
Interdisciplinary System Courses – Teaching Agile
Systems Engineering

Andreas Seitz, Mariana Avezum, Bernd Bruegge
Chair for Applied Software Engineering

Technische Universität München

Munich, Germany
seitz@in.tum.de, m.avezum@tum.de, bruegge@in.tum.de

Stefan Wagner
Institute of Software Technology

University of Stuttgart

Stuttgart, Germany
stefan.wagner@iste.uni-stuttgart.de

Abstract—With the advent of technologies like the Internet of
Things, Industry 4.0 and Cyber-Physical Systems, many software
engineering courses turn into system engineering courses. Recent
advances in technologies such as 3D printing and low-cost
micro controllers enable to teach agile hard- and software co-
design in system engineering courses. In this paper, we describe
Interdisciplinary System Courses (ISC) – a teaching approach
based on interdisciplinary projects, light-weight agile techniques
and solving real problems by integrating industry customers.
We describe our experiences from an exploratory case study
where we applied ISC in a two-week international summer school
with a customer from the aerospace industry. We derive a set of
hypotheses on the effects of ISC.

Index Terms—interdisciplinary, teaching, agile, hardware, soft-
ware, systems course

I. INTRODUCTION

With the advent of technologies such as Internet of Things,
Industry 4.0 and Cyber-Physical Systems, systems engineering
integrates evermore software engineering aspects. These sys-
tems do not only consist of software but also various types
of hardware. This means that we not only have software
engineers in the team but require interdisciplinary work, whose
development process often is different than software.

At the same time, these software/hardware systems are more
and more under the same pressures as pure software systems
to be able to innovate quickly in short cycles. In software
engineering, this gave birth to agile software development,
whose application to hardware development [1]–[3] is still in
its infancy. This makes working together in an interdisciplinary
project difficult.

One approach to reduce this challenge in industry is to
familiarize systems engineering students with these agile
concepts still in their studies. To let participants already
experience these difficulties and to work on making agile hard-
and software development a reality, we propose the format
of Interdisciplinary System Courses (ISC). The idea is to put
participants with different backgrounds – such as computer
science, electrical engineering and mechanical engineering –
in a realistic project setting and let them work together in
an agile way. The format of a summer school outside normal
university constraints allow us to work together in a focused
way while bringing in participants with various backgrounds
and experience levels.

The ISC concept addresses the following three challenges:
1) Interdisciplinary teams with different skill sets, ways of

working and terminology
2) Producing hard- and software prototype system in a few

days up to a few weeks
3) Solving real problems by integrating industry as cus-

tomer and domain experts
In order to achieve these goals, we will present how we

implemented ISC through a 2-week course, overcame commu-
nication problems, and taught the participants to implement
a system consisting of both hardware and software compo-
nents.The paper is structured as follows: Section II deals with
the basics of ISC and shows relevant fields of research. In
Section III, we explain the concept of ISC and its structure.
In the case study in section Section IV, we show how we
applied ISC in a two-week summer school. The exploratory
study enabled us to evaluate the concept of ISC. We present
the general findings and derived hypotheses. The paper ends
with the conclusion in Section VI, where we summarize the
contributions and give an outlook on future work.

II. FOUNDATIONS

An established approach for the introduction not only of
software engineering but also of concepts such as Scrum
are capstone courses, which have been around for a while
[4] [5]. While these have been known to have good results,
introducing interdisciplinary systems engineering and hard-
ware components can directly conflict with Scrum concepts
such as incremental and continuous iterations. To bridge these
challenges, we look into relevant foundations to support the
organization of the ISC course.

A. Systems Engineering Teaching

After the publication of the Agile Manifesto in 2001 [6],
different frameworks appeared as how to implement these
values in practice, the most common of which is Scrum. While
these frameworks spread both in software engineering and in
teaching, the shift has been slower in hardware development.
Hardware development has traditionally used development
processes that go deep into the requirement elicitation, and
many industries use the V-Model as it allows the system and
its interfaces to be completely defined before the system is

11ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany



assembled [7]. This critical need of the industry has influ-
enced systems engineering education, and university capstone
courses usually follow the same development process. A
review of engineering design capstone courses can be found
in [8].

These two different approaches pose a challenge for in-
terdisciplinary courses as participants may not be used to
communicating or working with a different development pro-
cess. While there have been teaching projects where these
differences are managed, such as [9], the system developed
in that study was a highly complex one, which makes it
harder to reproduce the situation. As for industry, it has
also tried to adapt agile practices for hardware development,
however with mixed results [10]. One agile framework that
deals with different development cycles, and the integration
of the components thereof, is Scrum of Scrums.

B. Scrum of Scrums

Systems that involve components from multiple disciplines,
and both hardware and software subsystems, will unavoidably
involve a certain complexity and larger groups than are usually
found in Scrum teams. To adopt Scrum to larger teams, the
Scrum of Scrums method was introduced.

As the name suggests, this consists of layering different
Scrum teams into a new Scrum group, where representatives
of the lower-layer Scrum teams report their status in a second
daily Scrum meeting [11]. This approach helps decompose
not only the developed system into smaller components, but
also the dependencies between the different teams and people
involved. At the same time, it also ensures that the entire
complete team is kept up to date with the project’s status.

Big dependencies on other components is a critical aspect
of hardware development, and thus, reducing these as much
as possible makes it easier to introduce a faster development
process. Furthermore, the Scrum of Scrums framework also
allows for different development cycle lengths for each of
the subsystems involved in the project, which then allows the
hardware and software systems more flexibility in planning
for a development phase that better suits their capabilities and
needs.

C. Tornado Model

When working with different independent teams, it is es-
sential to keep a close eye on system integration. As will be
presented in Section IV, our summer school case study used
the Tornado Model [5] to achieve this. It focuses on using
a scenario-based development approach, useful for teaching
courses, where participants work toward a presentation at the
end of the project.

By selecting a visionary scenario that presents features of all
components in the system, not only does a complete prototype
demonstration become possible, but also the minimal required
interfaces become clear. To further understand and correctly
implement these interfaces, students from each sub-team are
tasked to define and document these in system-wide models,
which can be accessed by all sub-teams. Encouraging the

participants to present formal UML models can present a good
learning opportunity.

Furthermore, they are also presented with informal methods,
which serve the same communication purpose, while giving
the participants a greater creative freedom, and sometimes
being easier for industry clients to understand. The Tornado
Model suggests that participants prepare a Software Theater
of their results [12], which presents an opportunity to record
the presentations, and use it as a communication mechanism
for all project stakeholders.

III. INTERDISCIPLINARY SYSTEM COURSES (ISC)

In the following section we describe the concept, structure
and core values of ISC.

A. Features & Design

The aim of ISC is to bring together participants from
different disciplines to work together on a challenging prob-
lem. The chosen course format is not a traditional one but
a condensed course, which helps the organisational aspects of
having students from different degree programs work together.
The case study presented in Section IV takes place during
the semester break and is aimed at motivated and talented
students who want to expand their horizons. ISC is not part of
a curriculum. Students can apply for this programme and will
then be selected based on their performance and a letter of
motivation. Travel and accommodation costs will be covered
for the participants.

ISC is characterized by the following goals and design
decisions:

(1) Interdisciplinarity: The core of ISC is interdisci-
plinarity. It is no longer sufficient for participants of individual
disciplines to solely work in their one domain. It is necessary
for them to be able to look beyond their subject areas and
collaborate with other participants in other subject areas. Novel
technologies and the fusion of hardware and software require
cooperation across disciplines. The challenge here is different
knowledge and processes. In addition, projects are becoming
more and more demanding and cannot be realized with the
knowledge of a single discipline.

(2) Agile Light-Weight Development Process: With re-
gard to the process, we deliberately opted for a loose, adapt-
able and flexible process. We believe that this freedom can
make cooperation more effective. In spite of all this freedom,
there are also fixed deadlines and delivery times that the
participants have to meet. In ISC we apply the concept of
Chaordic Learning [13]. We give the participants the freedom
to organize themselves, but create order through punctual
structures. The participants are expected to produce a light-
weight prototype of the system by the end of the course.

(3) Challenging Problem of Industrial Partners: To be
able to challenge and motivate the participants of ISC, a real
problem with innovative solution possibilities is required. The
solution must require technical expertise from different fields
and must be dynamically extensible. ISC requires industry
partners to formulate and define the problem on the basis of

12ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany



their expert knowledge. Furthermore, they should be available
for the preparation meeting, design review and final customer
acceptance test. Industry partner integration is also seen as a
motivation source as the participants know that their work will
be further used.

B. Skills & Techniques

To achieve these goals, the participants required core skills
and tools which were taught throughout the course.

Communication & Soft Skills: An important aspect to
address the challenges of interdisciplinary is efficient commu-
nication. The terminology and prior knowledge of the partici-
pants are initially heterogeneous. Their different backgrounds
result fundamentally different ways of working. While com-
puter science and software engineering participants are usually
familiar with agile methods, other participants most often
have no such experience, and thus it is important to provide
them with a relevant theoretical overview and materials, in
order for the necessary terminology to get better understood.
Furthermore, ways and means must be found to facilitate
cooperation between the disciplines.

Videos as Communication Models: A saying goes, a
picture says more than a thousand words. In ISC the motto
is: a video says more than a thousand words. In the course of
ISC, we strongly rely on the use of videos as communication
models.

First, it supports the problem description. Today, the web
offers a variety of videos that can be used to illuminate and
underscore problems, especially useful for cases where logistic
or organisational constraints make it hard for the students to
physically see the problem. Many problems today are solved
by analog or conventional approaches, which can be shown to
the students through videos. In order for the students in ISC
to reach their goal and tackle these problems digitally, it is
important that they understand the problem domain first.

Second, videos are also used to visualize solution concepts.
The participants of ISC record their ideas in videos and share
them with their team members and project partners from
industry.

On-Site Application Domain Expert: The participants of
ISC are solution domain experts but usually have little prior
knowledge of the application domain. To close this gap, ISC
relies on the fact that an expert of the application domain
is available for questions. This expert can thus influence the
developed solutions and ensure that the developed systems
also meet expectations. In direct, non-formal communication,
the requirements of a system can be constantly updated and
checked. Having this expert physically present during the ISC
also ensures efficient communication channels.

C. Infrastructure & Environment

An essential part of ISC is the working environment and
infrastructure. ISC intends to take all participants out of
their familiar working environment and to accommodate them
together in one place for a certain period of time. This way,

distractions can be minimized, and the participants can fully
concentrate on dealing with the problem.

In addition to the working environment, the infrastructure
is also important. ISC assumes that participants who have
everything they need to work can also work better and more ef-
ficiently. Depending on the problem statement, this can imply
special hardware and software. Since ISC involves elements
of systems engineering, it also covers areas such as agile
manufacturing. This requires special infrastructure such as 3D-
printers and hardware prototyping material. Micro controllers
such as Arduinos and RaspberryPIs are often necessary to form
the interfaces between the hardware and software components.

D. Structure

ISC is divided into 3 phases: (1) Preparation Phase, (2)
Development Phase and (3) Integration Phase (cf. Figure 1).

Preparation 
Meeting Kickoff Design 

Review
Customer 

Acceptance
Test

12 weeks 1 week 1 week

Preparation (1): Research, & Component Preparation Development (2) & Integration (3)

Fig. 1. Timeline of ISC: The preparation takes place before the actual course
starts. During the period of the ISC course, development of the subsystems
is first carried out and then integrated.

In the course of ISC different events with specific meaning
are planned. We explain in detail the different events:

Preparation Meeting: The Preparation Meeting is the first
time that the participants of an ISC course as well as the
organizers and industry partners come together. The aim of
the meeting is to get to know each other, to understand the
problem, and to distribute work packages for the participants.
The industry customer presents the problem to be dealt with
in the form of scenarios. Before this meeting, the industry
partners and organizers jointly create an initial top-level design
of the architecture which is a key discussion point of the
meeting. This architecture is then presented to the participants
of ISC for the first time. Starting from the architecture,
technological requirements and subsystem are defined. These
form the basis for the teams that have to complete preparation
tasks in the next 12 weeks, and thus the initial team allocation
is done during the Preparation Meeting as well.

Kickoff: After the arrival at the location where ISC takes
place the Kickoff Meeting happens. The problem statement
will be discussed in more detail on the spot. To support team
building and create a nice atmosphere, an ice breaker is done
with all participants. Ideally, the icebreaker can be based on the
topic to be worked on and should clarify the motivation and the
understanding of the problem. Subsequently, each sub-team
presents the results of the project work they have achieved in
the past 12 weeks during preparation. The focus will be on a
demonstration of what has already been achieved and how it
should be incorporated into the common vision.

13ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany



Design Review: The Design Review takes place halfway
through the ISC course. All participants, application domain
experts, and organizers come together to discuss the progress
of the project. Depending on their time availability, industry
partners may attend this or not. The focus is on design. Each
sub-team will present its progress and any challenges they may
face and give a glimpse of what they expect to achieve in the
time remaining.

In preparation for this presentation, a video trailer can be
produced. This trailer serves as a means of communication
between participants and industry partners, to synchronize the
vision of both parties. The trailer can also be sent to the
industry partner in case they could not attend the meeting.

Customer Acceptance Test: Finally, there will be a joint
event: the Customer Acceptance Test. This event serves to
present the final results achieved by the participants and to
have them accepted by the customer/industry partner. The form
of the presentation is left to the participants. While slides can
be used for communication, the main focus is to demonstrate a
demo scenario and the functionality of the developed system.

E. Process

Between the fixed events, ISC provides a lightweight agile
process. It is divided into three sprints. Sprint 1 between the
Preparation Meeting and the Kickoff Meeting, Sprint 2 be-
tween the Kickoff Meeting and the Design Review, and Sprint
3 between the Design Review and the Customer Acceptance
Test. During ISC, a typical day starts with a group breakfast,
followed by a Daily Stand Up Meeting.

Vi
si

on
ar

y 
Sc

en
ar

io

De
m

o 
Sc

en
ar

io

Team 1

Team 2

Team 3

Action Items

Stand Up

Wrap Up

1 Day

Shippable

Demo

Video

Daily Event

Fig. 2. ISC Process: Starting from a Visionary Scenario, this is broken down
to a Demo Scenario. This demo scenario will be divided into action items
which will be processed by the different sub-teams. Daily Scrum Meetings
take place in the morning with each sub-team.

In this meeting everyone individually reports the progress
of the previous day, the impediments they have and promises
what they want to achieve in the course of the day. In this con-
text, it is also worth mentioning that between the working days
there are also days for leisure time. The combination of work
and leisure is important since it motivates the participants.

The process is visualized in Figure 2. While the division into
sub-teams can be loosened, it is important for each participant
to have well-defined tasks, that do not rely too much on other
subsystems, as that would hinder the agility of the process. The
visionary scenario describes the functionality to be provided
by the future system [14]; this can be tailored to a demo
scenario. The demo scenario is an excerpt from the visionary

scenario that can be realized in the short time frame of the
course and can also be demonstrated. Action items then result
from the demo scenario. These should be realizable within
one day. Unlike Scrum, the daily result of ISC is not a
potentially shippable product but either a demonstration or a
video demonstrating the functionality.

IV. CASE STUDY

In order to implement the objectives described in Section III,
Chaordic learning [13] was used to address a problem state-
ment presented by an aerospace industry partner. While the
ISC instructors did provide general topics to be researched
before the 2-week course and divided all the participants into
sub-teams, the exact definition of who was responsible for
what in each sub-team, which technologies to use, and what
tasks to prioritize was self-organized by the participants.

In the Kick-off meeting the participants were presented with
a problem statement from an aerospace industry partner and
used that as a common reference to set the tasks developed
during the 2-week course. The industry partner wishes to assist
rescue agencies such as the red cross after any type of natural
disaster, and thus the ISC participants should develop a Multi
Operational Drone Collaboration Platform (MODCAP).

Problem Statement: Agencies such as the Red Cross need
to coordinate and plan relief efforts after disasters. The focus
of the project developed in our ISC implementation was to
collect and analyze data gathered by any available fleet of
drones in disaster areas.

MODCAP is a platform that orchestrates a collection of
drones to perform search and rescue missions after natural
disasters. Furthermore, the data collected by the platform
should be used to map geographical changes caused by these
disasters, as well as to help in the survivor rescue operations.
To further assist the survivor rescue operations, the MODCAP
platform should also allow for the modular integration of any
smart wearable device the victim may be using, such as Smart
Watches, or any transceivers, as is common for skiers to use
on avalanche-prone areas.

A. Infrastructure & Environment

The ISC concept was implemented during a 2-week course
where internet and hardware accessibility were limited, which
is why most of the necessary infrastructure was transported by
the organizers to the location. In this section, we explain how
the environment and technical infrastructure made available
influenced the implementation of the course.

To facilitate the adoption of agile manufacturing techniques
and simultaneously keep a light-weight development process,
rapid prototyping equipment was made available to all of
the participants. This includes, but is not limited to, a 3D-
printer and prototyping electronics such as Raspberry Pis and
Arduinos. Since the problem statement implemented by the
participant’s had some drone components, it was important
for the available electronics to be able to interface to the
drone’s software development kit. This hardware allowed for
the different teams to quickly test and iterate their components.

14ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany



One example of hardware iteration can be seen in the scoop
mechanism developed for the drone. The idea behind the
mechanism was to modularly connect a component to the
drone so that samples of the areas affected by the disaster
could be collected. As this mechanism was to be attached to
any available drones in the area, it was important to keep it
as modular as possible, but also stable enough to grab any
necessary samples of the area. To solve this, the participants
initially designed a sample mechanism, designed for a DJI
Phantom 4, however, the first iteration of the component did
not really fit the drone. By the end of the first iteration,
they had adjusted the size and tested the component in flight,
however, the stability of the system proved to be insufficient
to actually snatch any sample from the ground. This was then
successfully fixed in the following phase of the project.

An important aspect of agile development is the communi-
cation between developers. While this is classically supported
through the use of online issue tracking tools, this was not
possible due to the limited internet connectivity of the location
where we carried out ISC. Furthermore, the fact that all
participants were located in the same place meant that they
could exchange much information through informal meetings,
which greatly helped communication and fast decision making.

To allow all participants to keep track of the system’s status,
pen and paper were used in the place of online issue trackers,
and a Kanban board with Backlog, In Progress, and Done
columns was set up, as can be seen in Figure 4. Post-its were
used for each task, where the exact action item and person
responsible for it were written down.

At both the Design Review and Customer Acceptance Test
milestones, a system scenario was presented. In the Design
Review, the status was discussed between all participants and
the organizers, and a video trailer was used to demonstrate
the scenario envisioned by the end of the two weeks. This
really helped the participants to know which tasks to focus on
during the second week of the project, as these were the exact
features to be demonstrated to the industry partner client at
the Customer Acceptance Test.

It should also be noted that our industry partner appreciated
the video trailer, as it allowed them to easily explain to
objectives of the system to several other stakeholders inside
of the company, who were not involved in the process.

B. Team Work

The fact that the ISC participants came from different study
courses meant that they individually had very different skill
sets. Furthermore, the Problem Statement presented to them
required different backgrounds and a considerable amount of
both hardware and software components.

As presented in Section III, all participants of the summer
school met for a Preparation Meeting a few weeks before the
Kick Off. It is relevant to note that the team assignment that
took place in the Kick-Off Meeting, was not done based on
skill set, but on the participant’s personal preference.

While a skill set based assignment could make the develop-
ment easier (and perhaps even produce a better final system),

Fig. 3. Work Environment

Fig. 4. Kanban with Pen & Paper

we believe that a team assignment based on personal pref-
erence increases team motivation and allows the participants
the opportunity to learn new skills based on what they enjoy.
Furthermore, the fact that this team assignment was made
several weeks before the kick-off meant that the participants
had time to research, prepare, and learn any fundamental skill
sets that would be required during the two development weeks.

To get everyone onto the same page as far as what was
possible or not during the two weeks, right on the first day
of the ISC, each sub-team presented their research results.
These were short 10-15min presentation from each sub-team,
where some initial feedback was already provided as to how
far their expectations were realistic. These presentations lead
to important discussions on necessary frameworks, interfaces,
and further capabilities. We have deliberately not defined a
format here in which way the presentation should take place,
to allow for self-organization of the different teams.

Another activity that was important at the beginning of the
ISC was the Ice-breaker. The participants simulated a search
and rescue operation, with the use of an analogue transceiver.
This helped them not only bond more and overcome their
different background, but also gave them insights in the current
state of the art of the systems they would be working on.

15ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany



V. CASE STUDY EVALUATION

In this section, we will look at the exploratory study
we conducted during the case study and evaluate what the
participants thought of the ISC. Based on a questionnaire sent
to the participants, we present the results below and discuss
the participants’ feedback.

A. Objectives & Design

We carried out an exploratory study and collected data
from the participants by means of a questionnaire to verify
our assumptions as well as to validate whether the goals
of the applied methodology are met. The questionnaire was
distributed to the participants shortly after the Design Review,
around halfway through the course. The questionnaire focuses
on the following research questions:

1) Interdisciplinarity: Effects of different backgrounds of
participants on how they work together.

2) Agile Light-weight Process: Effects of the chosen en-
gineering approach regarding high-level scenarios, daily
scrum meetings, demos, simple architecture descriptions

3) Software Theater: The effects and implications of using
videos during the course to visualize problems. The
videos serve as a communication model between the
participants and the industry partners.

B. Questionnaire

Altogether we distributed the questionnaire to 19 partici-
pants, all of whom answered. The questionnaire contains 29
questions which are divided into 4 free-form questions, 24
Likert item questions and 1 multiple-choice question. The
questions are divided into the subject areas: interdisciplinarity,
process model and utilization of videos within the course.
The applied Likert scale ranges from 1 (strongly agree) to
6 (strongly disagree). The mean and median values in the
following section refer to this scale.

C. Results

In the following, we describe the answers to the general
and to each research questions, for which we then propose
hypotheses that are suggested by the data.

1) General Questions: Of our ISC participants, 26% have
never previously worked with participants from other depart-
ments or disciplines. For 16% it was their second collaboration
and 58% had already collaborated once with participants of
other departments or disciplines in projects before ISC.

Figure 5 shows the self-assessed learning of the participants
with regards to communication, programming, prototyping,
system design and team work. A learning experience could be
established across all points. However, it is also clear that ISC
is not a programming course, but a systems engineering course
where the focus on interdisciplinarity and team collaboration
is more important than the actual implementation.

The answer to the question whether the participants would
recommend the ISC summer school to other participants is
extremely clear. Here, 16 out of 19 participants absolutely
agree and none of the participants disagrees with this opinion.
We regard this as a success of the overall concept.

System Design Programming Prototyping Communication Team Work

1

2

3

4

5

6

St
ro

ng
ly

 A
gr

ee
 --

---
---

---
- S

tro
ng

ly
 D

is
ag

re
e

The participation in the Ferienakademie improved my skills in...

Fig. 5. Skill Improvement Box-Plot

2) Interdisciplinarity: The participants overwhelmingly
stated that the communication with participants from other
areas was easy (median = 6, min = 2, max = 6). We also
asked how communication on the sub-team level worked.
Communication within the sub-teams (median = 5, min = 2,
max = 6) as well as with the other sub-teams (median = 5,
min = 1, max = 6) were seen as working well.

The open question about describing the challenges and
problems of working with fellow participants, however, reveals
challenges: The participants report that it was difficult to
define a common understanding of the tasks and problems
(e.g. “differing implicit assumptions”). We also observed a
heterogeneous previous knowledge that could be overcome
through the course of time (“Unclear what skills people have”).
Yet, several participants also reported no problems.

While the ISC structure probably contributed to the in-
terdisciplinary communication flow, there are further relevant
aspects that may also have avoided problems in this regard.
The free-text answers of the questionnaire indicate that the
location played an important role in relaxing the students, and
that the free time activities helped them bond together. While
an ice-breaker is part of the ISC structure, currently no data is
available whether that was enough to reduce communication
problems, or to what extent other activities contributed com-
pared to it. The importance of the environment, however, is
supported by the fact that all participants of the questionnaire
agreed with the statement ”You could work well in the created
working environment (atmosphere, room, food).”

While the cause behind the improved interdisciplinary com-
munication may be disputed, our data indicated that cross
team communication in the ISC worked well. Interdisciplinary
communication and work is commonly problematic in other
contexts, for example, because of misunderstandings [15],
[16], and we see little problems due to interdisciplinarity in
ISC. Therefore, we formulate the following hypothesis:

Hypothesis 1: The ISC concept reduces interdisci-
plinary communication problems.

16ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany



3) Agile Light-Weight Process: We also evaluated the ap-
plied agile process. The whole process was considered suitable
for the project (median = 5, min = 3, max = 6). In the free
text answers, the participants suggest that some of the meetings
lasted too long. There are also mentions that an earlier focus
on integration would be useful.

When looking at the system iterations in particular, par-
ticipants agreed that these were relevant to the development
process (median = 2, min = 1, max = 4). Given the fact that
students outside of the software engineering environment had
limited previous access to agile processes and iterations, this
can be seen a meaningful contribution of ISC. Figure 6 shows
the detailed distribution of answers.

0
1
2
3
4
5
6
7
8

Strongly
Agree

Agree Slighlty
Agree

Slightly
Disagree

Disagree Strongly
Disagree

System iterations were an important part of the development 
process.

Fig. 6. System Iteration Value

The free text answers suggest that participants considered
the meetings communicating the status as useful and impor-
tant. It is however relevant to note that not all days spent
during the ISC were work days, and there were some entire
leisure days as well. In these cases, the morning meeting in
the following day was sometimes criticised, as the participants
had not achieved any work progress during the leisure day, and
the meeting content thus became repetitive.

One aspect of agile development that was not adequately
accessed in our evaluation were the problems and benefits
of the Scrum of Scrums element. While both internal sub-
team meetings and meetings with all sub-team took place, it
is possible that the latter happened with too many participants,
thus diminishing it’s efficiency. Perhaps a more rigorous, with
fewer people, implementation of the Scrum of Scrum process
could have aided in the integration problems, however, it
would likely also have diminished the learning effect, by
limiting the number of students receiving input from other
sub teams.

Furthermore, the questionnaire also suggest insights as to
why the system integration became problematic at the end,
even when the iterations were evaluated as useful. While
the interfaces between each sub-team was defined, and the
participants did know what they had to deliver for the demo-
scenario, the data received from the external drone control
library was different than expected, and at the end of the ISC
there was not enough time to fix this. Had integration begun

earlier the actual values would have been received earlier, and
perhaps the system could have delivered a better performance.

Hypothesis 2: System iterations support development,
but complete subsystems decoupling hinders integration.

4) Problem Statement Understanding: Due to the different
background from the participants, common understanding of
the problem statement was of special importance. In the
questionnaire, we asked how the different communication
approaches facilitated this. We initially communicated the
problem in written form as a problem description. 74% of
the participants agreed on the importance of this.

The ice-breaker activity previously mentioned, further
served the double function of showing the students how search
and rescue operations are manually done today. It is relevant to
note that this was in the beginning of the course, and thus, the
general understanding of the problem was somewhat vague. By
providing the students with a transceiver to find hidden objects
in a field, the students both had fun, and learned something
about the real world use of the system they were to develop.

The introduction of software theater aimed to further sup-
port the understanding. The participants also watched videos
that showed them how search and rescue operations currently
function, and this showed to be a good communication tool.
78% of the participants approved of the use of video tools.

0

2

4

6

8

10

12

Strongly
Agree

Agree Slighlty Agree Slightly
Disagree

Disagree Strongly
Disagree

Nu
m

be
r O

cc
ur

re
nc

es

Problem Statement Understanding

Textual Description Manual Activity Videos Domain Expert

Fig. 7. Value of Each Understanding Technique

Figure 7 depicts the student’s assessment of the usefulness
of each of the different techniques used. As can be seen,
the tool which showed most useful for problem statement
understanding was the exchange with the expert from the
application domain (median = 2, min = 1, max = 4). While
this may also be due to the fact that the remote location of
the course made the expert a more reachable resource, wee
postulate that this finding may perhaps be generalized.

Hypothesis 3: Exchange with a domain expert encour-
ages system understanding and problem solving.

17ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany



D. Discussion

All in all, we can say that the assumptions we have made
regarding the ISC concept are working out well. We discuss
the three goals described in the beginning and the feedback
from both the participants and industry partners.

As far as interdisciplinary teams go, both the quantitative
and qualitative feedback from the participants show that they
learned how to communicate with people from other back-
grounds. Our industry partner also mentioned that the fact
that participants from different disciplines participated in the
project as interesting for them.

At the end of ISC, the state of the developed system was
only partially working. While the individual sub-teams mostly
achieved their goals, the integration process required more
time than was available in the end, thus resulting in one part of
the demo scenario not working. While this was of concern to
our industry partner, who was interested in the actual achieved
results, it was not critical for the participant’s view, as they
did learn from both the process and the non-performance.

Last but not least, the collaboration with our industry partner
proved to be motivating for the participants. The visit from the
industry representatives in the Client Acceptance Test also was
a good opportunity for the participants to understand how these
systems are developed and considered in an industry context.

While the results of our case study can only be generalized
with caution, they do suggest that the approach presented by
ISC can stimulate more effective interdisciplinary teaching.

VI. CONCLUSION

In this paper, we present an approach to teach Interdisci-
plinary System Courses. In a case and explorative study, we
show the applicability of the method. ISC focuses on the three
core areas interdisciplinarity, lightweight agile development
process and real problem solving by having an industry part-
ner. The interdisciplinary aspect is achieved by focusing on the
parallel development of hardware and software components,
the communication between individual sub-teams as well as
collaboration between these.

The case study and its evaluation show that the concept is
applicable and adds value for both the participants and the
industrial customers. Although the developed system leaves
room for improvement, the realization of ISC and knowledge
gained by the participants has proven to be a success.

The paper explains the concept of ISC to make it feasible
for other universities and organizations to apply the method.
We plan to continue running ISC courses in the coming years
and want to apply the knowledge and experience to further
improve the teaching of these innovative course formats.

REFERENCES

[1] P. M. Huang, A. G. Darrin, and A. A. Knuth, “Agile hardware and
software system engineering for innovation,” in Aerospace Conference,

2012 IEEE, pp. 1–10, IEEE, 2012.
[2] T. Punkka, “Agile hardware and co-design,” in Embedded Systems

Conference, 2012.
[3] S. Wagner, “Scrum for cyber-physical systems: a process proposal,” in

1st International Workshop on Rapid Continuous Software Engineering,

RCoSE 2014, pp. 51–56, ACM, 2014.
[4] V. Mahnic, “A capstone course on agile software development using

scrum,” IEEE Transactions on Education, vol. 55, no. 1, pp. 99–106,
2012.

[5] B. Bruegge, S. Krusche, and L. Alperowitz, “Software engineering
project courses with industrial clients,” Trans. Comput. Educ., vol. 15,
pp. 17:1–17:31, Dec. 2015.

[6] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al.,
“Manifesto for agile software development,” 2001.

[7] A.-P. Bröhl, Das V-Modell: Der Standard für die Softwareentwicklung

mit Praxisleitfaden. Oldenbourg, 1993.
[8] A. J. Dutson, R. H. Todd, S. P. Magleby, and C. D. Sorensen, “A review

of literature on teaching engineering design through project-oriented
capstone courses,” Journal of Engineering Education, vol. 86, no. 1,
pp. 17–28, 1997.

[9] L. Boskovski and M. Avezum, “Combining hardware and software
development: A case study on interdisciplinary teaching projects.,” in
Software Engineering (Workshops), pp. 12–15, 2018.

[10] M. Glas and S. Ziemer, “Challenges for agile development of large
systems in the aviation industry,” in Proceedings of the 24th ACM SIG-

PLAN conference companion on Object oriented programming systems

languages and applications, pp. 901–908, ACM, 2009.
[11] L. Faria, “Scrum of scrums: Running agile on large projects,” Obtenido

de scrumalliance. org, Junio, 2013.
[12] S. Krusche, D. Dzvonyar, H. Xu, and B. Bruegge, “Software theater

- teaching demo-oriented prototyping,” ACM Trans. Comput. Educ.,
vol. 18, pp. 10:1–10:30, July 2018.

[13] S. Krusche, B. Bruegge, I. Camilleri, K. Krinkin, A. Seitz, and
C. Wöbker, “Chaordic learning: A case study,” in Proceedings of

the 39th International Conference on Software Engineering: Software

Engineering and Education Track, ICSE-SEET ’17, (Piscataway, NJ,
USA), pp. 87–96, IEEE Press, 2017.

[14] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering

Using UML, Patterns and Java. Prentice Hall, 2009.
[15] E. Cooley, “Training an interdisciplinary team in communication and

decision-making skills,” Small group research, vol. 25, no. 1, pp. 5–25,
1994.

[16] T. W. Reader, R. Flin, K. Mearns, and B. H. Cuthbertson, “Interdis-
ciplinary communication in the intensive care unit,” British journal of

anaesthesia, vol. 98, no. 3, pp. 347–352, 2007.

18ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany


