492
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2017/1179/
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2017/1179/

	Introduction
	Syntax
	Semantics

