
R2BC : Tool-Based Requirements Preparation for
Delta Analyses by Conversion into Boilerplates

Konstantin Zichler
Advanced Engineering Projects

HELLA GmbH & Co. KGaA
Lippstadt, Germany

konstantin.zichler@hella.com

Steffen Helke
Safe and Secure Software Systems

Brandenburg University of Technology
Cottbus-Senftenberg, Germany

steffen.helke@b-tu.de

Abstract—Automotive OEMs and suppliers negotiate different
documents before they sign contracts for a product development.
This includes the Component Requirements Specification (CRS),
which is submitted by the OEM. The CRS describes the charac-
teristics of the product to be developed in detail and is therefore
the basis for the development effort estimation of a supplier. If
the specified component is a successor of an already available
product, the requirements specifications of both the successor
and the predecessor products can be compared to estimate the
development effort for the new component. This activity is called
delta analysis. Due to a lack of sufficient tool support, the delta
analysis is still a predominantly manual task. The main reason
for this is, that the documents to be compared are structurally
too different. In this work, we introduce a new method for an
automated conversion of an OEM’s unstructured or otherwise
structured CRS into a structured language used by the supplier.
The process uses established NLP tools to analyze CRS and
then translates the OEM’s requirements into supplier-specific
boilerplates using a newly developed technique. The concept is
implemented with the R2BC prototype, which demonstrates the
feasibility of the approach and enables the processing of first real
CRS.

Index Terms—Requirements engineering, boilerplates, natural
language processing, delta analysis

I. INTRODUCTION

During the early phase of sourcing, OEMs submit Requests
for Quotation (RFQ) to automotive suppliers. Among other
documents, this request includes the Component Requirements
Specifications (CRS). The CRS describes the properties of
the component, which shall be developed. The RFQ prompts
the supplier to offer the specified component at a certain
price within a limited amount of time. In order to provide
the OEM with an offer, the supplier has to first estimate
the necessary effort to develop the requested component. If
the supplier has already developed similar parts in the past,
the former specification documents can be used to estimate
the development effort. In this case requirements engineers
perform a delta analysis. The delta analysis refers to the
activity of comparing two requirements specifications to de-
termine the differences, namely the deltas, between the listed
requirements. It is a common procedure, in case a successor of
an already available product is to be developed and the require-
ments specifications of both the successor and the predecessor
products are available. The results of the comparison between

both requirements specifications are used for the estimation
of the effort necessary, to realize the successor product. The
advantage of this approach is that the effort for the realization
of the predecessor product is already known, and hence the
effort for the adaptations, which are necessary to realize the
successor product can be estimated. The below listed example
illustrates a deviation of two similar requirements :

1) If the combustion engine is running, the function ECU
self-diagnosis shall be active.

2) If the vehicle battery is charging, the function ECU self-
diagnosis shall be active.

The underlined parts of the requirements sentences highlight
the delta. In this example the additional working time of
the ECU self-diagnosis function is to be considered. This
can lead to additional development effort and may even
require new components within the vehicle. These add-ons
are subsequently subject to effort estimation activities of the
supplier and hence the basis for price indication for the RFQ.

Due to a lack of sufficient tool support, the delta analysis is
still a predominantly manual activity. Requirements Engineers
experience the comparison of two documents with roughly 100
to 300 or more pages each, as tedious and time-consuming.
In our opinion this time should rather be invested in creative
work, which produces higher value-added for the company. It
is for this reason that our development activities are focused
on a novel approach for an automated delta analysis. From
the experience we gained during our previous work [13], we
know that an automated delta analysis would attain a higher
accuracy, if sentences that are compared with each other have
the same syntax.

A continuously equal syntax can be reached during the
documentation of requirements by usage of boilerplates. A
boilerplate is a blueprint that determines the syntactical struc-
ture of a single requirement [11]. Boilerplates compliant
requirements have the same structure, if the same type of
boilerplates is used. That means that certain elements of a
sentence appear in the same order within all requirements of
the same type. This fact enables a machine to compare certain
parts of requirements and to determine the deviation, or in
other words, the delta. In practice, companies use different
boilerplates. Before requirements engineers of the supplier

45ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany

can benefit from an automated delta analysis, the submitted
OEM requirements have to be converted into boilerplates
compliant requirements first. This is especially the case, when
requirements engineers at the supplier side use company-
specific boilerplates. It is important to mention, that the time
schedule for responding to an RFQ is very tight. This fact
makes a manual conversion of requirements into boilerplates
unfeasible.

A convenient solution for this problem can only be achieved
by a suitable tool support. This tool support should be eco-
nomically reasonable by requiring the least amount of time
and personnel deployment for the conversion to boilerplates.
Besides these requirements, further challenges for the tool
support arise from the quality of the submitted requirements.
In literature certain quality criteria are known : atomicity,
correctness, completeness, unambiguousness etc. [8]. Requi-
rements boilerplates by their mere structure are designed
to support requirements quality [11]. Many random natural
language requirements do not meet these quality criteria and
hence do not fit accurately into the predefined boilerplates.
Hence, natural language requirements have to be reshaped by
the tool support, before they can be converted into boilerplates.
Table I gives an overview of the tasks, that should be ac-
complished during the conversion of random natural language
requirements into boilerplates. In the following, we elaborate
on selected examples :

1) Restructuring of a sentence : Example 1 (Table I)
shows an input requirement, which is written in the
passive form. The conversion of this requirement into
an active form requires a rearrangement of the sentence
parts. The output requirement after the conversion is
read as follows : “The ECU shall monitor the liquid
temperature.”

2) Adaptation of words : Once the sentence parts of a requi-
rement were rearranged, some words of this requirement
need adaptation (see Example 2 in Table I). The phrase :
“The temperature of the liquid.”, previously started with
a capital letter. Now this phrase is located at the middle
of the requirements sentence. This requires an adaptation
of the word “The”, which is now written with a lower-
case letter “the”.

3) Atomization of requirements : Example 3 (Table I)
contains two requirements. This is proven by the two
process words, which describe two different functions
of the ECU. A proper conversion into boilerplates re-
quires a split of the requirement into the following two
requirements : (1) “The ECU shall monitor the liquid
temperature.” and (2) “The ECU shall store the liquid
temperature data.”

4) Resolving co-reference : The second sentence in
Example 5 (Table I) : “It shall store the temperature
data.” addresses the ECU and by this constitutes a
second requirement. The conversion of this second sen-
tence into a requirement requires a specification of the
corresponding actor. The accurate conversion of these

to sentences leads to the following two requirements :
(1) “The ECU shall monitor the liquid temperature.” and
(2) “The ECU shall store the liquid temperature data.”

No. Examples

1

Restructuring of a sentence (e.g. from passive to active form)

InputThe.liquidtemperature shall be monitored by
the ECU.

Output The ECU shall monitor . . .theliquid
.temperature.

2

Adaption of words

Input The temperature of the liquid shall besent by
the temperature sensor to the monitoring
system.

Output The temperature sensor shallsend the
temperature of the liquid to the monitoring
system.

3

Atomization of requirements

Input The ECU shall monitor and store the liquid
temperature.

Output The ECU shall monitor the liquid
temperature. The ECU shall store the liquid
temperature data.

4

Identification on an actor in indefinite wording

Input It shall be ensured that the liquid temperature
does not exceed the threshold of 120◦C.

Output The ECU shall ensure that the liquid
temperature does not exceed the threshold of
120◦C.

5

Resolving co-reference

Input The ECU shall monitor the liquid
temperature. It shall store the temperature
data.

Output The ECU shall monitor the liquid
temperature. The ECU shall store the liquid
temperature data.

TABLE I
EXAMPLES FOR CONVERSION TASKS

Among others, [6] and [7] present methods and tool support
for the documentation of requirements with boilerplates right
from the beginning. The majority of CRS in industry are
based on different styles of boilerplates or do not comply
to boilerplates at all. This means, that automotive suppliers
receive already documented requirements with this kind of
characteristics. Therefore, available approaches, which require
the use of boilerplates during the documentation of requi-
rements, cannot help to overcome issues that arise while
handling finalized specifications.

It is for these reasons, that we suggest a semi-automated
conversion of random natural language requirements to pre-
defined boilerplates. Our tool the Requirements to Boiler-
plates Converter (R2BC) converts randomly formulated na-
tural language requirements, which are provided in various
document formats into predefined boilerplates. Alongside with
the conversion, the R2BC concept aims at the rectification
of requirements flaws to increases requirements quality. Our

46ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany

solution involves natural language processing (NLP) tech-
niques and a proprietary developed prototype of the R2BC.
Moreover, in this work we provide future users of the R2BC
with the corresponding methodology for the realization of a
semi-automated conversion of requirements into boilerplates.
The basic aim of the technology presented in this work, is
to make requirements machine-readable. Our tool, the R2BC
is a prerequisite for the subsequent automated delta analysis.
The automated delta analysis is part of our ongoing research
activities. Within this work, we focus on the R2BC and its
sub-ordinance into the broader methodology of an automated
delta analysis.

The remainder of this work is structured as follows. Chapter
II provides the reader with the fundamentals on boilerplates
and NLP. We introduce the reader to the R2BC methodology in
Chapter III. Results of preliminary experiments are presented
and discussed in Chapter IV. In Chapter V, we summarized
major publications on related work. Chapter VI summarizes
our findings and gives an outlook on further research activi-
ties.

II. FUNDAMENTALS

A. Requirements Boilerplates

Boilerplates are used to improve requirements quality
and to increase the degree of formalization of requirements.
A boilerplate is a blueprint that determines the syntactical
structure of a single requirement. This predefined sentence
structure helps to prevent phrasing errors, like the passive
form, while documenting requirements. Boilerplates can be
handled easily by unexperienced authors to write accurate
requirements [11]. The following example shows a company-
specific boilerplate :

The complete system “<CompleteSystemName>”
shall �description�.

This boilerplate can be used to document functional re-
quirements. It consists of editable and non-editable parts. To
document a functional requirement, the author replaces the
“<CompleteSystemName>” part with the system name and the
�description� part with the function description of the system
under consideration. The phrase “The complete system” and
the modal “shall” constitute the non-editable parts of the boi-
lerplate. Company-specific boilerplates reflect specific needs
coming from the requirements engineering processes applied
by a certain company. For instance, the semiformal structure
of boilerplate-compliant requirements allows to derive requi-
rements models automatically and to further process these
models for requirements verification. Alongside company-
specific boilerplates, the well-known boilerplates introduced
by Chris Rupp [11] and the EARS boilerplates [9] are used
in the industry.

B. Natural Language Processing

In this work, we use NLP to analyze requirements
text and to identify specific elements of the requirements
sentence. NLP is a means to the computerized understanding,

analysis, manipulation, and generation of natural language
[9]. We use the General Architecture for Text Engineering
(GATE) [3] to run natural language pre-processing on the
requirements documents. GATE is an open-source software,
which is mainly used to annotate text, either manually or
automatically. A wide range of applications, which are called
processing resources, are available under GATE. We explain
the main processing resources for our application using the
following example, given the following original requirement :

The ECU shall monitor the liquid temperature.

The tokenizer splits the text in tokens, like numbers, punc-
tuation marks and words. “The”, “ECU” or “.” are tokens
within the example sentence. In the following steps, these
tokens can be used to analyze the text in more depth, e.g. with
gazetteers. Gazetteers are used to recognize named entities in
text. They consist of lists with numbers or names of entities,
like cities, organizations or first names. Once a string in the
text equals a string in a gazetteer, the named entity can be
assigned. For this purpose, the string in the text receives an
annotation called “Lookup”. Another important application
is the sentence splitter. This application splits the text in
sentences. To this end, a gazetteer list with abbreviations is
used to distinguish these from punctuation marks that mark
the end of a sentence. Part-of-speech taggers determine the
part-of-speech of a token and annotate it accordingly. Once
annotation for all of this information are available, GATE can
invoke JAPE (Java Annotation Patterns Engine) transducers.
This tool searches for a predefined pattern in the text and then
annotates this part of the text according to a predefined rule.
For this search, the information regarding tokens, sentence
splits etc. is used by the JAPE transducer [4].

In the given example, a pattern described by a JAPE rule
could search for the sentence part between “shall” and the
punctuation mark. The action rule would cause this part to be
annotated for example with “description”.

A second JAPE rule can be used subsequently to search
for the “description” annotation. As a consequence, the
underlying string “monitor the liquid temperature” of the
“description” annotation can be transferred into the editable
part of the boilerplate presented in Chapter II-B. Alongside
with the complete system name “ECU”, which would be
recognized accordingly, the conversion would lead to the
following result :

The complete system “ECU” shall monitor the liquid
temperature.

During our previous work [13], we observed that JAPE rules
work at a higher accuracy when applied to sentences that have
an equal syntax. Experiences from practical work show never-
theless that requirements syntax varies a lot. NLP provides
means to cope with these variances. The pre-processing of
requirements in several steps allows to recognize relevant parts
of requirements although presented in different syntaxes and
to transfer these parts into boilerplates. Once all requirements
are available in boilerplates further NLP can be performed
with high accuracy, e.g. for an automated delta analysis.

47ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany

III. REQUIREMENTS TO BOILERPLATES CONVERTER

In this chapter we present our concept for the Requirements
to Boilerplates Converter (R2BC). The R2BC is a prerequisite
for an automated delta analysis. For this purpose, we first
describe how the R2BC is integrated into the broader me-
thodology of the automated delta analysis. The second part
of this chapter describes the architecture of the R2BC. Within
the third, we explain the natural language pre-processing com-
ponent. The concept for the R2BC is presented in the fourth
part of this chapter. We complete this chapter by describing
the working methodology for the usage of the R2BC.

A. R2BC as Part of a Methodology for an Automated Delta
Analysis

We suggest a novel approach for an automated delta analysis
as depicted in Fig. 1. The process is triggered once an OEM
submits a CRS to a supplier. During Step 1 of the process,
the R2BC is used to convert the OEM natural language
requirements to boilerplates, which are used by the supplier.
Once the requirements of the OEM and the supplier have the
same syntax our tool called Delta Analyzer (DA), performs the
automated delta analysis (Step 2). As a result, the DA provides
a report, which can be used to estimate the necessary effort
for the realization of the successor product.

FIGURE 1. Methodology for an automated delta analysis

B. R2BC Architecture

The architecture of the R2BC outlines three main com-
ponents : a natural language pre-processing component, a
converter and a GUI (see Fig. 2). The advantage of the R2BC
is its flexibility. OEM CRS submitted to the supplier, are
diverse in wording, caused by different authors or they differ
in the document formats.

To cope with this fact, we implemented a natural language
pre-processing component (NL pre-processing) into our tool.
This component enables a flexible recognition of certain pieces
of text and provides the input for the actual conversion into
boilerplates. The centerpiece of the R2BC is called “Conver-
ter”, our proprietary development. This component loads the
input CRS from the file system of the computer and exports
the CRS with the converted boilerplates to the file system. To
this end, the Converter invokes the functionality of the NL pre-
processing to recognize the necessary parts of the requirements
text and then converts them into boilerplates. The Converter
itself, is controlled by the GUI, used by the user to perform the

FIGURE 2. R2BC Implementation

required operations. All mentioned components of the R2BC
are described in the following section, starting with NL pre-
processing.

C. Natural Language Pre-processing

For the NLP we compiled a processing pipeline in GATE,
which consists mainly of ANNIE [2] resources and several
JAPE transducers. Fig. 3 gives an overview of the applied
resources and the process.

Once the Converter invokes the NL pre-processing com-
ponent, the following steps are performed :

1) The Converter loads the CRS of the OEM into GATE.
This document is converted into a corpus, which is the
basis for the NLP.

2) The corpus is analyzed by the components Document
Reset PR, English Tokeniser, Gazetteer, Sentence Split-
ter, POS Tagger, NE Transducer and OrthoMatcher of
the application ANNIE. We customized the mentioned
components to our specific needs. ANNIE annotates the
text and provides an annotated corpus as a result. These
annotations provide mainly language-specific informa-
tion.

3) During the third step, several JAPE Transducers uses
JAPE rules to search annotations in the corpus. These
JAPE rules are defined in advance and are intended
to search for specific parts of the requirements sen-
tences, which are transferred into the editable parts of
boilerplates. First, JAPE rules determine, which requi-
rement fits which boilerplate. Then, certain pieces of
the annotated requirements are annotated according to
the editable parts of boilerplates. All requirements and
other statements in the CRS, which do not fit into
boilerplates, receive a corresponding annotation. These
sentences will be transferred into the export document
without conversion into boilerplates.

The result of the NL pre-processing component is an
annotated corpus, which is used by the Converter to convert
requirements into boilerplates.

D. Converter

The Converter is the heart of the requirements to boilerplates
conversion. This component loads documents into the NL
pre-processing component and invokes the natural language

48ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany

FIGURE 3. NL Pre-processing

analysis of the text. Once the NL pre-processing is finished, the
Converter gathers the annotated text and searches among the
contained annotations for text pieces which are to be converted
to boilerplates. During the next step all requirements, which
fit the applied boilerplates, are converted. The following two
requirements give a simplified example for a conversion :

1)The . . .oil.temperature shall . .bemonitored by the ECU
2) The “ECU” shallmonitorthe . . .oil.temperature

Requirement (1) is the original requirement. In course of the
conversion, components of this requirement are rearranged in
order and certain words are adapted automatically. Also, at this
stage, the user can make adaptation to the conversion results.
Due to the fact that some requirements can be converted
to several boilerplates, several conversion results for these
requirements are available. To this end, all conversion results
are stored by the Converter for the moment. It is the user who
ultimately decides which conversion alternative is correct. In
our working methodology for the R2BC this step is called
“Approve results”. All steps of the working methodology are
described in section III-E. After the user has approved all
results of the conversion the results can be exported. The
Converter exports the boilerplates compliant requirements to
a format of choice. Among others, we consider the formats
Word, PDF and the Requirements Interchange Format (ReqIF)
[5] to enhance the work with requirements management tools.

E. R2BC Methodology
The R2BC allows a semi-automated conversion of natural

language requirements into predefined boilerplates. The user
interaction with the R2BC follows a four steps methodology :
convert requirements, review results, edit results and approve
results. We describe this methodology by means of the R2BC
GUI depicted in Fig. 4.

Convert requirements: The user starts the conversion pro-
cess for a CRS, which is already loaded into the application
by pushing the “Start conversion” button (Fig. 4 Step 1). This
triggers an algorithm, which invokes NLP to annotate the
input CRS. The R2BC browses the created annotations and
selects certain parts of the requirements text in the input CRS.
As a consequence, all relevant requirements are converted
automatically into boilerplates by the R2BC.

FIGURE 4. R2BC GUI

Review results: During the next step (Fig. 4 Step 2) the user
reviews all converted requirements. For each converted requi-
rement, the R2BC provides the user with the view of the origi-
nal requirement and a view of alternatives for the conversion,
called conversion results. In the original requirement view, the
converted requirement is displayed in its original shape. In
some cases, it is possible that one requirement fits several
boilerplates. For this purpose, the R2BC shows all possible
conversion alternatives. Hence, the user may select the most
convenient alternative. Conversion results, which are incorrect
can be skipped. The R2BC facilitates the review process by
highlighting parts of the requirements, which were changed
by the conversion. Changes involve syntactical structure of the
requirements sentence as well as for upper and lower case and
changes in word endings. By displaying the adjacent context of
the original requirement in the original requirement view, the
R2BC helps the user to evaluate the accuracy of the conversion
result and to select the most convenient alternative.

Edit results: Within the edit results step (Figure 4 Step 3),
the user can make adaptations to the conversion results. This
may be necessary, if a conversion result has a defect. For
this purpose, the user presses the edit button next to the
corresponding conversion alternative. This activates the editing
function within the conversion results view.

Approve results: Finally, the user approves all valid alter-
natives (Fig. 4 Step 4), whereby only one alternative per input
requirement can be approved.

49ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany

IV. EXPERIMENTS AND DISCUSSION

This chapter presents the results of preliminary tests and
feedback from requirements experts. It is based on the R2BC
prototype, which was implemented and tested in an ongoing
research project by Ritter und Schul [10].

A. Preliminary Experiments

The aim of the preliminary experiments was to evaluate
the effectiveness of the R2BC prototype. The fully automated
conversion is considered effective, when relevant requirements
in a CRS are identified and converted into boilerplates ac-
curately. A requirement is relevant for the conversion, if
a corresponding boilerplate for this type of requirement is
applied, e.g. a boilerplate for conditional requirements. We
assessed the effectiveness of our prototype by calculating
precision for the identification of relevant requirements in a
given CRS. For all identified requirements, we also assessed
the conversion accuracy. For this purpose, we calculated the
percentage of the number of accurately converted requirements
of all converted requirements.

Since in practice, different styles of CRS are submitted
by OEMs, we have tested our prototype on three CRS from
different requirements authors to increase the significance of
the experimental findings. CRS 1 comprises 88 pages. CRS 2
is an extensive document with 567 pages and CRS 3 comprises
60 pages. All three documents consist mainly of requirements
documented as complete and fragmented sentences.

As already mentioned, many companies define their own
specific boilerplates. For our experiments, we have chosen
the following two company specific boilerplates A and B :

A : The complete system
“<CompleteSystemName>” shall

�description�.
B : [ELSE] IF <Condition>, THEN : [the

function “<FunctionName>” shall [not]]
�description� [ELSE : �description�].

Boilerplate A is used to document functional requirements.
B is a boilerplate for the documentation of conditional requi-
rements. Hence, these two boilerplates determined, which re-
quirements were relevant for the automated conversion during
our experiments. It is important to note, that we did not distin-
guish between functional and non-functional requirements in
our experiments. This means, if an identified non-functional
requirement, was converted into boilerplate A, we considered
it accurate, if it syntactically fit the boilerplate.

We used CRS 1 to manually analyze the sentence structure
of the present requirements. Afterwards, these findings were
used to define JAPE rules and to determine the settings of other
NLP tools, which we implemented in the NL pre-processing
component of the R2BC. Except for gazetteers, we applied
the same tool settings for all three CRS. We applied CRS
specific gazetteers for the conversion of requirements into
boilerplate A. The gazetteers were mainly used to identify the
system name, i.e. the subject in the original requirement. The
conversion of requirements into boilerplate B was performed

without gazetteer support. Within preliminary experiments the
R2BC achieved sound results as presented in Table II.

The conversion of the 88 pages of CRS 1 into boilerplates
A and B took roughly 10 seconds. The R2BC achieved a pre-
cision of 100% in identifying requirements, which are relevant
for one of these two boilerplates. The conversion of identified
requirements into boilerplate A worked with an accuracy of
62.5%. In the other 37.5% of conversion results, the system
name was not converted completely into the boilerplate. In
most of these cases the subject of the original requirement
consisted of several words. The R2BC converted only part of
the subject into the boilerplate. This was caused by the applied
gazetteer, which contained several system names, of which
some contained the same words. If for example, the gazetteer
contained among others the system names “controller” and
“controller module” and “controller module” was mentioned in
the original requirement, the gazetteer recognized “controller”
as system name and cut off “module”.

Within the same CRS, the R2BC achieved a conversion
accuracy of 89.3% for boilerplate B. The conversion accuracy
was lowered by the diversity of wording, which was applied
to express conditions. For instance, some authors used “In
the event” instead of “If” or “When”. Also spelling errors
prevented a higher score. For instance, authors did not place
a comma after the condition description in an if clause.
We have also observed that some requirements contained
several conditions. As a reminder, the R2BC did not use a
gazetteer for the conversion of boilerplate B and still generated
better results, than for boilerplate A. This leads us to the
conclusion that the application of a gazetteer can also lead
to a disadvantage. In addition to that, we calculated the recall
score for CRS 1. The R2BC identified relevant requirements
for boilerplate A with a recall of 100%. The recall score for
boilerplate B with 66.7% was lowered by the same reasons
as mentioned before.

We applied the same tool setup, except for the gazetteer,
which we adapted accordingly, to the automated conversion
of CRS 2. The conversion of this extensive document com-
prising 567 pages was accomplished within 89 seconds. Also,
for this CRS the R2BC achieved a precision of 100% in
identifying requirements, which are relevant for boilerplate A
and boilerplate B. The conversion into boilerplate A worked
with an accuracy of 93.3%. For boilerplate B, the R2BC
achieved a conversion accuracy of 67.6%. These calculations
are based on results for the first 400 pages of CRS 2.
Since CRS 2 is an extensive document, we took the first
400 pages as a large sample and refrained from the rest.
Only 6.7% of the conversion results for CRS 2 had defects.
These defects were caused again by the partly recognition of
the subject of the original requirement, which consisted of
several words. In contrast, the R2BC achieved a conversion
accuracy of 67.6% for boilerplate B. As for CRS 1, the
main reasons for conversion flaws are multiple conditions per
requirement and missing commas. The R2BC converted the
60 pages of CRS 3 within 7 seconds into boilerplates. As a
result, the identification of requirements for the conversion into

50ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany

Results

Boilerplate A Boilerplate B Further Information

Precision of requirements
identification

Conversion
accuracy

Precision of requirements
identification

Conversion
accuracy

Conversion
time

Pages

CRS 1 100% 62.5% 100% 89.3% 10s 88

CRS 2 100% 93.3% 1 100% 67.6%1 89s 567

CRS 3 100% 100% 100% 84.6% 7s 60

1The calculations are based on results for the first 400 pages of CRS 2

TABLE II
RESULTS OF PRELIMINARY EXPERIMENTS

boilerplate A and B worked for both with a precision of 100%.
The conversion of identified requirements into boilerplate A
worked with an accuracy of 100%. For boilerplate B the R2BC
achieved a conversion accuracy of 84.6%. The reason for
conversion defects were several conditions per requirement.

In summary, the R2BC prototype automatically analyzes
large amounts of requirements text and recognizes relevant
requirements for the conversion to predefined boilerplates.
Subsequently all relevant requirements are converted into boi-
lerplates automatically by the R2BC. Preliminary experiments
show sound results. Especially within the large CRS with
567 pages the R2BC achieved a conversion precision of
93.3%. This score makes the presented technology promising.
Nevertheless, the recognition of sentence parts of the original
requirements should be improved. We propose to adapt the
JAPE rules to cope with multi word subjects. Although our
JAPE rules already target system names consisting of several
words, evidence shows that the number of tokens to be taken
into account for a system name should be increased. We also
plan to elaborate the combination of JAPE rules and gazetteer
lists for a proper named entity recognition.

The results, which were presented so far were attained by
the fully automated conversion. However the R2BC methodo-
logy is designed as a semi-automatic process, i.e. the user is
able to check the results. The conversion results, which we
considered incorrect in the above evaluation, in most cases
just require minor adjustments. We presented our methodology
to industry experts. Their feedback and their suggestions for
improvement are described in the following section.

B. Validation with Industry Experts

We presented our methodology for the R2BC and our
proprietary prototype to requirements engineers. Besides the
automated conversion functionality, we implemented a selec-
tion of the functionality depicted in Fig 4 in our prototype.
The prototype contains a screen for the original requirement
and three other screens for the conversion alternatives. A user
can interact with the R2BC prototype by using the “Load
document”, “Start conversion”, “Confirm”, “Skip” and “Export
results” buttons. Also, it is possible to edit the suggested
conversion alternatives manually. This tool concept was as-
sessed by the expert group to be very useful.

Also, we presented the future GUI of the R2BC to industry
experts, as illustrated in Fig 4. The general setup of this
GUI was confirmed by the experts. Among others, experts
recommended to implement a “Clarify with customer” button
into the GUI. This button shall allow to store an unclear
requirement in a separate list. This list of unclear requirements
can be discussed with the OEM after the conversion. To
make sure that the actual question regarding this kind of
requirements will not get lost, the experts suggested to add
a dialog box for taking notes, which should appear once
the “Clarify with customer” button is clicked. This function
shall allow to specify the unclear aspect of the requirement
or to document a question. In case many notes were taken,
this would allow the requirements engineer to remember the
questions, when talking with the customer.

For further improvement, industry experts suggested to
implement a functionality that allows the engineer to focus
only on those conversion results that are likely to be defective.
As shown by the conversion accuracy scores gained during
preliminary experiments, most of the conversion results are
correct and therefore do not need further adjustment. Ac-
cording to the suggestion of the experts an algorithm, that
works in the background could calculate the probability of
the correctness of the conversion results, which would last in
a reliability measure. Hence, all conversion results above a
certain threshold would be considered reliable and therefore
would not need to be reviewed. Instead, only those conversion
result that have a value below this threshold, should be
reviewed by the requirements engineer. This function would
allow to work more efficient with the R2BC.

In conclusion, industry experts assessed our proprietary
developed R2BC prototype as useful and promising. Their
feedback showed, that usability and efficiency are key for a
successful implementation of the R2BC. Our next version of
the R2BC will implement the presented suggestions for im-
provement alongside with other features, to serve practitioners
best at their daily tasks.

V. RELATED WORK

Arora et al. developed an approach for the automated
checking of conformance of natural language requirements
to boilerplates based on NLP techniques. They introduce a

51ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany

generalizable method for casting templates into NLP pattern
matchers. For this purpose, they translate common templates
into a BNF (Backus-Naur form) grammar. Afterwards, these
grammars are implemented as JAPE pattern matching rules for
checking template conformance. According to Arora et al. the
approach provides a robust and accurate basis for checking
conformance to templates [1].

Farfelder et al. provide requirements engineers with predefi-
ned boilerplates and a domain ontology for the documentation
of high-quality requirements during elicitation. To start the
documentation with DODT, the requirements engineer uses
the GUI and chooses from a set of predefined boilerplates.
Subsequently DODT is accessing a domain ontology, which
contains all available words for the editable parts of the chosen
boilerplate. The requirements engineer selects the required
words from the list and defines by this the requirements.
DODT is based on NLP techniques [6].

Schraps and Bosler present an approach to extract know-
ledge from software requirements and to transfer it into a
requirements ontology. They use NLP techniques to annotate
requirements first. Second, a pattern recognition algorithm
is searching for predefined patterns within the grammar of
the requirements. As a consequence, all parts of the requi-
rements which fit into these patterns are transferred into
the requirements ontology. By this approach Schraps and
Bosler are aiming at the elimination of inconsistencies between
specification and software models [12].

Fockel et al. describe a methodology for the documentation
of functional requirements with boilerplates. According to this
methodology an overall function is decomposed into its leaf
functions. The deployment of boilerplates together with this
methodology leads to a complete model of the requirements
specification. To enable an efficient deployment of the boi-
lerplates and the methodology Fockel et al. developed a tool
support, called ReqPat. ReqPat can be integrated in commer-
cial tools like IBM Rational DOORS. This tool does not only
support the user during the documentation of requirements,
it also tests the quality of the requirements automatically.
Moreover, ReqPat is able to transfer boilerplates compliant
functional requirements into modeling tools (e.g. SysML/UML
tools) [7].

None of the presented approaches enables a semi-automated
conversion of random natural language requirements into
predefined boilerplates. While [6] and [7] present methods and
tool support for the documentation of requirements with boi-
lerplates right from the beginning, our experience shows, that
automotive suppliers receive requirements, which comply to
different styles of boilerplates or do not comply to boilerplates
at all. Natural language requirements have to be converted
into boilerplates first, before one can benefit from their semi-
formal nature. The R2BC provides a flexible and efficient way
to convert random requirements into predefined boilerplates.
This is a preparatory stage for machine-readability. As a conse-
quence, these requirements can be processed automatically in
further product development processes, e.g. in an automated
delta analysis. Moreover, the R2BC methodology aims at high

usability. This will allow requirements engineers, who have
no experience in NLP, to take advantage of this beneficiary
technology.

VI. SUMMARY AND OUTLOOK

In this work, we presented the Requirements to Boilerplates
Converter (R2BC), which is a prerequisite for an automated
delta analysis. The R2BC is a novel approach for a semi-
automated conversion of random natural language require-
ments into predefined boilerplates. To achieve this task, we
applied NLP and a proprietary developed converter. Alongside
the technology, we provided future users with a methodology.
During preliminary experiments the R2BC prototype proces-
sed large documents with up to 567 pages within seconds
and achieved high precision in requirements identification
and conversion accuracy scores. The sound results prove the
effectiveness of our approach. In addition to that, industry
experts evaluated our proprietary developed R2BC prototype
and the methodology as highly useful and promising. Our
future activities are focused on the improvement of the R2BC.
To this end, we will use the conclusions from preliminary
experiments and the feedback from industry experts. Above
all, we will focus our effort on the development of a concept
and tool support for an automated delta analysis.

REFERENCES

[1] C. Arora and M. Sabetzadeh and L. Briand and F. Zimmer. Automated
Checking of Conformance to Requirements Templates using Natural
Language Processing. IEEE, 2015.

[2] H. Cunningham and D. Maynard and K. Bontcheva and V. Tablan. GATE :
A Framework and Graphical Development Environment for Robust NLP
Tools and Applications. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics (ACL 2002), 2002.

[3] H. Cunningham and V. Tablan and A. Roberts and K. Bontcheva. Getting
More Out of Biomedical Documents with GATE’s Full Lifecycle Open
Source Text Analytics. PLOS Computational Biology, 9(2), 2013.

[4] H. Cunningham and et al. Developing Language Processing Components
with GATE Version 8 (User Guide). University of Sheffield, Department
of CS, 2014.

[5] C. Ebert and M. Jastram. ReqIF : Seamless Requirements Interchange
Format between Business Partners IEEE-Software, 29(5), 2012.

[6] S. Farfeleder and T. Moser and A. Krall and T. Stalhane and I. Omoronyia
and H. Zojer. Ontology-Driven Guidance for Requirements Elicitation.
Springer, LNCS 6644, 2011.

[7] M. Fockel and J. Holtmann and M. Meyer. Mit Satzmustern hochwer-
tige Anforderungsdokumente effizient erstellen. In OBJEKTspektrum,
RE/2014, 2014.

[8] ISO, IEC, and IEEE. ISO/IEC/IEEE 29148. Technical report, ISO IEEE
IEC, 2011.

[9] C. Manning and H. Schütze. Foundations of statistical natural language
processing. MIT press, 1999.

[10] F. Ritter and A. Schul. Entwurf und Implementierung einer Werkzeugun-
terstützung zur sprachlichen Analyse und automatisierten Transformation
von Projektlastenheften im Kontext der Automobilindustrie. Bachelor
thesis, FH Dortmund, 2019.

[11] C. Rupp and SOPHIST-Gesellschaft für Innovatives Software-
Engineering (Nürnberg). Requirements-Engineering und -Management,
Aus der Praxis von klassisch bis agil. Hanser, 2014.

[12] M. Schraps and A. Bosler. Knowledge Extraction from German Automo-
tive Software Requirements using NLP-Techniques and a Grammar-based
Pattern Detection. In Proc. of the Int. Conf. on Pervasive Patterns and
Applications, 2016.

[13] K. Zichler and S. Helke. Ontologiebasierte Abhängigkeitsanalyse im
Projektlastenheft. In Proceedings Automotive - Safety und Security
(AUTOMOTIVE 2017), GI-LNI, 269, 2017.

52ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany

