
Clean Code: On the Use of Practices and Tools to
Produce Maintainable Code for Long-Living

Software
Björn Latte

wobe-systems GmbH
Wittland 2-4

24109 Kiel, Germany
bl@wobe-systems.com

Sören Henning
Software Engineering Group

Kiel University
24098 Kiel, Germany

soeren.henning@email.uni-kiel.de

Maik Wojcieszak
wobe-systems GmbH

Wittland 2-4
24109 Kiel, Germany

mw@wobe-systems.com

Abstract—Maintaining a long-living software system is sub-
stantially related to the quality of the code the system is built
from. In this experience report we describe how a set of practices
and tools has been established and used on the early stages of
a project. The approach is based on Clean Code and the use of
well known static code analysis tools. The tools and practices have
been used with an immediate effect of having cleaner code that
is easier to understand in the long term. Additional attention is
given to the cultural aspect that is involved in reaching a mindset
that will allow to set and uphold code quality standards. Reaching
a common understanding is a team effort that requires ”leaving
one’s comfort zone“. Finding common ground can significantly
decide about failure or success in creating maintainable code.

I. INTRODUCTION

Building long-living software involves many decisions
that influence maintainability and extensibility of a system
throughout its life-cycle. In early stages of building a software-
system the focus is often on a certain set of platform technolo-
gies and state of the art patterns. During its following lifetime
the software-system will be challenged by inevitable change
of requirements, increased workload triggering performance
issues, modernization requests due to emerging technologies
and the like.

Evolution and extension of a long-living software often
requires in-depth knowledge about the system which is only
present with senior engineers who have been working on
the system for a long time. Therefore, teams often have a
team historian whose knowledge is used whenever a source
code related question is raised [1]. In many cases this code
knowledge is also necessary due to the state of the code itself.

With the focus mostly being put on technology and patterns
in the early stage of a project, the code itself is given less atten-
tion. While allowing rapid movement and aggressive changes
in the beginning, this will turn up later as hard to understand,
maintain, and enhance code – effectively increasing the time
and cost needed to accomplish the necessary evolution. This
effect is commonly referred to as technical dept, a term coined

This research is funded by the Federal Ministry of Education and Research
(BMBF, Germany) in the Titan project (https://www.industrial-devops.org,
contract no. 01IS17084A–B).

by Cunningham [2]. Additionally, with code that is hard to
understand the potential of a bad fix in case of a bug increases.
Also it will become a problem to provide proper tests with in-
depth coverage [3]. Even more so when tests have to be added
at a later stage.

There are plenty of good papers available on tools to analyze
code for its general quality and also to alert to potential
defects, for example [4]. What we observe though is that often
enough little use is made of the available means to produce
good quality code from the very early stages of a software
project. The same can be observed during the education of
future software engineers, which focuses on algorithms and
architecture but seldom on code quality [5].

Through the introduction of agile software development and
a cultural move towards DevOps, a versatile set of tool-chains
and practices has been established for rapid and constant
evolution of long-living software. We believe that combining
this with clean code [6] and enforcement of quality via build
pipelines and review processes will lead to more maintainable
software systems.

We present an experience report on how achieving high
quality code has been implemented in the early stages of
the project “Titan – Industrial DevOps platform for iterative
process integration and automation” (Titan) [7]. The project’s
goal is to provide a long-living distributed software platform
for high volume data processing. Flow-Based Programming
(FBP) [8] will enable the end-users to model their data
processing graphically without having to write code.

II. PROJECT OUTLINE

The Titan project aims to explore and build the prototype of
a scalable, resilient, and distributed software platform for small
and medium enterprises (SME). Additionally, by transferring
the principles of DevOps into the industrial domain, the
platform is sided by the methods of Industrial DevOps. This
will enable SMEs to use agile processes for a larger number
of roles present even in small organizations. The project is
executed as a cooperation between a software house and
a university. The original proposal for the project already

96EMLS 2019: 6th Collaborative Workshop on Evolution and Maintenance of Long-Living Systems @ SE19, Stuttgart, Germany



included the use of lean and agile methodology during the
research and implementation phase. Also a focus was turned
towards code quality and longevity of the platform.

The Titan platform itself will be made available as open
source software. Open sourcing is aimed at reducing the
vendor lock-in that comes with most other software platforms
used by SMEs. On the other hand, open source software is
tarnished by the perception of being less secure and of lower
quality then commercial software. While the factor of quality
and security cannot be validated for commercial software
without gaining access to source code this insight is possible
for open source.

III. APPROACH

From the very start of the Titan project an approach has been
taken to enforce a route to produce readable and maintainable
code. This approach is based on four factors which are
described in the following.

A. Clean Code and Code Review

The code used to build a software system is often written
by software engineers which come from several backgrounds
and have varying experience. Different parts of a system may
use the same programming language or, as it is the case for
the Titan project, multiple languages: 1) core libraries use C,
2) prototype backend processes Python or Java, 3) frontend
applications JavaScript, TypeScript, and ECMAScript6. Open
source software allows complete access to the code to under-
stand or scrutinize the inner workings of the software. On the
other hand it heavily relies on contributions from the outside
to extend and modify it. Attracting new contributors thus is
highly related to the code being understandable not only to its
original author. Over time many bad experiences of developers
with legacy code have led to the “Clean Code” movement
which has put forth a set of practices and principles that ease
the writing of good code.

Applying and enforcing these practices from the very start
becomes a key point in avoiding technical dept which is hard
to eliminate later on. Besides educating individual developers
about the practices to use, our approach is sided by several
other aspects. One of them is selecting or authoring “code
style guides” appropriate to the programming language of a
(sub)project. The guides are reviewed and agreed on by the
core team of the project. Enforcing style is not limited to
adhering to a fixed style of 1) code formatting, but also in
2) consistent use of language features e.g.: using or omitting
the “this” statement in Java code, 3) naming conventions,
and 4) use of meaningful names. The first two items can
easily be checked and enforced in an automated way using
static code analysis. This can happen inside an Integrated
Development Environment (IDE) or in build pipelines of
Continuous Integration environments. The latter two are only
partially covered by analysis tools and are best addressed by
making use of code review processes. Code that is committed
to any of the repositories of the Titan project is cross-checked
by a second developer before being accepted into the master

branch. If code smells or non compliance are identified, the
original developer and the reviewer enter into a discussion and
resolve the problem by immediate refactoring. This requires
a large amount of openness and trust between the parties
involved in the discussion. The same openness and trust is also
required throughout the whole project team. We experienced
this to be a learning process with a rather steep learning
curve and expect this to be likewise for most teams. The
most prominent issue is overcoming the psychological aspect
involved on constructive criticism and positive feedback.

B. Test-Driven Development (TDD)

Using Test Driven Development, where applicable, from the
start forces developers into certain habits while coding. At the
same time TDD lays the ground for later refactoring. Being
forced to first write a test and then only write as much code
as to make it pass the test will keep developers working in a
very short loop. Classes and functions will be kept short and
focused on the single task that they are intended to perform
again delivering cleaner code. The availability of a test can
be used straight away to refactor the very function that is
currently being worked on, helping the developer in making
changes without breaking the functionality.

In the long term the availability of comprehensive test cover-
age will enable developers to perform larger refactoring [9] of
the code. Lacking tests, changes that break functionality can be
introduced without even noticing. Maintainability diminishes
and the potential for introducing false fixes rises significantly.

C. Static Code Analysis

Static analysis tools analyze the source code with regard
to several aspects ranging from syntax checks to detecting
coding mistakes and security vulnerabilities. Depending on
the programming language, different sets of tools exist for
static analysis. While many tools only target a single aspect
of code quality, other cover multiple aspects. With the latter
some overlap in their functionality can be found.

Even though tools that do static analysis of source code
have been around for a long time they are seldom used
with smaller or prototype projects [10]. Our approach is to
include these tools from the early stages on. Analysis comes in
several forms from syntax checks to detecting coding mistakes
and security vulnerabilities. Depending on the programming
language used for individual subprojects of Titan a combina-
tion of analysis tools to cover multiple aspects is employed.
C code is checked by splint1 and flawfinder2 to detect coding
mistakes and known insecure coding patterns. Additionally,
GNU complexity3 is used on C code to measure and minimize
the code’s complexity with readability and maintainability
in mind. Subprojects using Python are checked with pylint4

and flake85 to enforce code style and formatting as well as

1http://splint.org
2https://dwheeler.com/flawfinder
3https://www.gnu.org/software/complexity
4https://www.pylint.org
5https://gitlab.com/pycqa/flake8

97EMLS 2019: 6th Collaborative Workshop on Evolution and Maintenance of Long-Living Systems @ SE19, Stuttgart, Germany



calculating code complexity and detecting code smells. In
Java-based projects we use a combination of Checkstyle6,
PMD7, and SpotBugs8 to detect code style, formatting, and
partially logical as well as performance and security issues.

We execute these static analysis tools during different phases
of the software development process. Firstly, the software
developer uses them while writing code. In addition to a
manual, regular execution, we integrate the tools into the
Integrated Development Environment if this is supported. Vio-
lations of coding guidelines or potential bugs are automatically
highlighted in the source code. Secondly, the static analysis
tools are executed during the local build process, for example,
via build tools such as Gradle9. Both approaches together have
been proven beneficial as they directly provide feedback on the
quality of code and also serve as a guidance factor. However,
making use of them can not strictly be enforced in this way.
In order to ensure a certain degree of code quality in the
common code base, defined quality gates have to be checked
in a compulsory, automated, and uniform way as described in
the following.

D. Continuous Integration/Continuous Delivery (CI/CD)

Automating tasks that are executed repeatedly and manu-
ally is one of the main objectives when employing DevOps
principles. Directly accompanying the DevOps focus of the
Titan project by making use of automation from the very
beginning for its build environment is the logical choice in
this case. CI also becomes the main step in enforcing code
quality measures. In our approach the former mentioned static
code analysis is performed as a build step in each of the
subprojects build pipelines. Analysis is performed with the tool
or tools matching the programming language of the subproject.
Configurations for the static analysis tools are made part of
the source code of the project. This is done in the form of
configuration files for the static analyzers or directly in the
steps of the declarative pipeline script.

Generally, using declarative pipeline job descriptions that
are handled as checked-in code does enhance the transparency.
Developers can change, add to, and adjust the build steps by
making changes to the declaration. The configuration is not
hidden in a separate system providing the build infrastruc-
ture. Through using GitLab10 as our choice for code hosting
and CI/CD, building and running pipelines becomes a self-
service. Developers gain direct access by adding the declar-
ative pipeline script to their project without further need for
configuration in a separate interface of a CI/CD environment
like Jenkins. Build pipelines that generate artifacts and deliver
feedback to the developer are immediately triggered on the
next push of code to the hosting platform.

Pipeline steps that provide quality gates should be set to fail,
if any of the analysis tools reports flaws or metrics that exceed

6http://checkstyle.sourceforge.net
7https://pmd.github.io
8https://spotbugs.github.io
9https://gradle.org
10http://gitlab.org

the thresholds defined, effectively forcing the developer to
refactor the code right away. With the next improvement cycle
the pipeline possibly can be completed again and artifacts that
meet the set-out standards become available for deployment.

IV. INITIAL RESULTS

Using the approach described above, we observed imme-
diate improvement on code quality and use of secure coding
standards. Even though the Titan project is still in its early
stages this already became evident not only due to the metrics
used, but also during the manual reviews. First commits of
code did seldom meet initially set quality standards. This
observation became especially apparent when first running
GNU complexity on the C code subprojects. During the first
iterations of Titan subproject ujotypes-c11, for instance, 21
functions were reported being above a complexity level of 5,
the set threshold. The number of functions was lowered to 8
within a few iterations. The overall maximum complexity was
lowered from 37 to 13 for the most complex function. With
a complexity value of 37 being considered as: “Difficult to
maintain code”, whereas 13 is to be: “Maintained with little
trouble” [11]. The observed complexities also lead to the result
that a certain amount of complexity is unavoidable and also
acceptable. This threshold of acceptable complexity needs to
be agreed on in the project’s team and needs to be properly
documented for future reference. We found measures to lower
complexity in an iterative process of learning and communi-
cation. This required a culture of openness that first had to be
established within the project group. In many instances this
included “leaving ones own comfort zone” and to adjust a
behavior, improve a skill, or learn something new. For some
project members this is harder to achieve than for others, even
if all share the common goal of creating a long-living software
system. Setting goals, achieving common understanding, and
defining code quality standards is a team effort that includes a
lot of controversy. Finding common ground and committing to
a common understanding can significantly decide about failure
or success in creating maintainable code. With the intention
of open sourcing the project, the same level of openness and
common understanding will have to be achieved in a much
larger community.

In our Java-based subprojects12, static analysis tools were
not introduced until after an initial prototyping phase. In this
context, we also decided to apply established code formatting
guidelines. Using the tool Checkstyle forced us to comply with
the code style guidelines as all violations were reported as er-
rors. Besides formatting rules, PMD and Checkstyle identified,
for example, for the Control Center History subproject [12]
66 issues of other origin. Most of them can be assigned
to categories such as Error Prone, Code Style, or Design.
SpotBugs, which also targets logical bugs and exploitable
security vulnerabilities, did not find any additional issues.
With integrating the tools as automatic checks into the CI/CD

11https://git.industrial-devops.org/titan/related-projects/ujotypes-py
12https://github.com/cau-se/titan-ccp

98EMLS 2019: 6th Collaborative Workshop on Evolution and Maintenance of Long-Living Systems @ SE19, Stuttgart, Germany



pipelines, all initially detected 1716 issue were addressed and
the code refactored accordingly. We conclude that using static
analysis tools enormously supports producing clean code.
Moreover, we were able to notice that without these tools
several aspects of clean code are easily left unconsidered. This
primarily affected aspects of readability, comprehensibility by
others, and maintainability. These aspects come from areas,
where developers assume that their personal style will also
appeal to others. On top of this the code analysis revealed
performance issues and potential vulnerabilities.

A main drawback in our opinion can be found in the usabil-
ity of the feedback provided by the static analysis tools and
the visibility of results in the CI/CD environment. The static
analysis tools reported flaws, insecure coding or exceeded
complexity but mostly gave little guidance as to how to counter
the reported issue. The lack of guidance leads to a situation
where individual developers repeatedly, and individually go on
a search for a solution to the same problem potentially with
a varying outcome. The same observation has been made by
Johnson et al. [10] in the paper on: “Why Don’t Software
Developers Use Static Analysis Tools to Find Bugs?”. The
second aspect of lacking visibility is only partly addressed
by our chosen toolchain. While code review processes are
enhanced by the features provided by the GitLab code hosting
platform the results of static analysis tools stay hidden in
the job logs of build pipelines. A more visible and guiding
representation of results would be beneficial to the developers
which coincides with an observation made by Sadowski et al.
[13]: “For a static analysis project to succeed developers must
feel they benefit from and enjoy using it”.

V. CONCLUSION

Based on our experiences during the early stages of the
Titan project we presented an approach that improved source
code quality from the beginning of software development on.
Our goal of reaching clean code and essential maintainability
in a long-living software platform is substantially supported.
The project did not yet experience outside evolutionary pres-
sure besides the internal iterative aspect of agile processes,
because of this the chosen approach requires further validation
throughout the project. None the less we expect using a set like
the presented to help avoid degradation of maintainability. The
choice of procedures and practices is more a cultural than a
technical issue. There are plenty of tooling solutions available
that have a long history and proven background. Making best
use of them though requires a mindset of openness between
developers to create acceptance. A common understanding has
to be reached as to why code needs to adhere to committed
quality standards. The DevOps culture and the agile software
development practices provide a fruitful ground for employing
the described approach.

Not only clean code aspects can degrade over time, but also
quantitative quality characteristics such as performance have
to be maintained for long-living software. As future work, we
therefore plan to integrate performance benchmarks into the
CI/CD infrastructure as suggested by Waller et al. [14].

REFERENCES

[1] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining
mental models: A study of developer work habits,” in
Proceedings of the 28th International Conference on
Software Engineering, ser. ICSE ’06, Shanghai, China:
ACM, 2006, pp. 492–501.

[2] W. Cunningham, “The WyCash Portfolio Management
System,” SIGPLAN OOPS Mess., vol. 4, no. 2, pp. 29–
30, Dec. 1992.

[3] T. J. McCabe, “A complexity measure,” IEEE Trans.
Softw. Eng., vol. 2, no. 4, pp. 308–320, Jul. 1976.

[4] P. Tomas, M. Escalona, and M. Mejias, “Open source
tools for measuring the internal quality of java software
products. a survey,” Computer Standards & Interfaces,
vol. 36, no. 1, pp. 244–255, Nov. 2013.

[5] D. Schmedding, A. Vasileva, and J. Remmers, “Clean
Code – ein neues Ziel im Software-Praktikum.,” in
Tagungsband des 14. Workshops ”Software Engineer-
ing im Unterricht der Hochschulen” 2015, (Dresden,
Germany), ser. CEUR Workshop Proceedings, Aachen,
2015, pp. 81–91. [Online]. Available: http://ceur- ws.
org/Vol-1332/paper 10.pdf.

[6] R. C. Martin, Clean Code: A Handbook of Agile Soft-
ware Craftsmanship, 1st ed. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2008.

[7] Titan Project, The industrial DevOps platform for agile
process integration and automatision, Accessed: 2018-
12-19, 2018. [Online]. Available: https : / / industrial -
devops.org.

[8] J. P. Morrison, Flow-Based Programming, 2nd ed.: A
New Approach to Application Development. Paramount,
CA: CreateSpace, 2010.

[9] M. Fowler, Refactoring - Improving the Design of
Existing Code. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1999.

[10] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge,
“Why don’t software developers use static analysis tools
to find bugs?” In Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13, San
Francisco, CA, USA: IEEE Press, 2013, pp. 672–681.

[11] Free Software Foundation, Inc., GNU complexity man-
ual, Accessed: 2018-12-19, 2011. [Online]. Available:
https://www.gnu.org/software/complexity/manual/.

[12] S. Henning, W. Hasselbring, and A. Möbius, “A scal-
able architecture for power consumption monitoring in
industrial production environments,” in IEEE Interna-
tional Conference on Fog Computing, in press, 2019.

[13] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-
Cushon, and C. Jaspan, “Lessons from building static
analysis tools at Google,” Commun. ACM, vol. 61, no. 4,
pp. 58–66, Mar. 2018.

[14] J. Waller, N. C. Ehmke, and W. Hasselbring, “Including
performance benchmarks into continuous integration to
enable DevOps,” SIGSOFT Softw. Eng. Notes, vol. 40,
no. 2, pp. 1–4, Mar. 2015.

99EMLS 2019: 6th Collaborative Workshop on Evolution and Maintenance of Long-Living Systems @ SE19, Stuttgart, Germany


