
Automating Abstraction Computation of Hybrid Systems

Hadi Zaatiti, Jean-Pierre Gallois
Laboratory of Model Driven

Engineering for Embedded Systems
CEA, LIST

Gif-sur-Yvette, 91191, France
firstname.lastname@cea.fr

Lina Ye, Philippe Dague
LRI, Univ. Paris-Sud & CNRS

Univ. Paris-Saclay
Orsay, 91405, France

firstname.lastname@lri.fr

Abstract

Hybrid systems exhibit an interaction of discrete control decisions with
continuous physical processes and are present at the core of cyber-
physical systems. The verification task of such systems is challenging.
In this paper, we are concerned with abstraction methods of hybrid
systems. An abstraction can be used to automate the verification of
properties such as safety or more complex ones when combined with a
model checking algorithm. A tool that automatically computes an ab-
straction of a given hybrid system with at most polynomial expressive-
ness is presented. The computed abstraction can be manually refined
to achieve further precision guided by the system designer. The tool is
tested over several examples.

1 Introduction

Hybrid systems are at the core of many applications mixing discrete control decisions with the behavior of the
environment, often modeled as continuous processes. Their verification is a challenging task. It is known that
computing the set of reachable states (i.e., the exact set of possible behaviors) of a given hybrid automaton is
undecidable. We are concerned with abstraction methods of hybrid systems that retain required information to
be later used for decidable property verification at the abstract level (e.g., model checking for safety), giving
thus backward partial answer about the status of the property for the hybrid system itself (such as satisfied, not
satisfied or does not know).

Abstraction techniques applied to hybrid systems are not new and different methods for abstracting a hybrid
system have been studied in the literature. For instance, some tools compute the particular case of abstraction
called flow-pipe which is based on performing set-based integrations. Flow-pipe abstractions compute an over-
approximating envelope of the reachable set of states starting from a given initial set. These tools are suitable
for time-bounded verification (such as bounded model checking) as error propagates and increases rapidly during
the computation, the larger the initial set is [FLGD+11, CÁS13].

However, to the best of our knowledge, less tools compute abstractions of hybrid systems using partitioning
of the state space or by abstracting transitions of the continuous behavior [Tiw08, Tiw12]. Such abstractions
provide coverage with respect to the initial state and are partly compositionally computed. In previous work we
showed how the abstractions can be used to verify complex properties of the hybrid system such as diagnosability

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: O. Hasan, S. Tahar, U. Siddique (eds.): Proceedings of the Workshop Formal Verification of Physical Systems (FVPS), Hagenberg,
Austria, 17-Aug-2018, published at http://ceur-ws.org

which supposes that the system is partly observable. If a system is diagnosable then it is able to identify the
occurrence of a modeled fault using the limited observations [ZYD+18, ZYDG18]. Abstractions of hybrid systems
have many use cases such as but not limited to:

• Verification and automated proving: incorporate abstraction computation for the purpose of automated
verification in satisfiability modulo theory solvers (SMT) for hybrid systems, user-guided theorem proving,
model checking, and invariant synthesis techniques.

• Design, simulation and specification requirements: provide the system designer or architect with verified
simulation results from the requirements specification, piloting numerical simulations and unitary tests.

• Provide researchers with insights when modeling complex behaviors.

Related work: The work presented in this paper is inspired from predicate abstraction of hybrid automata
introduced in [Tiw08]. The main differences is the instantiation of the abstraction computation to polynomial hy-
brid systems and predicates expressed as semi-algebraic sets while providing experimental results and abstraction
computation time.

[SW13] addressed computing reachability for non-linear systems with polynomial dynamics. Algorithms are
proposed to generate a partitioning of the state space, forming an abstraction that is always sound and in
some cases complete. The latter is formulated as an optimization problem, which yields results similar to those
obtained by invariant synthesis techniques. The termination of the optimization procedure is generally not
guaranteed. The difference with the author’s work is that we propose an algorithm to compute the time bounds
used in the abstraction, however no experimental results are provided for this part.

In this paper, a method for generating abstractions of hybrid systems is presented. Qualitative modeling and
reasoning are used to compute the abstraction. The contribution of this paper is the development of a tool that
computes abstractions of hybrid automata with polynomial expressiveness in terms of the dynamics model. The
abstraction computation are evaluated on different practical examples. A refinement operation is also defined and
discussed, allowing the user to reach a further precision. The refinement operation will recompute only required
information to keep the abstraction sound. Lastly, an abstraction capturing time constraints is proposed which
allows one to handle time constraints that can be abstracted at a qualitative level from the hybrid system through
the previously defined abstraction.

The paper is organized as follows. In Section 2 a formal framework for hybrid automata is introduced,
then an abstraction of a given hybrid system based on qualitative reasoning is defined. Afterwards, the main
algorithms used in the implemented tool for automatically computing the defined abstraction are presented. The
abstraction computation is then illustrated on different practical examples and performances of the computations
are evaluated. In the last section, a refinement of the abstraction allowing to achieve a higher precision is
discussed. This operation recomputes only needed information to keep the abstraction sound. We also explain
how to specialize the produced abstraction as a timed one and propose an algorithm to compute it based on
flow-pipe construction.

2 Hybrid dynamical systems

Hybrid automata are a mean to model hybrid systems, where each state is twofold with a discrete and a
continuous part [Hen96]. The discrete part ranges over a finite domain while the continuous part ranges over
the Euclidean space Rn.

Definition 1 (Hybrid automaton). An n-dimensional hybrid automaton (HA) is H =
(Q,X, S0,Σ, F, Inv, δ,G,R), where:
• Q is a finite set of modes (or locations).
• X is a set of n real-valued variables whose valuations set is X ⊆ Rn, S = Q × X is the state space of H,
whose elements, noted (q,x), are called states.
• S0 ⊆ S is the set of initial states, from which are defined Q0 = {q | ∃x (q,x) ∈ S0}, the set of initial modes,
and Init(q) = {x | (q,x) ∈ S0} the set of initial continuous values in any initial mode q.
• Σ is a finite set of events.
• F : S → 2R

n

is a mapping assigning to each state (q,x) ∈ S a set F (q,x) ⊆ Rn (the flow) constraining the
time derivative ẋ of the continuous part of the mode q by ẋ ∈ F (q,x).
• Inv : Q → 2X assigns to each mode q an invariant set Inv(q) ⊆ X, constraining the values of continuous

variables in q: ∀q ∈ Q, {x | (q,x) ∈ S} ⊆ Inv(q).
• δ ⊆ Q× Σ×Q is a set of discrete transitions.
• G : δ → 2X assigns to each transition τ = (q, σ, q′) ∈ δ a nonempty guard set G(τ) ⊆ X such that
G(τ) ⊆ Inv(q).
• R(τ) : G(τ)→ 2Inv(q′) assigns to each guard value new variables reset values after triggering τ = (q, σ, q′).

One can also adopt a relational-based representation and use predicates instead of subsets. Then F (q)(x, ẋ),
Inv(q)(x), G(τ)(x) and R(τ)(x,x′) being true means ẋ ∈ F (q,x), x ∈ Inv(q), x ∈ G(τ) and x′ ∈ R(τ)(x)
respectively. For the rest of the paper, the following is assumed:

Assumption 1. Guards in any mode q will be assumed non-intersecting: ∀q ∈ Q,∀τ1 = (q, σ1, q1) ∈ δ, ∀τ2 =
(q, σ2, q2) ∈ δ, (τ1 6= τ2 ⇒ G(τ1) ∩G(τ2) = ∅).

We now introduce two practical examples of a continuous and a hybrid system that will be adopted throughout
the paper.

Example 1 (Continuous System). The brusselator is a mathematical model used for representing chemical
reactions with cyclic change of color. The dynamics are nonlinear. The input model holds a single mode q with
singleton flow F given by the variables derivatives as:

ẋ0 = 1− 4x0 + x2
0x1

ẋ1 = 3x0 − x2
0x1

For illustrative purposes, a number of numerical simulations of the brusselator showing a clockwise rotation (in
the (x0, x1) plane) of the trajectories in the studied region are performed and observed in Figure 1.

(a) (b)

Figure 1: Brusselator normalized phase plane with numerical simulations

Example 2 (Hybrid System). Figure 2 illustrates a simple autonomous temperature regulating system (or ther-
mostat) modeled as a hybrid automaton with two modes on and off, whose switching is witnessed by events Bon

and Boff . The continuous behaviors of each mode are illustrated in Figure 3 with some numerical simulations
from randomly generated initial values.

The language of a hybrid automaton are defined by the set of its trajectories (or semantics) defined below.

Definition 2 (HA semantics). The semantics of a HA H (also called concrete behavior), denoted by [[H]], is the

set of all executions, which are labeled by L = Σ ∪ R+: (q0,x0)
l0−→ (q1,x1)...(qi,xi)

li−→ ... such that (q0,x0) ∈ S0

and, ∀i, (qi,xi)
li−→ (qi+1,xi+1), one of the following is true:

off

ẋ = −x
x ≥ 68

on

ẋ =− x+ 120

x ≤ 82

x ∈ [80, 90]

x ≤ 70/Bon

80 ≤ x/Boff

Figure 2: Hybrid automaton modeling a thermostat

(a) (b)

Figure 3: Thermostat phase plane with randomly generated numerical simulations: (a) Mode off, (b) Mode on

• li = σi ∈ Σ, τ = (qi, σi, qi+1) ∈ δ, xi ∈ G(τ) and xi+1 ∈ R(τ)(xi);
• li = di ∈ R+, qi = qi+1, xi,xi+1 ∈ Inv(qi) and ∃x : [0, di] → X continuously differentiable function, with
x(0) = xi, x(di) = xi+1 and ∀t ∈ (0, di) ẋ(t) ∈ F (qi, x(t)) and x(t) ∈ Inv(qi).

The trace of an execution h, i.e., the sequence of its labels, is a word from L? (or Lω for infinite h), denoted
as trace(h). We denote the total time duration of h by time(h) ∈ R+ ∪ {+∞}, which is calculated as the sum

of all time periods in the trace of h: time(h) =
∑
di. The part of execution h = (off , 80)

0.15−−→ (off , 69)
Bon−−→

(on, 69)
0.5−−→ (on, 81)

Boff−−→ (off , 81)... is valid for the thermostat example, thus h ∈ [[H]]. Let S =
⋃
q∈Q({q} ×

Inv(q)) ⊆ S the (infinite) set of invariant satisfying states of H, S0 ⊆ S0 the subset of invariant satisfying initial
states and → ⊆ S × L × S the transition relation defined by Definition 2. The semantics of H is actually
given by the labeled transition system StH = (S, S0, L,→), i.e., [[H]] is the set of all paths of StH issued from an
initial state. StH is thus a discretization of H with infinite sets of states and of transition labels. It just abstracts
continuous flows by timed transitions retaining only information about the source, the target and the duration of
each flow and constitutes the finest (timed) abstraction of H we will consider. The timeless abstraction of StH is
obtained by ignoring also the duration of flows and thus defined as SH = (S, S0,Σ ∪ {ε},→), obtained from StH

by replacing any timed transition (qi,xi)
di−→ (qi+1,xi+1) with di ∈ R+ by the ε transition (qi,xi)

ε−→ (qi+1,xi+1),
that can be considered as a silent transition. It has infinite set of states but finite set of transitions labels. It
constitutes the finest timeless abstraction of H we will consider.

Theorem 1 (Correctness and completeness of the semantics). Any concrete behavior of H is timed abstracted
into an S0 rooted path in StH . Conversely, any path in StH that alternates continuous and discrete transitions
(in particular any single transition) abstracts a part of a concrete behavior of H and, if F is a singleton function
(i.e., deterministic derivative), any S0 rooted path in StH abstracts a concrete behavior of H. In this latter case,
there is thus no spurious abstract behavior in StH , which expresses faithfully the behavior of H.

3 Hybrid automata abstraction

We now formally define a hybrid automata abstraction. The abstraction is obtained by partitioning the state
space according to the dynamics of each mode of the hybrid system, using qualitative principles and taking into
account the guard and reset conditions.

Definition 3 (Continuous space partition). A (finite) partition P of the space Rn is a finite set of nonempty
connected subsets of Rn such that every point x ∈ Rn is in one and only one of those subsets. We can write
Rn =

⊎
p∈P p. An element p ∈ P is referred to as a partition element and called a region. For a subset E of Rn,

we denote by P (E) the subset of regions of P with a nonempty intersection with E.

The smoothness hypothesis we impose over a partition w.r.t. a given continuous dynamics is that any (finite)
path solution of the dynamics crosses only a finite number of times each region, more precisely, ∀x : [0, 1]→ Rn
a continuously differentiable function satisfying the flow condition, ∀p ∈ P a region, x−1(p) is a finite union of
intervals. For a HA, it is practical to allow different partitions in different modes.

Definition 4 (Hybrid state space decomposition). Given a HA H and a set P of partitions of X ⊆ Rn, we
say that P decomposes H if there is a surjective function d : Q→ P which associates to each q ∈ Q a partition
d(q) ∈ P.

The continuous space partition relative to a mode contains the initial and invariant sets and the guards
satisfiability domains towards other modes and variables reset domains from incoming modes. For q ∈ Q and
τ = (q, σ, q′) ∈ δ, we denote the regions families d(q)(Init(q)), d(q)(Inv(q)), d(q)(G(τ)) by dInit(q), dInv(q),
dG(q, τ) ⊆ d(q) and, for a region p ∈ dG(q, τ), we denote d(q′)(R(τ)(p ∩ G(τ))) by dR(q′, τ, p) ⊆ d(q′). When
possible, we try to define d such that Init(q), Inv(q), G(τ) and R(τ)(p) are the unions of the regions in those
families (if not, those regions families over-approximate them).

Definition 5 (Adjacent regions). Two distinct regions p1, p2 of a partition P of Rn are adjacent if one intersects
the boundary of the other: p1 ∩ p2 6= ∅ or p1 ∩ p2 6= ∅, where p refers to the closure of p.

Definition 6 (Decomposition-based timeless abstract automaton of a hybrid automaton). Given a hybrid au-
tomaton H = (Q,X, S0,Σ, F, Inv, δ,G,R), and a decomposition (P, d) of H, we define the timeless abstract
(finite) automaton of H with respect to P as DHP = (QDH , Q0DH

,ΣDH , δDH) with:

• QDH = {(q, p)|q ∈ Q, p ∈ d(q)}.
• Q0DH

= {(q, pInit)|q ∈ Q0, pInit ∈ dInit(q)}.
• ΣDH = Σ ∪ {ε}.
• ((qi, pk), σ, (qj , pl)) ∈ δDH iff one of the two following conditions is true:

– σ ∈ Σ and pk ∈ dG(qi, τ) and pl ∈ dR(qj , τ, pk) where τ = (qi, σ, qj) ∈ δ.
– qi = qj and σ = ε and pk, pl ∈ dInv(qi) are adjacent regions and ∃d ∈ R∗+ and ∃x : [0, d] → X

continuously differentiable function such that ∀t ∈ (0, d) ẋ(t) ∈ F (qi, x(t)), ∀t ∈ [0, d] x(t) ∈ Inv(qi),
x(0) ∈ pk, x(d) ∈ pl, ∃c 0 ≤ c ≤ d ∀t ∈ (0, c) x(t) ∈ pk ∀t ∈ (c, d) x(t) ∈ pl and x(c) ∈ pk ∪ pl.

The defined timeless abstract automaton encodes reachability with adjacent regions of the state space, the
events in Σ witnessing mode changes and ε transitions representing a continuous evolution between adjacent
regions in the same mode. Notice that ((qi, pk), σ, (qj , pl)) ∈ δDH ⇒ ∃xk ∈ pk ∃xl ∈ pl (qi,xk)

σ−→ (qj ,xl) in
SH , the converse being true for σ ∈ Σ. The mapping αP defined by αP((q,x)) = (q, p) with p ∈ d(q) and x ∈ p
defines a surjective timeless abstraction function αP : S → QDH . If the flow condition F is a singleton, αP

maps any transition of SH to a unique path in DHP. The coarsest timeless abstract automaton is obtained
when partitions of P have all a unique region p = X and is thus (Q,Q0,Σ, δ), i.e., the discrete part of H without
its continuous part. It corresponds to the coarsest timeless abstraction function α{{X}}((q,x)) = q. For our
previous thermostat example, this gives ({off , on}, {off }, {Bon, Boff }, {(off , Bon , on), (on,Boff , off)}) and the

abstraction of the execution h given previously in Section 2 is just off
Bon−−→ on

Boff−−→ off ...

Theorem 2 (Timeless abstraction completeness). Given a decomposition P of H, any concrete behavior of H
is timeless abstracted into a Q0DH

rooted path in DHP and any transition of DHP abstracts a part of a concrete
behavior of H. If the flow condition F is a singleton function then the timeless abstraction function αP defines
a trace preserving mapping (still denoted by αP) from S0 rooted paths in SH (i.e., timeless executions of H) to
Q0DH

rooted paths in DHP and thus the language defined by SH is included in the language defined by DHP.

Obviously, a path in DHP does not necessarily abstract a concrete behavior of H (as the behaviors parts
abstracted by the individual transitions may not connect) which expresses that abstraction creates spurious
behaviors.

4 Algorithmic computation of the abstraction

In this section we introduce a tool that automatically computes the previously defined abstraction of a given
hybrid system. The characterization and computation of abstract states and transitions is implemented in C++.
The tool requires the following freely available libraries and solvers:

• The Boost libraries, mainly for parsing the hybrid automaton input model and generating graphical and
textual outputs.

• Nlopt, a mathematical optimization library for non linear functions.

• Qepcad, for quantifier elimination using cylindrical algebraic decomposition (CAD) solver.

• Matplotlib and Graphviz for visualization.

In the previous section, we formally defined an abstraction DHP of a given hybrid system H according to
a partition P. We now show the algorithms to automatically compute it. The computation can be done on
the hybrid system modes separately, then a linking operation is performed between the mode abstractions. The
main steps are summarized as follows:

• For each mode q, compute symbolic representation of abstract states.

• For each computed symbolic state st, evaluate the presence of a transition towards abstract states whose
concretization is adjacent to the concretization of st.

• Apply the linkage operation.

4.1 Symbolic computation of the abstract states

Partitioning rules. Consider a mode q of H. We will apply the single mode abstraction algorithm to compute
an abstraction DH{d(q)} of q. In the existing literature, partitions are chosen enough regular and smooth,
with regions in any dimension from 1 to n such as (from simpler to more complex) rectangles, zonotopes,
polytopes and Taylor models. The choice is often guided by the dynamics and the property one wishes to
verify. For example, consider a continuous system with dynamics F . A way to obtain an abstract reachability
mapping would be to identify regions of the state space that preserve the sign vector of F , i.e., the derivative
signs for each dimension would keep the same value (either negative or positive or null) in the same region.
Thus, the regions would be the connected components of the 3n subsets Es of Rn parametrized by sign vectors
s ∈ {−1, 0,+1}n: Es = {x ∈ X | ∀i, 1 ≤ i ≤ n, ẋi < 0 if si = −1, ẋi = 0 if si = 0, ẋi > 0 if si = +1}. Note
that in the case of regions expressed as polynomial inequalities, the sets conserving the sign vector are not neces-
sarily connected, in such case we will reason over non connected sets and use invariants (Inv(q)) to separate them.

Expressing abstract states. We use semi-algebraic sets to represent regions using (unions of) (in)equalities
of polynomials over X. For example, if X contains two variables, we can express a circular set as:
(x − x0)2 + (y − y0)2 < r2 with x0, y0 and r as given rational numbers. Now consider our previous brus-
selator example. By applying the rules of preservation of the sign vector of F , we obtain 9 abstract states
illustrated as colored regions and their intersection boundaries (Figure 4.a). Notice that some generated
abstract states could represent non convex sets (region 4 in Figure4a) non-connected sets (Figure 4b). To
further partition algorithmically the state-space into connected sets we refer the reader to algorithms in [BPR98].

Computing the abstract states. This computation is implemented in the following way. For a mode q of
the hybrid automaton, a stack Stack(q) is initialized with polynomials representing the initial and guard sets,
incoming resets and dynamics. The stack is then extended as follows: each predicate from the stack is copied
three times and copies are assigned +,− and null symbols. The regions expressions are obtained by symbolically
computing the cross product of every element in the stack with all the other elements that have a different
predicate. The first computation step is symbolic, thus, some regions are not feasible (i.e., are empty sets)

(a) (b)

Figure 4: Brusselator partition according to null-clines and equilibrium point
(a) Inv(q) = {x0 > 0 ∧ x1 > 0}, each abstract state is a connected set (b) Inv(q) = true, some abstract states

are not connected sets

example. A first check is performed to eliminate all empty regions. This is implemented by finding whether or
not there exists a solution to the semi-algebraic set representing the region. The evaluation is performed using
a quantifier elimination solver applying cylindrical algebraic decomposition and will be discussed in the next
section. Abstract states whose region representation admits no solution are simply discarded from the stack.

4.2 Computation of the transitions between abstract states

Expressing a transition. Consider an abstract state st whose concrete region is expressed as a semi-algebraic set
R. For each region adjacent to R, we evaluate whether some trajectories in R are to cross in bounded time to
the considered neighboring region. For our previous brusselator example, consider the two regions:

R1 : 1− 4x0 + x2
0x1 > 0 ∧ 3x0 − x2

0x1 > 0 (1)

R2 : 1− 4x0 + x2
0x1 > 0 ∧ 3x0 − x2

0x1 < 0 (2)

Each one is adjacent to the region B which is their common boundary:

B : 1− 4x0 + x2
0x1 > 0 ∧ 3x0 − x2

0x1 = 0 (3)

In a general setting, we express two open regions R1 and R2 adjacent to their common boundary B (of
dimension n − 1) as R1 : p > 0, R2 : p < 0 and B : p = 0 where p is a polynomial (the reasoning would be the
same with for example R2 closed, thus B ⊆ R2, expressing R2 as p ≤ 0 and checking for transition from R2 to
R1). We study the orientation of the vector field F in B. Let ~n = ∂p

∂x be the normal vector of p, it points towards
p > 0. The presence of a transition in the abstraction DHP of H is computed by evaluating the sign of the
projection of F on ~n expressed by the scalar product ~n.F |x on the boundary: ∃x ∈ X, (p(x) = 0)∧ (~n.F |x > 0).
Figure 5 illustates the case of a positive scalar product of the flow vector F with the normal vector over some
boundary given by p = 0.

Figure 5: Computing transitions by evaluating the projection of the vector field on the normal vector

For the previously considered regions in equations (1,2) the presence of a trajectory from R2 to B and from
B to R1 is expressed as the truth value of the following formula :

∃x ∈ X, (3x0 − x2
0x1 = 0) ∧ (1− 4x0 + x2

0x1 > 0) ∧ (3− 12x0 − 2x0x1 + 11x2
0x1 − 3x3

0 − 2x3
0x

2
1 + x4

0x1) > 0

If the formula evaluates to true then a transition is added from the abstract states of B to R1 (and also from R2

to B). The analog result holds obviously by replacing ~n.F |x > 0 by ~n.F |x < 0 and exchanging R1 and R2. The
procedure is repeated for every abstract state until all transitions are computed. Note that, to be semantically
correct, every mode invariant Inv(q) must be explicitly added (i.e., with a boolean ∧ operator) to the transition
evaluation formula.

Computing the transitions. We perform quantifier elimination using CAD over polynomials to evaluate
the true or false value of each transition computed formula. Our tool is interfaced with Qepcad that implements
this method [Bro03].

4.3 Linking the single modes abstractions

To link the modes abstractions together, we express each region belonging to the guard condition for a jump
from a mode q1 to a mode q2 in terms of the partition of mode q2. In other words, if there is no reset, we compute
αd(q2)(G), given αd(q1)(G). This is implemented by checking the satisfiability of the following constraint for each
region R ∈ d(q2):

∃x ∈ X, αd(q1)(G) ∧ αd(q2)(R)) (4)

If satisfied, a mode change transition is thus added from region G to R.

5 Experimental results

In this section, experimental results are provided from several examples of continuous and hybrid systems. The
presented abstractions are automatically generated using the tool. The computations are achieved on a machine
equipped with an Intel Core i5-3210M CPU operating at a 2.5 Ghz frequency.

Example 1: The brusselator.
We are interested in the behavior of the brusselator in the first quadrant of the (x0, x1) plane, thus we add
to Inv(q) the constraints: x0 > 0, x1 > 0 as invariants. The system is two-dimensional, hence the computed
abstraction according to flow sign vector contains 32 = 9 states. The tool successfully analyzes the example
and the abstraction procedure of the model terminates in 3293 milliseconds. The produced abstraction graph is
visible in Figure 6a and the computed transitions in the continuous space are illustrated in Figure 6b.

0
1− 4x0 + x2

0x1 < 0
3x0 − x2

0x1 < 0

2
1− 4x0 + x2

0x1 < 0
3x0 − x2

0x1 = 0

1
1− 4x0 + x2

0x1 < 0
3x0 − x2

0x1 > 0

6
1− 4x0 + x2

0x1 = 0
3x0 − x2

0x1 < 0

3
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 < 0

7
1− 4x0 + x2

0x1 = 0
3x0 − x2

0x1 > 0

4
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 > 0

5
1− 4x0 + x2

0x1 > 0
3x0 − x2

0x1 = 0

8
1− 4x0 + x2

0x1 = 0
3x0 − x2

0x1 = 0

(a) (b)

Figure 6: Brusselator computed abstraction
(a) Automata graph view (b) Continuous space view

The qualitative simulation shows what behavior of the system is impossible and what behavior is possible.
Using a numerical simulator, it would take a number of simulations to show the cyclic behavior of the brusselator.

However Figure 6 shows that the rotation direction of the brusselator cycle cannot be counter-clockwise in a
single abstraction step and without any further refinements and that is valid for any trajectory in the unbounded
(x0 > 0 ∧ x1 > 0) domain. Note that state 8 corresponds to the equilibrium point, i.e., in a neighborhood
around state 8 no trajectories are to reach it in any time. As a result, trajectories come neither in nor out, thus
no outgoing or incoming transitions are associated to state 8.

Example 2: The thermostat.
The previously introduced thermostat is abstracted using our tool within 13340 milliseconds. The abstraction
is illustrated in Figure 7. Green states correspond to guard satisfiability domain and the blue states are regions
interpreted from the other mode and purple states are regions produced if both mode invariants were set to
true.

(off , 0)
−x0 < 0

70− x0 < 0

(off , 2)
−x0 < 0

70− x0 = 0

(off , 1)
−x0 < 0

70− x0 > 0

(off , 3)
−x0 > 0

70− x0 > 0

(off , 4)
−x0 = 0

70− x0 > 0

Inv(off) =[68,+∞)

(Mode on, Region 0)(Mode on, Region 2) (Mode on, Region 4)

(a)

(on,1)
120− x0 > 0
x0 − 80 < 0

(on,3)
120− x0 > 0
x0 − 80 = 0

(on,2)
120− x0 > 0
x0 − 80 > 0

(on,0)
120− x0 < 0
x0 − 80 > 0

(on,4)
120− x0 = 0
x0 − 80 > 0

(Mode off , Region 1) (Mode off , Region 3)(Mode off , Region 4)

Inv(on) =(−∞,82]

(b)

Figure 7: Thermostat qualitative abstraction: (a) Mode off , (b) Mode on

Observing the abstractions graph we can immediately see that some regions of the state space are time
invariants. These regions belong to the mode switching guard condition. The abstract state of the initial set
[80, 90] is region 0 in mode off . From state 0 an abstract trajectory exists, a mode change is possible to region 1
in mode on and going back to mode off is possible. The abstraction is sufficient to provide a proof that regions
2 and 3 are to be crossed by the system for a mode change to happen. The arrows from the blue regions are
transitions computed from the linking step that was presented in the previous section.

An aspect of the produced abstraction is that it can be applied to different cases of initial sets without
recomputing the whole abstraction. To observe abstract trajectories from two given initial sets Init and Init′, it
is only required to compute α(Init) and α(Init′). This aspect provides time efficient verification when studying
the hybrid systems behaviors under varying initial sets. If the verification was performed numerically, the
executions from each initial set should be computed separately.

Performance evaluation. It is important to note that computing the transitions can be parallelized, once
the abstract states are computed for a single mode. For the moment this parallelization is not implemented in
the presented tool. Parallelizing the computations will have a drastic impact on the computation time of the
abstraction and will allow to handle systems with large number of modes firstly and with higher dimensions (i.e.,
the number of continuous variables involved).

6 Refining and timing the abstraction

The computed abstraction holds reachability information between adjacent regions, however time is not taken
into account. So, for example the abstraction cannot be used to determine in how much time does a transition
occur thus it cannot be used to verify temporal properties in a quantitative way. Moreover, if the abstraction is to
be used for model checking for example, it would be often necessary to add more information to the abstraction
for further precision. For these reasons, in this section, we define and discuss the refinement operations of
the previously produced abstraction by taking into account time constraints. For the moment, refinement is
implemented in our tool as a user guided operation however the time constraints on the abstraction is not yet
implemented.

6.1 Refinement operation

Refining the abstraction consists in adding further information from the hybrid system to obtain a more precise
abstraction. The idea is to split one or more regions into several regions by adding further boundaries to the
decomposition. This is applied per mode of the hybrid system. What is important to notice is that many of the
previously computed transitions remain valid after a refinement operation. We would only need to algorithmically
check for the transitions that require to be recomputed and reevaluated.

The following are the algorithmic steps to perform for a refinement operation. Con-
sider a new boundary region Bnew (typically of dimension n − 1) to be added to the ab-
straction. In order to keep the abstraction sound, the following needs to be performed:

Figure 8: Adding a refinement region to a previous
decomposition

1. Find the set of regions {Rcompute}
from the previous decomposition
that intersect Bnew.

2. For the set of regions {Rold} that
do not intersect Bnew, leave their in-
coming and outgoing transitions in-
tact. Re-express these regions as
Rold := Rold ∧ pBnew where pBnew

is the half space delimited by Bnew
containing Rold.

3. Process each region Rcompute inter-
secting Bnew.

• Find which boundaries (in all
dimensions) of Rcompute inter-
sect Bnew.

• Compute the newly obtained
regions.

• Recompute the in and out tran-
sitions relative to those new re-
gions as in Section 4.2.

Example: Consider adding a new bound-
ary region expressed by Bnew : x1 = 4.5 to the previous decomposition of the brusselator. We illustrate this
region in red on Figure 8. By simple observation, we can see that some transitions such as 0 → 2, 2 → 1 and
7 → 4 remain valid in the newly considered decomposition. By applying the previous algorithm, Rcompute will
contain the regions 4, 5 and 3.

6.2 Adding time

A suitable representation for systems with time constraints is a particular class of hybrid systems called timed
automata. In this section we introduce timed automata, propose and discuss an extension of the previous
abstraction that adds time bounds associated to regions allowing for a larger class of properties to be verified
using the timed abstraction.

Timed automata are a sub-class of hybrid automata where the continuous variables, called clocks, have all
first order derivatives equal to one, i.e., time elapses identically for all. C(X) denotes the set of constraints over
a clocks set X: either primitive constraints of the form xi op ci, where ci ∈ R+ and op ∈ {<,≤,=,≥, >}, or
finite conjunctions of primitive constraints. The satisfiability set of a constraint is thus a rectangle in Rn+ and
we identify C(X) to the set of those rectangles.

Definition 7 (Timed automaton). A timed automaton (TA) is a hybrid automaton (HA) T =
(Q,X, S0,Σ, F, Inv, δ,G,R) such that:
• S0 ⊆ Q× {0}, or S0 = Q0 × {0} with Q0 initial modes set.

• ∀q ∈ Q F (q, .) = 1, which means that the dynamics of clocks evolution in each mode q is given by ẋi = 1.
• Inv : Q→ C(X) associates to each mode q a rectangle invariant in X. We require 0 ∈ Inv(q0) for all q0 ∈ Q0.
• G : δ → C(X) associates to each discrete transition (q, σ, q′) a rectangle guard in Inv(q).
• ∀τ ∈ δ ∃Y (τ) ⊆ X ∀x ∈ G(τ) R(τ)(x) = {x′} with x′i = 0 if xi ∈ Y (τ) and x′i = xi otherwise, i.e., clocks in
Y (τ) are reset to zero with transition τ , the others keeping their values.

The notation of a timed automaton T is generally simplified as T = (Q,X,Q0,Σ, Inv, δ,G, Y). The semantics
[[T]] of T as a HA can be simplified by merging together successive timed transitions between two discrete
transitions and summing up their time period labels. An execution is thus a sequence h of alternating time

steps (possibly with 0 time period) and discrete steps of the form (q0,x0)
d1−→ (q0,x0 + d1)

σ1−→ (q1,x1)
d2−→ ...

whose trace trace(h) is the timed word d1σ1d2... ∈ R+(ΣR+)∗ and duration is time(h) =
∑
di.

Encoding reachability and time constraints. We now show how to abstract a HA into a TA that partly
captures the reachability and time constraints at the level of the regions by using state space decomposition.
To intuitively introduce this section, consider a partition P of the Rn state space of a continuous system with
arbitrary dynamics F , the set of trajectories entering a region p ∈ P is in one of these two cases:

1. either at least one of the trajectories ends up trapped inside p for all future times

2. all trajectories exit p to an adjacent region within a bounded time under the continuity assumption

In the first case, no time constraint can be associated to the region p unless a reshaping of p is applied (i.e.,
via a refinement operation); in the latter, it is possible to compute time constraints satisfied by all trajectories
entering and leaving the region p.

Definition 8 (Region time interval and time bounds). Given a continuous system CS, a partition P of Rn and
p ∈ P one of its regions, we say that Ip = [tmin, tmax], with tmin, tmax ∈ R+ ∪ {+∞}, is a region time interval
of p for CS if all trajectories of the CS entering p at time t leave p at time t + tmin at least and t + tmax at
most. tmin and tmax are lower and upper time bounds of p.

For a hybrid automaton, we denote a time interval relative to the region p in mode q as I(q,p).

Definition 9 (Decomposition-based abstract TA of a HA). Given a HA H = (Q,X, S0,Σ, F, Inv, δ,G,R), a
decomposition P of H and the timeless abstract automaton DHP = (QDH , Q0DH

,ΣDH , δDH) of H with respect to
P, we define the abstract TA of H with respect to P as THP = (QDH , {c}, Q0DH

,ΣDH , InvTH , δDH , GTH , YTH)
with:
• InvTH((q, p)) = [0, tmax] where I(q,p) = [tmin, tmax].
• ∀τ = ((q, p), σ, (q1, p1)) ∈ δDH with I(q,p) = [tmin, tmax], GTH(τ) = [tmin,+∞) if σ = ε and p does not intersect
any reset set (i.e., ∀τ ′ = (q′, σ′, q) ∈ δDH p /∈ d(q)(R(τ ′)(G(τ ′)))) or [0,+∞) else.
• ∀τ ∈ δDH , YTH(τ) = {c}.

The defined abstract TA inherits the previously computed reachability relations with adjacent regions. The
events in Σ witness mode changes and ε transitions represent a continuous evolution between adjacent regions
in the same mode. Time constraints are added to a state (q, p) for which an interval I(q,p) is computable
as non-trivial (i.e., I(q,p) 6= [0,+∞)), by using one local clock c (reset at 0 in each state) that measures the
sojourn duration t in each state (q, p), i.e., in each region p, and coding these constraints by means of invariant
and guard of c in each state. The invariant codes the maximum sojourn duration as the upper time bound
of the region p and the guard codes the minimum sojourn duration as the lower time bound of the region p
when both entering and leaving the region are not the result of discrete jumps (controlled here directly for the
out-transition and by requiring that p does not intersect any reset set for all possible in-transitions). In the
thermostat example, consider the partition into two regions associated to the mode off given by the initial state
(off , [80, 90]) and by (off , [68, 80)). Then we take as time bounds for (off , [80, 90]) tmin = 0 and tmax = 0.12
(the exact upper bound, i.e., the time for the temperature to decrease from 90 to 80 is Log(9

8)). Thus, we define
in the abstract TA InvTH((off , [80, 90])) = [0, 0.12]. A beginning of one execution of the TA is for example

(off , [80, 90])
0.08−−→ (off , [68, 80]). A timed abstraction of the thermostat example is illustrated in Figure 9, the

timed automaton keeps the same reachability relations between regions that were previously computed while
adding the assigned time bounds. To be noted that we applied a split operation in region 0 of mode off to show
the initial set [80, 90] and the associated time bounds. ε and ε′ are any strictly positive reals and are used to
express the time bounds of a boundary region.

(off , Init)

ṫ = 1

t < 0.12

(off , 0)

ṫ = 1

t < 0.14

(off , 2)

ṫ = 1

t < ε

(off , 1)

ṫ = 1

t < 0.03

(off , 3)

ṫ = 1

t ∈[0,+∞)

(off , 4)

ṫ = 1

t ∈[0,+∞]

(Mode on, Region 2, 0, 4)

t := 0

t ≥ 0/t := 0

t ≥ 0.12/t := 0

t > ε′/t := 0

t > 0/t := 0

(a)

(on, 1)

ṫ = 1

t < 0.27

(on, 3)

ṫ = 1

t < ε

(on, 2)

ṫ = 1

t < 0.052

(on, 0)

ṫ = 1

t ∈[0,+∞)

(on, 4)

ṫ = 1

t ∈[0,+∞]

(Mode off , Region 1, 3, 4)

(Mode off , Init)

t ≥ 0/t := 0

t > ε′/t := 0

t > 0.05/t:=0

(b)

Figure 9: Timed abstraction of the thermostat system mode (a) Mode on, (b) Mode off

Theorem 3 (Timed abstraction completeness). Given a decomposition P of H, any concrete behavior of H is
timed abstracted into an execution in THP. If the flow condition F is a singleton function then the abstraction
function αP defines a mapping, denoted by αtP, from S0 rooted paths in StH (i.e., executions of H) to executions
in THP. This mapping is trace preserving once ε labels are erased from executions traces in THP and time
period labels are added up between two consecutive events labels in both executions traces in StH and in THP.

This means that, for any execution (q0,x0)
w−→∗ (qi,xi) ∈ [[H]], with w ∈ L∗ (where L = Σ ∪ R+), it exists a

unique execution (q0, p0)
w′

−→∗ (qj , pj) ∈ [[THP]], with w′ ∈ L′∗ (where L′ = L ∪ {ε}), x0 ∈ p0, qj = qi, xi ∈ pj,
w′|Σ = w|Σ (where |Σ is the projection of timed words on words on Σ∗) and, for any two successive events wl = w′l′

and wm = w′m′ of w|Σ,
∑
l′<k′<m′,w′

k′ 6=ε w
′
k′ =

∑
l<k<m wk.

Computing time bounds. Now we discuss how to compute the time bounds of the hybrid system (Def. 8).
Finding the exact minimum and maximum sojourn times is not always applicable. Hence, it is rather more
practical to consider upper and lower bounds of these sojourn times. To find a safe upper bound of the maximum
sojourn time, the idea is to construct a flow-pipe Flow of total duration N∆t where ∆t is the time step and
N ∈ N is to be found. Flow is initialized from a boundary B of a considered region p. Compute F low(B,∆t) is
a procedure performing set integration initially starting from B and given ∆t. We apply Algorithm 1 to obtain
tmax of a region p.

Flow-pipes received considerable attention in the literature, different tools exist and were successful in ana-
lyzing hybrid automata from linear to polynomial dynamics [FLGD+11, CÁS13]. The previous algorithm can

Algorithm 1 Computing Time Bounds of a region p

Input: set S of boundaries of a region p, time horizon T
for all Bi ∈ S do
tmaxi ← 0
while tmaxi < T do
Flow ← Compute F low(Bi,∆t)
tmaxi

← tmaxi
+ ∆t

if (Flow ∩ p = ∅) break
end while
if (tmaxi ≥ T) return “max reached”

end for
return maximum(tmaxi

)

be optimized by not considering boundaries for which formula (1) evaluates to false. Obviously, unless bounded
by T , termination of algorithm 1 is generally not guaranteed. One can check for conditions for which finite time
bounds exist and adapt the maximum time horizon T accordingly. For example:

Proposition 1 (Sojourn bounds). A sufficient but not necessary condition for the region p to have finite time
bounds (tmax finite, thus real nonnegative constant) is that ∃i 1 ≤ i ≤ n ∀x ∈ p ẋi 6= 0.

7 Conclusion

In this article, we provided a formal framework for abstracting hybrid automata into discrete-event systems, by
decomposing the continuous state space into a finite number of geometric regions, and into timed automata, by
adding time constraints approximating safely the sojourn time of trajectories in each region. We implemented
the discrete automata abstraction computation into a tool which we tested over several examples to evaluate
performances. We proposed a method to refine the abstraction by further decomposing the state space. Our
next work is to extend our tool by implementing both the time constraints computation, and thus the timed
automata abstraction, and the abstraction refinement process in the framework of CEGAR (Counter-Example
Guided Abstraction Refinement), both being presently done in great part manually.

References

[BPR98] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Complexity of computing semi-algebraic
descriptions of the connected components of a semi-algebraic set. In Proceedings of the 1998 Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC ’98, pages 25–29, New York,
NY, USA, 1998. ACM.

[Bro03] Christopher W Brown. QEPCAD B: a program for computing with semi-algebraic sets using CADs.
ACM SIGSAM Bulletin, 37(4):97–108, 2003.

[CÁS13] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-linear hybrid
systems. In International Conference on Computer Aided Verification, pages 258–263. Springer,
2013.

[FLGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable verification
of hybrid systems. In International Conference on Computer Aided Verification, pages 379–395.
Springer, 2011.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual Symposium
on Logic in Computer Science (LICS), pages 278–292. IEEE Computer Society Press, 1996.

[SW13] Christoffer Sloth and Rafael Wisniewski. Complete abstractions of dynamical systems by timed
automata. Nonlinear Analysis: Hybrid Systems, 7(1):80–100, 2013.

[Tiw08] Ashish Tiwari. Abstractions for hybrid systems. Formal Methods in Systems Design, 32:57–83,
2008.

[Tiw12] Ashish Tiwari. Hybridsal relational abstracter. In International Conference on Computer Aided
Verification, pages 725–731. Springer, 2012.

[ZYD+18] Hadi Zaatiti, Lina Ye, Philippe Dague, Jean-Pierre Gallois, and Louise Travé-Massuyès. Abstrac-
tions Refinement for Hybrid Systems Diagnosability Analysis, pages 279–318. Springer International
Publishing, Cham, 2018.

[ZYDG18] Hadi Zaatiti, Lina Ye, Philippe Dague, and Jean-Pierre Gallois. Counterexample-guided abstraction-
refinement for hybrid systems diagnosability analysis. In Marina Zanella, Ingo Pill, and Alessandro
Cimatti, editors, 28th International Workshop on Principles of Diagnosis (DX’17), volume 4 of
Kalpa Publications in Computing, pages 124–143. EasyChair, 2018.

