
Towards Computer-Aided
Software Requirements Process

Marina Reich
Technische Universität Chemnitz
Airbus Defence and Space GmbH

Manching, Germany
marina.reich@airbus.com

Tatiana Chuprina
fortiss GmbH

München, Germany
chuprina@fortiss.org

Vivek Nigam
fortiss GmbH

München, Germany
nigam@fortiss.org

Abstract—It is a consensus that projects that start from good
requirements have greater chances of success. Clearly specified
requirements lead to better feature development, validation and
verification. Unfortunately, many avionics product defects can
be traced back to flaws in the Software Requirement Process
(SRP), such as errors in requirements and in the communication
between requirement engineers (SRE) and reviewers (SRR). This
short-paper reports on our first steps towards a Computer-
Aided SRP (CSRP). CSRP relies on three key ideas, leading
to better quality requirements: Domain Specific Requirements
(DSRs), Automated Requirement Quality Checks, and Structured
Feedback. We illustrate CSRP with a use case on the development
of requirements for a software in an embedded avionics system.

I. Introduction

The avionics industry is making efforts to meet the in-
creasing needs of handling requirements for complex avionics
software [1]. It has been long known that many system and
software defects can be traced back to badly written require-
ments [2]. This is also the case with avionics software [3],
[4]. Indeed, the cause of many avionics software defects have
been traced back to requirement engineering (RE) errors, such
as, errors in recognizing requirements, requirements not well
documented, and communication errors within and between
development teams [4].

Therefore, a proper RE process that reduces the chances of
flaws is important for the avionics industry. For the process
design we consider two important observations in industry
(gained within the ASSET1 project): First, the role of the Re-
viewer (SRR) needs stronger guidance. The Reviewer (SRR)
can be a company- internal department ensuring that his
requirements are correctly specified or further developed by
an another department or an external company within the next
development stage. We consider the special transition from
System Requirements to High Level Software Requirements.
Today, the SRR is involved in the development of the re-
quirements of the next development stage and supports with
clarification of provided requirements, but do not follow a
structured procedure. Second, the particular software in the
domain of avionics needs to comply with the objectives of
the DO-178C/ED-12C [5] in order to obtain certification.

1The ASSET Project (Avionic System Software Embedded Technology)
was financially supported by the Aeronautical Research Program V (LuFo V)
of the German Federal Ministry of Economic Affairs and Energy.

This guidance presents the activities to be performed during
SRP with which the objectives shall be fulfilled. Today, the
activities for SRP are not broken down into precise tasks
for job roles (SRE, SRR) in the industrial context. Also, the
activities are not interlinked precisely with the objectives and
the quality of requirements.

Unfortunately, as described above, requirements many times
do not meet the demanded quality. We believe that there are
many reasons for this among which are the following:
• Tight development deadlines leading to sloppy RE;
• Requirements are normally written in natural language.

Although the language used satisfies some criteria, such
as avoiding the use of words, like “should”, the nature of
natural language leads many times to ambiguities and to
requirements with missing information;

• Reviewer feedback, such as request for corrections, is not
standardized by existing process setup. Also, the feedback
is written in natural language, which may lead to feedback
misunderstandings.

We claim that the quality of requirements and of RE
can be improved with a sophisticated and computer-aided
process. This paper describes our initial steps towards the
mitigation of the problems described above by proposing a
Software Requirements Process (SPR), called Computer-Aided
SRP (CSRP), that is supported by automated mechanisms for
requirements quality assurance and structured feedback. Our
CSRP relies on the following three key ideas:
• Domain Specific Requirements (DSR) which are require-

ments containing formal or semi-formal data. Different
types of DSRs are associated to different data. The data is
written by SREs using forms and graphical interfaces which
resemble the usual structure of the requirement. Instead of
using natural language, the data in a DSR have precise
meaning, enabling a number of automated quality checks;

• Automated Quality Checks, which rely on the (semi-)
formal data in DSRs to check automatically for errors in
the quality of requirements. This not only facilitates the
reviewing work, but also turns the process more agile, as
SREs can obtain feedback on the quality of requirements
before interacting with the SRRs. We illustrate the checks
here with two types of DSRs (Mode and Signals);

• Structured Reviewer Feedback from the SRRs to the

75AvioSE 2019: 1st Workshop on Avionics Systems and Software Engineering @ SE19, Stuttgart, Germany

SREs. Instead of simply communicating the review of
requirements in natural language only, reviews in CSRP
are categorized according to the quality parameter that is
not being satisfied. We argue that such feedback reduces the
communication errors within the requirement engineering
processes, thus leading to better quality requirements.
We illustrate the CSRP by a simple proof of concept

example of an embedded system examined in the ASSET
project. We start by reviewing relevant literature in Section II.
We describe the general process of the CSRP in Section III and
discuss DSRs in Section IV. We describe a case-study of an
embedded component for avionics in Section V. We conclude
this short-paper by pointing out to future work in Section VI.

Finally, we point out that we implemented part of the ma-
chinery described in this paper in the tool AutoFOCUS3 [6].

II. RelatedWork

We can roughly classify Requirement Engineering (RE)
literature into three different categories: Natural-Language
Based Requirements (NLBR); Formalized Requirements; and
Pattern-Based Requirements. We detail this literature below.

The literature in NLBR uses textual requirements being
closer to the actual industry practice. Therefore, the proposed
methods implementing a type of Controlled Natural Language
based on Natural Language Processing (NLP), e.g., ensuring
active voice, can be directly applied in existing practices.
Achour classifies in [7] methods in NLP in three categories:
lexical, syntactic and semantic. The general goal is to interpret
the meaning of sentences by identifying sentence objects and
constructing relations among these objects. They can check,
for example, when some sentences are ambiguous or do not
comply with RE practices. Some commercial tools are offered
to industry already, e.g., [8], [9]. However, given the informal
nature of natural language, it is not possible to capture the
exact intended semantics of textual requirements.

The literature on formalized requirements assumes that
requirements are specified in some formal language, such as
Linear Temporal Logic [10] formulas. The advantage of this
approach is that a large number of properties can be for-
mally verified using techniques, such as model-checking. The
disadvantage is these methods are two-fold: Firstly, writing
such requirements is very cumbersome and therefore, have
not been widely adopted in practice. Secondly, the types of
requirements that can be written is also constrained by the
formal language used. For example, non-functional require-
ments cannot be specified in LTL.

The third type of approach, in which this paper is also
included, is the Pattern-Based Requirements. Instead of writ-
ing requirements as formal specifications, SREs use pre-
established requirement patterns. Patterns may be textual-
like specifications using a Controlled Natural Language [11]–
[13], e.g., the sentence written with a particular structure;
Patterns may also be graphical representations, using diagram
notations, such as UML and Sys-ML, and inspired by model-
based approaches [14], [15].

S
R
R

S
R
E

A
u
t
o
m
a
t
io
n

Software

Requirements

Standard

Start System

Requirements

Development of

High Level

Requirements

High- Level

Requirements

Review:

Manual

checks

Proceed back

to SRE

Analysis:

Automated

checks

NOT

OK

OK

Fig. 1. Computer-Aided Software Requirements Process for HLRs. The
Process for LLRs is similar and follows once HLRs have been developed.

Textual-like patterns [11]–[13] provide a general set of
textual patterns that can be mapped to formal specifications
expressed in LTL and its extensions. Requirements are written
in natural language, but still become formalized. The disad-
vantage is that the types of patterns is constrained by the
underlying formal language.

This paper is inspired by the model-based Integrated Re-
quirements Analysis (MIRA) framework [14], [15]. A key
difference is that, while MIRA proposes methods for for-
malizing textual requirements, by using Message Sequence
Charts (MSC) or even logics, such as CTL, here we identify
templates that resemble closely usual textual requirements.
Thus, by using our templates, a SRE does not have significant
additional effort, such as writing MSCs or CTL formulas, in
developing requirements, while still profiting from automated
quality checks. Finally, our methodology is more general than
MIRA, as it can be used in development processes different
from model-based Engineering processes.

In comparison to NLP methods we do not analyze for
syntactical quality, but we structure requirements to ensure
their quality using automated methods based on well defined
semantics. The requirement’s structure and its associated se-
mantics is domain specific. This allows us for a finer analysis
of requirements, e.g., consistency and completeness.

III. Computer-Aided Software Requirements Process

As pointed out in the Introduction, key sources of problems
involving requirements are errors in communication and errors
in requirements. We strongly believe that many of these errors
can be mitigated by adding automated support to the SRP.

Figure 1 depicts the workflow of our CSRP. It complies
with the DO-178C/ED-12C objectives. In particular, System
Requirements and Software Requirements Standards are given
as input to the SRP. High-Level Requirements (HLRs) and
Low Level Requirements (LLRs) are the output of the process.
Moreover, the HLRs and LLRs shall satisfy some quality
criteria, e.g., unambiguity, verifiability.

SREs and SRRs carry out the process, where SREs develop
requirements, while SRRs review requirements in order to
assure their quality. These roles are reflected in Figure 1.
Our process contains a third role of automation. Automation
includes simple checks, such as (those proposed in [15])
checks whether each requirement has an ID, an author, a

76AvioSE 2019: 1st Workshop on Avionics Systems and Software Engineering @ SE19, Stuttgart, Germany

Fig. 2. Illustration of a Structured Reviewer Feedback template.

rationale, but also more complex ones, like automated checks
for ambiguity, consistency, completeness. We illustrate some
of these automated checks in Section IV.

From the given system requirements, SREs write HLRs.
These HLRs can be textual requirements or DSRs which
resemble the textual requirements, but enable more automated
checks. HLRs are not manually reviewed by SRRs until all
suitable automated checks have been satisfied. Whenever an
automated check is not satisfied, an error message is returned
proving further details for the error. In this way, the SREs
can immediately have a feedback on the quality of the written
HLRs without the need of the SRRs assessment. This saves
time in the SRP as it reduces the number of reviewing cycles
in the SRP and also ensures the quality of requirements.

Once all checks have been satisfied, the SREs can forward
the developed HLRs to the SRRs for reviewing. The SRRs
carries out reviewing that is not captured by the automated
checks. For example, the consistency of names or the lan-
guage used in the textual requirements. In order to guide the
reviewer and improve the process, we also developed pre-
defined feedback templates. A partial template is depicted in
Figure 2. Instead of writing reviews as a document, SRRs fill
the feedback template containing more structure. This helps to
ensure, that SRRs have taken into account all relevant quality
parameters and also helps SREs better understand the feedback
provided, thus mitigating errors in communication.

LLRs are developed once the HLRs are approved, follow-
ing same strategy, namely, SREs develop requirements with
automated support and reviewer feedback. However, the types
of automated checks may be different as LLRs shall satisfy
other quality parameters, e.g., contain enough information for
development and verification.

IV. Domain Specific Requirements and Automated Checks

The greater the number of automated checks, the greater is
the chance of obtaining higher quality requirements. However,
the number of automated checks depends on the level of
formalization of the requirements. On the one hand, informal,
textual requirements only allow for simple checks, such as
the presence of rational, id numbers, while more complicated
checks such as consistency, completeness has to be carried
out manually. On the other hand, formal requirements written
in a formal languages, such as LTL specifications [10], allow
for more complicated checks to be carried out automatically
using automated tools. However, formal requirements are not
widely used in practice, as they are far more laborious to write,
requiring many times expertise knowledge.

Fig. 3. DLUF Mode Automaton

Our hypothesis here is that specially tailored requirement
templates for specific domains, called Domain Specific Re-
quirements (DSRs), can support a large number of automated
quality assurance checks and at the same time be used in
practice. This is because, while data is structured or even
formalized, the template used in DSRs resembles closely the
textual requirements written for the particular domain.

Different DSRs will have different templates. The challenge
is, therefore, to develop requirement templates that resemble
textual requirements, but at the same time allow for greater
number of automated checks. We illustrate DSRs next with
two examples, including their supported automated checks.

A. Two Examples of DSRs

Our first example of DSR is for the specification of the
modes of an embedded system and the second example for
the specification of the signals of an embedded system.

a) Mode DSR: Mode requirements normally contain
a diagram resembling a state transition system. Modes are
represented in the diagram as states and arrows from states are
drawn representing the allowed mode transitions. Moreover,
the conditions when the transitions can occur are specified
(normally, in LLRs, though) in text. In embedded systems,
conditions are based on the values of the signals of the
embedded system. Figure 3 depicts such a diagram.

Unfortunately, the diagram with the state transition system
does not allow any automated checks to be carried out as the
diagram cannot be parsed by a machine. We propose instead
to directly write the diagram as a state-automaton using the
machinery provided by AutoFOCUS3. The effort required by
an SRE to write the state-automaton is similar to the effort
of drawing the diagram. However, the state-automaton can be
parsed by AutoFOCUS3 and automated checks can be carried
out, which were not possible with the diagram alone.

b) Signals DSR: Signals are normally specified textually
by sentences of the following form: “The system shall contain
an input signal called s of type int and ranging from [0, 255].”
This textual requirement contains the name of the signal, the
type of data transmitted in the signal and its range. A signal
requirement that does not contain, for example, the type of the
signal, would be ambiguous, as it would allow for both integers
and floats to be transmitted. Unfortunately, it is not possible to
perform this check automatically as a machine cannot parse,
in general, this information from the textual requirement.

77AvioSE 2019: 1st Workshop on Avionics Systems and Software Engineering @ SE19, Stuttgart, Germany

The signals DSR contains a table of the form:

Name I/O Type Lower Range Higher Range
s input int 0 255

Notice that the effort required by the SRE to fill in this table
is similar to the effort required to write the sentence above.

B. Automated Checks

Some checks can be performed taking into account each
DSR individually, while others take into account both DSRs.
In both cases, some quality criteria, such as Comprehensibility,
Modifiability, Good Structuring are inherited by the formal
nature of state automaton in Mode DSRs and of signals table
in Signal DSRs.

We describe some automated checks for Mode DSR and
elide the checks for Signal DSRs due to space limitations. The
checks use standard machinery from automata theory [16].
• Ambiguity: It shall not be possible to transit from a

mode to more than one mode with the same conditions.
This property is reduced to checking that the mode state
automaton is deterministic [16].

• Verifiability: It is possible to verify each transition of the
state automaton without to modify it. In particular, for each
transition, it is possible to state the starting mode, the values
of the signals and the expected final mode.

• Consistency: This quality criteria can also be checked by
using machinery available for state-automaton. For exam-
ple, we check whether all modes can be reached using state
reachability algorithms available in automata theory [16].
For Signal DSRs, we can also check for these quality

requirements using the information available in the signals
table. For example, it is not consistent if the lower bound
is greater than the upper bound. Or it is ambiguous if some
fields in the table are missing.

Finally, for automated checking of the Completeness of the
Mode DSR we need to use the data available in the Signals
DSR. For example, if a signal s can have values 0,1,2 and a
mode has transitions considering only s == 1 and s == 0, but
no transition with s == 2, then it is not complete.

V. Case Study DLUF

During the ASSET project, one team was engaged with the
development of the Data Link Upload Feed (DLUF) and took
the role of SRE. The customer of the developed software was
the SRR.

DLUF description: In the context of avionic systems, the
Data Link may be used by several so-called Data Link user to
transmit data packets. One or several Data Links users, or more
exactly the data they send, may have a higher priority than
others. Due to the data rate budget, determined by properties
of the Data Link in its selected operation mode (which may
also dynamically change), packets from lower priority could
prevent packets of higher priority to be transmitted if the
budget is exceeded.

We summarize the results of the two main aspects of our
investigations, the CSRP and the DSR usage:

SRP: The CSRP significantly reduced the personal meet-
ings. The review took 36% of the total development time. 8%
of the time were spend with the improvements according to
SRRs feedback.

DSR: To all requirements at least one DSR was as-
signed. Several System Requirements contained information
that needed to be split into two or more different DSRs.

VI. Conclusions and FutureWork
This paper discusses our initial results towards the devel-

opment of a CSRP. In particular, this process is supported
by Domain Specific Requirements, Automated Checks and
Structured Reviewer Feedback. One key motivation which
differentiates us to other proposals is the use of requirement
templates that closely resemble textual requirements written
in practice, but allow for automated checks. We describe our
first experiences with this approach in an avionics case-study.

As future work, we are identifying a suit of DSRs expanding
on the ones we described here. In particular, we are aiming
for DSRs used for non-functional requirements, such as perfor-
mance requirements. We are also currently further developing
our AutoFOCUS3 implementations to support new DSRs and
new automated checks. Finally, we are also envisioning a
refinement of the process described here with information on
the dependency of DSRs. For example, the checking of the
completeness of the mode DSR is only possible once the
signals DSR is available. Including these dependencies into
the process will also help guide SREs and SRRs in order to
profit the most from automated checks available.

References
[1] F. A. A. U.S. Department of Transportation, “Requirements engineering

management handbook, final report,” 2009.
[2] S. P. Miller, A. C. Tribble, M. W. Whalen, and M. P. Heimdahl,

“Proving the shalls,” Int. J. Softw. Tools Technol. Transf., vol. 8, no.
4-5, pp. 303–319, Aug. 2006.

[3] T. Nakajo and H. Kume, “A case history analysis of software error
cause-effect relationships,” IEEE Trans. on Soft. Eng., 1991.

[4] R. R. Lutz, “Analyzing software requirements errors in safety-critical,
embedded systems,” 2001.

[5] “RTCA DO-178C / EUROCAE ED-12C: Software Considerations in
Airborne Systems and Equipment Certification,” Standard, 2011.

[6] V. Aravantinos, S. Voss, S. Teufl, F. Hölzl, and B. Schätz,
“AutoFOCUS 3: Tooling concepts for seamless, model-based
development of embedded systems,” in ACES-MB ’15, 2015.

[7] C. B. Achour, “Linguistic instruments for the integration of scenarios
in requirement engineering 1 (position paper),” 1997.

[8] Ravenflow, “Ravenflow,” 2018. http://www.ravenflow.com/
[9] the REUSE company, “Requirements quality suite,” website, called

2018. hhttps://www.reusecompany.com/requirements-quality-suite
[10] A. Pnueli, “The temporal logic of programs,” in FCS, 1977.
[11] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property

specifications for finite-state verification,” in ICSE ’99. 1999.
[12] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning

qualitative, real-time, and probabilistic property specification patterns
using a structured English grammar,” IEEE Transactions on Software
Engineering, vol. 41, no. 7, pp. 620–638, July 2015.

[13] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach
to requirements syntax (EARS),” in RE 2009.

[14] A. Vogelsang, “Model-based requirements engineering for multifunc-
tional systems,” Ph.D. dissertation, TUM, 2015.

[15] S. M. Teufl, “Seamless model-based requirements engineering: Models,
guidelines, tools,” Ph.D. dissertation, TUM, 2017.

[16] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation (3rd Edition). 2006.

78AvioSE 2019: 1st Workshop on Avionics Systems and Software Engineering @ SE19, Stuttgart, Germany

http://www.ravenflow.com/
hhttps://www.reusecompany.com/requirements-quality-suite

	Introduction
	Related Work
	Computer-Aided Software Requirements Process
	Domain Specific Requirements and Automated Checks
	Two Examples of DSRs
	Automated Checks

	Case Study DLUF
	Conclusions and Future Work
	References

