
A Survey of Refactoring Detection Tools
Liang Tan

Philipps-Universität Marburg
Programming Languages and Tools

Marburg, Germany
tan@staff.uni-marburg.de

Christoph Bockisch
Philipps-Universität Marburg

Programming Languages and Tools
Marburg, Germany
bockisch@acm.org

Abstract—Several tools for detecting refactorings in the code
exist and have been evaluated in the literature. However, we
found that the benchmarks used for the evaluation so far are
incomplete and therefore, the validity of the previous evaluations
is at stake. While our completed benchmark largely confirmed the
previous results, in particular confirming that RefactoringMiner
generally outperforms its competitors, we also identified a weak
spot of RefactoringMiner that was not noted before: Refactorings
of the type Move Class and Rename Package are frequently
classified falsely. In this paper we discuss the reasons for this
wrong classification and outline a possible fix, which potentially
boosts the overall precision and recall of RefactoringMiner to
over 95%.

Index Terms—Refactoring Detection, Reproduction Study,
Move Method, Rename Package, RefactoringMiner

I. INTRODUCTION

During software upgrades and maintenance, programmers
frequently need to review code, e.g., to fix bugs or to identify
how to implement new features. A primary task during a
code review is understanding the code structure and logic.
If code changed since the last review, developers often also
need to understand the change to update their understanding.
Such code changes, in particular to the code structure—
i.e., to improve the internal code quality or prepare future
extensions—, are often realized by means of refactorings [1].

The technique of refactoring software system has been
around for a long time already, however, the term was probably
coined in 1989 by Bill Opdyke and Ralph Johnson [2]. It
has gained wide adoption especially in the agile software
development community, marked by the popular book by
Martin Fowler et al. [1]. A refactoring has the special property
that it only changes the code’s structure without changing
its external behavior. Therefore, knowing a refactoring has
been applied is important such that reviewers recognize that a
change was not to the software’s functionality. Also knowing
which particular refactoring has been applied is useful, since
refactorings typically are associated with a specific intention
hinting, e.g., at the kind of extension being prepared.

Unfortunately, developers rarely document it when refac-
torings are applied. While it would be easy to automatically
document refactorings when they are applied using a tool,
manual refactorings are still very common. As a consequence
this information is not immediately available to reviewers
[3]. To counter this, several tools have been developed for
automatically identifying refactorings that have been applied.

We have performed a common evaluation of these tools
to make them more broadly comparable and have confirmed
that the tool RefactoringMiner [4] shows the best results and
identifies refactorings rather reliably in most cases. However,
in our study applying refactoring detection tools to 55 code
versions, we found some strange phenomena. Particularly,
RefactoringMiner has problems distinguishing between the
refactorings Move Class and Rename Package. As we will
discuss, the evaluation by the original tool developers was
incomplete and therefore this problem did not surface before
and has not been investigated yet.

In this paper we first present a full evaluation using a
completed benchmark, and then focus evaluating the tool
RefactoringMiner, which performed best in this evaluation.
This second evaluation reveals that RefactoringMiner performs
uncharacteristically low for Move Class and Rename Package.
As we will discuss, this is founded jointly in the nature of these
refactorings and the mode of operation of RefactoringMiner,
which is to analyze only the diff between versions of the
code in a software configuration management repository. The
eventual goal of our work is to understand the workings of
tools contributing to the evolution and maintenance of long-
living software systems.

II. REFACTORING DETECTION IN A NUTSHELL

When reviewers inspect code, they will typically look at
the current version and focus on code that changed during
the previous review. Since refactorings often result in mov-
ing code, some code may now be in a different place and
therefore appear to be new. Thus, reviewers will focus on
understanding this code and possibly attempt to ensure its
internal quality, without recognizing that this code has already
been reviewed—just in another context.

Today, it is a common standard to use software configu-
ration management like Git to keep track of code changes,
including refactorings. Reviewers, therefore, can easily access
the changes by looking at the difference between two versions
in Git. But, unless documentation of the applied refactorings
is explicitly added, they will only see, which lines have been
added, removed or changed. In this case, reviewers will either
not be able to properly understand the reason of the code
change, which can lead to a loss of efficiency and misjudgment
during code reviews. Or they need to analyze the diff more

100EMLS 2019: 6th Collaborative Workshop on Evolution and Maintenance of Long-Living Systems @ SE19, Stuttgart, Germany



closely to recognize that several of the changes considered
together form a specific refactoring.

For example, consider that the Extract Method refactoring
has been applied: In this refactoring, a sequence of statements
is cut out of the middle of a method and placed into a new
method; a call to this method is then placed in the original
location of the statement sequence. The new method would
appear to be added and therefore it would be assumed to
require a thorough review. Looking at the diff for this change,
it would be possible to see that the body of the new method
matches the lines that have been removed in another place and
that a call to the new method has been inserted at the same
place.

Recognizing the Extract Method refactoring in this way
may sound trivial. However, often the commit discipline of
developers is such that multiple refactorings are applied at
once and committed jointly, possibly even mixed with func-
tional changes. If single refactorings are committed separately,
a large number of commits would have to be investigated,
which is tedious when done manually. Also, e.g., during an
Extract Method refactoring, the new method’s body will not
always be identical to the original code: Accesses to formerly
local variables, fields or methods may need to change, or
the implementation is generalized along with the method
extraction. Therefore, recognizing a refactoring is, in general,
a difficult task.

Figure 1 shows another example, namely applying the Move
Class refactoring, which we will consider in more depth in
the remainder of this paper. This also shows the difference
as well as connection between refactoring and refactoring
detection. Refactoring is a one-way technique to improve code,
taking as input one code version and emitting as output the
new version. Refactoring detection is bidirectional in the sense
that it requires two code versions as input, the new and the
old version (parent and child commits in git), and outputs the
applied refactoring.

There are two major aspects in the process of refactor-
ing detection: code matching and refactoring analysis. Code
matching is the premise for finding refactorings. The differ-
ence between the code in the two versions is the clue of
a refactoring. Finding these clues is the basis of efficient
detection. These clues are further processed by the refactoring
analysis. A quick and accurate determination of the refactoring
type is the ultimate goal of detection.

Many experts and scholars have done research in this
direction and some tools have been developed to detect the
refactoring information (refactoring location and refactoring
type) from the code. Those tools, which can recognize multiple
refactoring types, are summarized in the following subsection.

III. REFACTORING DETECTION TOOLS

In 2000, Demeyer et al. [5] proposed reverse engineering
of reconstructed code and proposed a detection heuristics.
Another relevant development is the increasing availability of
technologies, which enable the detection of refactorings. For
example, Toshihiro Kamiya et al. [6] developed CCfinder, a

Fig. 1. An example of the information involved in refactoring detection.

clone detection technique that consists of the transformation
of input source text and a token-by-token comparison. Since
then, methods for the detection of refactorings and related
technologies have entered a stage of rapid development.

The first refactoring detection approaches focused on spe-
cific refactorings that are relatively simple. Van Ryssel-
berghe and Demeyer [7]—inspired by palaeontological fossil
research—proposed a “software palaeontology” heuristics in
2003. This method paid special attention to the evaluation
of the “Move Method” refactoring. Their work consisted of
comparing different releases of existing source code, analyzing
differences and reconstructing past evolution processes. In
the same year, Malpohl et al. [8] proposed the algorithm
“Renaming Detection”, which is equally applicable to data
description languages such as XML. The detector works with
multiple file pairs, also finding renamings that span several
files. It is part of a suite of intelligent tools for merging
programs exploiting the semantics of programming languages.

After the first concrete approaches to detecting specific
refactorings, theories for more holistic methods have been
developed. Antoniol et al. [9] presented an approach, based
on Vector Space Cosine Similarity (used in machine learn-
ing) of class identifiers, to automatically identify class-level
refactorings between two subsequent releases. The approach
was useful to identify some replacement, merge and split
during the evolution of “dnsjava” 1. It uses a calibration
threshold to influence the precision and recall of the detec-
tion method. An object-oriented design structure difference
algorithm (“UMLDiff”) was proposed by Xing and Stroulia
[10] in 2005. UMLDiff can detect additions, removals, moves,

1See the “dnsjava” homepage: http://www.dnsjava.org

101EMLS 2019: 6th Collaborative Workshop on Evolution and Maintenance of Long-Living Systems @ SE19, Stuttgart, Germany

http://www.dnsjava.org


renamings of packages, classes, interfaces, fields and methods,
changes of attributes and changes of the dependencies among
these entities. Based on the UMLDiff algorithm, JDEvAn
(Java Design Evolution Analysis) [11] can automatically detect
the design changes between two models corresponding to two
versions of a system.

The detection approaches and algorithms proposed by some
early researchers laid a theoretical foundation for later refac-
toring detection tools. Some researchers used the above al-
gorithms and ideas to develop complete refactoring detection
systems, i.e., tools that automatically detect the application of
different types of refactorings in the code. These systems will
be the subject to the study presented later in this paper.

The earliest comprehensive detection tool developed is
RefactoringCrawler by Danny Dig et al. [12] in 2006. This
tool was implemented as a plugin for Eclipse and can detect
seven types of refactorings in Java code, focusing on rename
and move refactoring. In 2010, the tool Ref-Finder, developed
by Kyle Prete and his team, was proposed [13]. This tool
is based on the tool LSdiff (Logical Structural Diff) released
by Kim et al. [14], [15], to compute the delta between two
versions of the source code. Prete and his team used a logic
meta-programming approach to identify complex refactorings
from two program versions and a tool, which they say supports
63 refactoring types. RefactoringMiner was proposed in 2013
by Tsantalis [4], [16] and his research group. It implements a
lightweight version of the UMLDiff algorithm for computing
the differences between object-oriented models independent of
the IDE. It can detect ten kinds of refactorings. In 2017, RefD-
iff was created by Danilo Silva and Marco Tulio Valente [17],
an automated approach that identifies 13 different refactoring
types by inspecting two code revisions in a git repository, using
a similarity index.

IV. AN EVALUATION OF REFACTORING DETECTION

To compare the four most complete refactoring detection
tools discussed above, we created a common benchmark2

to which we applied all tools. In this way, their ability to
detect refactorings is determined using the same code bases,
change sets, and expected results. The benchmark combines
code bases and corresponding changes used in previous studies
to evaluate refactoring detection tools. We improved it to be
applicable to all tools by making it accommodate for the
different forms of input required by the different tools: either
by means of a Git repository or by means of two Eclipse
projects reflecting the code before and after the change.

In Table I, we show the results for this combined benchmark
and for all tools, but limited to only the refactoring types
commonly detected by all four tools (which is only four types).
This confirms the previous results from the literature, namely
that RefactoringMiner performs best among the available tools.
While RefactoringCrawler has a slightly higher precision (96%
rather than 93%) than RefactoringMiner, the latter has a higher

2The benchmark can be accessed online:
https://bitbucket.org/tanliang11/struts/src
https://bitbucket.org/bockisch/jhotdraw/src and https://umrplt.bitbucket.io/

recall (73% compared to 60%). The F1-score computes a
combined measure for precision and recall [18], [19], and (as
can be seen in the table) RefactoringMiner has the highest
ranking in the F1-score.

As said before, this comparison of all tools only considered
the common subset of refactoring types. Because Refactor-
ingMiner produced the best results in this comparison (which
is consistent with the literature), we further focused on this
tool and also determined the precision and recall for all
refactoring types supported by RefactoringMiner (using the
same benchmark applications as before). In this more detailed
benchmark—results are shown in Figure II—the results remain
very good, but diverge slightly from the benchmark presented
above, which was limited to only four refactoring types.
Considering all code bases in the benchmark and all supported
refactorings, RefactoringMiner has a total precision of 94%
and a total recall of 75% (Figure II), which is in line with the
results reported by the original authors.

Although still high, the precision in our detailed benchmark
is lower than in the limited benchmark, while the recall is
higher. Taking a closer look, we identified that Refactoring-
Miner has problems with the two refactoring types Move Class
and Rename Package, as shown in Table II. For these refactor-
ing types, the recall drops to 34% for Move Class, respectively
to 11% for Rename Package. This is inconsistent with the
results previously presented in the literature. The reason is
that the benchmarks previously used were less complete and
even missed out several actually applied refactorings in the set
of expected results.

A. Detection of Move Class and Rename Package

After discovering this behavior of RefactoringMiner, we
wanted to understand it further and conducted a more com-
prehensive and in-depth test for the refactorings Move Class
and Rename Package respectively. Again, we used the original
benchmarks with our extended set of expected results. Since
we specifically focused on the two refactorings, we only
considered samples that contain at least two instances of the
refactoring we are investigating. The test results are shown in
the tables III and IV. The “Number” column in the table refers
to the test samples in the code base to make the experiment
repeatable and the results traceable. A benchmark sample
consists of two versions of a code base, where the second
version is based on the first one but with the refactorings
applied. In the tables, we refer to the two versions by giving
the Git commit number, thus, the base and commit form the
two versions. We also provide the expected number of Move
Class or Rename Package refactorings to be found, as well
as the true and false positives and the false negatives in the
results of RefactoringMiner. Lastly, we present the precision
and recall calculated from these figures.

The data in Table III, presenting the results for Move Class,
show that of four data points the results are significantly
different from the results of the other items in terms of recall.
The excellent results in precision, cannot cover the instability
of recall. The number of undetected Move Class refactorings in

102EMLS 2019: 6th Collaborative Workshop on Evolution and Maintenance of Long-Living Systems @ SE19, Stuttgart, Germany

https://bitbucket.org/tanliang11/struts/src
https://bitbucket.org/bockisch/jhotdraw/src
https://umrplt.bitbucket.io/


TABLE I
RESULTS FOR THE ACCURACY OF ALL REFACTORING DETECTION TOOLS, USING ONLY THEIR COMMONLY SUPPORTED REFACTORING TYPES.

Type True positive False positive False negative Precision Recall F1 score

RefactoringCrawler 47 2 32 0.959 0.595 0.734
Ref-Finder 91 135 79 0.403 0.535 0.460
RefactoringMiner 124 9 46 0.932 0.729 0.818
RefDiff 113 72 57 0.611 0.665 0.637

TABLE II
RESULTS FOR THE ACCURACY OF REFACTORINGMINER USING ALL ITS SUPPORTED REFACTORING TYPES.

Type True Positive False Positive False Negative Precision Recall

Extract Method 28 1 1 0.966 0.966
Inline Method 26 2 0 0.929 1.000
Pull Up Method 19 0 0 1.000 1.000
Push Down Method 10 1 0 0.909 1.000
Move Method 44 4 4 0.917 0.917
Move Class 21 0 44 1.000 0.338
Extract Superclass 9 0 0 1.000 1.000
Extract Interface 5 0 0 1.000 1.000
Move Attribute 85 8 0 0.914 1.000
Rename Package 5 0 39 1.000 0.114
Push Down Attribute 10 0 0 1.000 1.000

Total 262 16 88 0.942 0.749

TABLE III
DETAILED ACCURACY RESULTS FOR REFACTORINGMINER AND THE Move Class REFACTORING TYPE.

Number commit Expect Result True positive False positive False negative Precision Recall

1102923 eclipse-themes 72f61ec 3 3 0 0 1.000 1.000
1107905 elasticsearch f77804d 4 0 0 4 N/A 0.000
1116663 buck 1c7c03d 10 7 2 3 0.778 0.700
1118645 okhttp c753d2e 29 0 0 29 N/A 0.000
1130125 WordPress-Android 9dc3cbd 3 3 0 0 1.000 1.000
1132674 orientdb f50f234 12 4 1 8 0.800 0.333
1134151 gradle 36ccb0f 7 7 0 0 1.000 1.000
1139721 liferay-plugins 78b5475 5 5 0 0 1.000 1.000
1140071 docx4j e29924b 184 184 0 0 1.000 1.000
1147092 neo4j 4beba7b 6 6 0 0 1.000 1.000
1147835 jersey ee5aa50 8 8 0 0 1.000 1.000
1150594 hazelcast f1e26fa 13 13 0 0 1.000 1.000
1152530 hydra 7fea4c9 7 4 0 3 1.000 0.571
1159198 jedis 6c3dde4 26 26 0 0 1.000 1.000

Total 317 270 3 47 0.989 0.852

these four abnormal data points, with a recall of less than 60%,
is 44, accounting for 14% of the total number of refactorings.
(Note that the original authors reported 100% precision and
96.24% recall for Move Class [4].) In two out of the 14
commits, RefactoringMiner did not report any results for Move
Class, which means that we cannot compute the individual
precision for these cases.

This is similar for the results for Rename Package, found in
Table IV. In four out of nine cases, no results were reported at
all and we could not compute the precision. For the remaining
commits, the precision was at 100%. In terms of recall, from

the total 9 samples, RefactoringMiner has a recall below 50%
in 7 cases and even could not find any true positives in 4 cases.
The number of false negatives is in total at 91%. In the original
evaluation of the RefactoringMiner authors, a precision of 85%
and a recall of 100% had been reported for Rename Package
[4].

When investigating the results further, we found that false
negatives for Move Class were often falsely classified as
Rename Package and vice versa. Therefore, we believe that
RefactoringMiner easily confuses these two refactorings.

103EMLS 2019: 6th Collaborative Workshop on Evolution and Maintenance of Long-Living Systems @ SE19, Stuttgart, Germany



TABLE IV
DETAILED ACCURACY RESULTS FOR REFACTORINGMINER AND THE Rename Package REFACTORING TYPE.

Number commit Expect Result True positive False positive False negative Precision Recall

1101310 sonarqube abbf325 2 1 0 1 1.000 0.500
1101296 sonarqube 4a2247c 2 0 0 2 N/A 0.000
1123966 spring-data-neo4j 071588a 27 2 0 25 1.000 0.074
1125333 facebook-android-sdke 813a0b 8 0 0 8 N/A 0.000
1134096 hibernate-orm 44a02e5 3 2 0 1 1.000 0.667
1136729 reactor 669b96c 2 0 0 2 N/A 0.000
1140316 aws-sdk-java 14593c6 3 0 0 3 N/A 0.000
1142116 infinispan 8f446b6 7 2 0 5 1.000 0.286
1157300 android c976598 35 1 0 34 1.000 0.029

Total 89 8 0 81 1.000 0.090

B. Distinguishing Move Class and Rename Package

To understand this, let us start by looking at the definition
of the two types of refactoring.

Move Class: Move a class to another package. The class’s
simple name is not changed, but the file is moved to a different
path and the package statement is changed. The contents of
the class are unchanged.

Rename Package: Rename a package. All Java-files con-
tained in the path of the original package are moved to the
path corresponding to the new package name. The simple class
names stay the same, i.e., the contents of the package does not
change, except for the package statement which now uses the
changed package name.

The descriptions of the two refactoring types are very
similar, namely files are moved to a different path, package
statements change and classes stay otherwise the same. An
essential difference is that in one case only one Java-file is
moved and the rest of the classes in a package stay untouched,
and in the other case, all Java-files and resources are moved
to a new path. Apparently, RefactoringMiner has difficulties
recognizing this difference.

We examined the inner workings of the RefactoringMiner
to further understand this. It simply analyzes the difference
between two code versions using the diff-feature of Git.
Thus, it does not need to perform a comprehensive matching
screening for all the code of the two project versions.

Figures 2 and 3 show the diff output for two samples
in our benchmark in the side-by-side view of Bitbucket.
The refactoring in Figure 2 is reported as Move Class by
RefactoringMiner and actually really shows a Move Class.
The refactoring in Figure 3 is also reported to be Move Class,
however, this time actually a Rename Package refactoring had
been performed. We can see that the diff only shows the
changed file names and package statements. In both cases, the
structure of the diff is identical and it is impossible to judge
which of the refactorings has been applied by using only this
data.

This is not surprising if we recall the definition of the two
refactorings, which both include the step of moving a Java-
file and changing its package statement while leaving the file

otherwise untouched. The difference lies within the context
in which the moved file appears: For Move Class, the class
is moved to a package (and thus, the Java-file is moved to a
path), which already existed before. Except for this one class,
the contents of the original package is left unchanged, and the
package will not disappear after the refactoring. For Rename
Package, the target package (and this path) did not exist before
and the old package disappears.

However, this required context information is not visible in
the diff, which is focused on showing differences in file con-
tents. Whether a directory was newly created or disappeared
in a commit, is not reflected. Likewise, unchanged contents
are not reported, i.e., it cannot be seen if a directory contains
other files than the ones that changed.

V. CONCLUSION

In this article, we have presented an overview of the
history of refactoring detection tools, a description of the four
refactoring detection tools RefactoringCrawler, Ref-Finder,
RefactoringMiner and RefDiff. These are, to our knowledge,
the only tools available today for recognizing a number of dif-
ferent refactoring types at once. For these four tools, we have
presented a common evaluation for a direct comparison of their
performance. As the tool performing best in our evaluation,
we have further-on presented a more detailed evaluation of
RefactoringMiner. Our evaluation largely reflected the results
reported in the literature before, namely that RefactoringMiner
outperforms the other tools with an F1 score of nearly 82%.
For the two refactorings Move Class and Rename Package, we
measured values for precision and recall which significantly
diverge from all other supported refactorings, as well as from
the evaluations presented in the literature so far.

Therefore, we further investigated the approach of Refac-
toringMiner for these two cases and found that the implemen-
tation approach of using only the diff of two code versions on
Git hinders the proper detection of Move Class and Rename
Package. The reason is that the difference of these two
refactorings lies within the content which did not change, and
this is not shown in the diff. For this reason, RefactoringMiner
frequently confuses these two refactorings. We, thus, conclude
that analyzing the diff provided by a version control system

104EMLS 2019: 6th Collaborative Workshop on Evolution and Maintenance of Long-Living Systems @ SE19, Stuttgart, Germany



Fig. 2. Example diff for a Move Class refactoring.

Fig. 3. Example diff for a Rename Package refactoring.

such as Git is powerful for detecting refactorings that do not
depend on the context in which they appear.

If the refactorings Move Class and Rename Package would
be disregarded, RefactoringMiner would even have a preci-
sion and recall of 94% and 98%, respectively, in the eval-
uation shown in this paper. Since the information required
to distinguish between Move Class and Rename Package
(namely which directories have been created or deleted dur-
ing a commit) could be easily obtained, we conclude that
RefactoringMiner—with a simple extension—could in prin-
ciple reach this high level of accuracy.

Since RefactoringMiner does not support detection for all
refactoring types described in the literature, but only for a
select subset thereof, we need to further investigate if this
conclusion holds in general. In the future, diff-based detection
for additional refactoring types should be researched, as well
as additional contexts that are relevant for the distinction of
refactorings.

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code (Object Technology Series).
Addison-Wesley, 1999.

[2] O. William F. and J. Ralph E., “Refactoring: An Aid in Designing
Application Frameworks and Evolving Object-Oriented Systems,” in
SOOPPA. Pough-keepsie: ACM, 1990, pp. 145—-161.

[3] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi, “A
case study on the impact of refactoring on quality and productivity
in an agile team,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 5082 LNCS. Springer-Verlag, 2008, pp. 252–266.

[4] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and Efficient Refactoring Detection in Commit History,”
in 40th International Conference on Software Engineering (ICSE’18).
New York, New York, USA: ACM Press, 2018, pp. 483–494.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactorings via
change metrics,” ACM SIGPLAN Notices, vol. 35, no. 10, pp. 166–177,
2000.

[8] G. Malpohl, J. J. Hunt, and W. F. Tichy, “Renaming detection,” in Pro-
ceedings ASE 2000: 15th IEEE International Conference on Automated
Software Engineering. IEEE, 2000, pp. 73–80.

[6] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
jul 2002.

[7] F. Van Rysselberghe and S. Demeyer, “Reconstruction of successful
software evolution using clone detection,” in International Workshop
on Principles of Software Evolution (IWPSE), vol. 2003-Janua. IEEE,
2003, pp. 126–130.

[9] G. Antoniol, M. Di Penta, and E. Merlo, “An automatic approach to
identify class evolution discontinuities,” in Proceedings. 7th Interna-
tional Workshop on Principles of Software Evolution. IEEE, 2004, pp.
31–40.

[10] Z. Xing and E. Stroulia, “UMLDiff,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering
- ASE ’05. New York, New York, USA: ACM Press, 2005, p. 54.

[11] ——, “The JDEvAn tool suite in support of object-oriented evolutionary
development,” in Companion of the 13th international conference on
Software engineering - ICSE Companion ’08. New York, New York,
USA: ACM Press, 2008, p. 951.

[12] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
Detection of Refactorings in Evolving Components,” in Proceedings
of the 20th European Conference on Object-Oriented Programming.
Springer-Verlag, 2006, pp. 404–428.

[13] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-based re-
construction of complex refactorings,” in IEEE International Conference
on Software Maintenance, ICSM. IEEE, sep 2010, pp. 1–10.

[14] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-Finder,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering - FSE ’10. New York, New
York, USA: ACM Press, 2010, p. 371.

[15] M. Kim and D. Notkin, “Discovering and representing systematic
code changes,” in Proceedings - International Conference on Software
Engineering. IEEE, 2009, pp. 309–319.

[16] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle, “A Multidimensional
Empirical Study on Refactoring Activity,” Proceedings of the 2013 Con-
ference of the Center for Advanced Studies on Collaborative Research,
no. November, pp. 132–146, 2013.

[17] D. Silva and M. T. Valente, “RefDiff: Detecting Refactorings in Ver-
sion Histories,” in IEEE International Working Conference on Mining
Software Repositories. IEEE, may 2017, pp. 269–279.

[18] D. Silva, N. Tsantalis, and M. T. Valente, “Why We Refactor? Con-
fessions of GitHub Contributors,” Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering - FSE 2016, pp. 858–870, 2016.

[19] “Why We Refactor? Confessions of GitHub Contributors,”
visited: 2019-01-09. [Online]. Available: https://aserg-ufmg.github.
io/why-we-refactor/#/

105EMLS 2019: 6th Collaborative Workshop on Evolution and Maintenance of Long-Living Systems @ SE19, Stuttgart, Germany

https://aserg-ufmg.github.io/why-we-refactor/#/
https://aserg-ufmg.github.io/why-we-refactor/#/

	Introduction
	Refactoring Detection in a Nutshell
	Refactoring Detection Tools
	An Evaluation of Refactoring Detection
	Detection of Move Class and Rename Package
	 Distinguishing Move Class and Rename Package

	Conclusion
	References

