
Adaptive Query Formulation to Handle Database
Evolution

George Papastefanatos1, Panos Vassiliadis2, Yannis Vassiliou1

1 National Technical University of Athens,
Dept. of Electrical and Computer Eng.,

Athens, Hellas
{gpapas,yv}@dbnet.ece.ntua.gr

2 University of Ioannina,
Dept. of Computer Science,

Ioannina, Hellas
pvassil@cs.uoi.gr

Abstract. Databases are continuously evolving environments, where design
constructs are added, removed or updated rather often. Research has extensively
dealt with the problem of database evolution. Nevertheless, problems arise with
existing queries and applications, mainly due to the fact that, in most cases, their
role as integral parts of the environment is not given the proper attention.
Furthermore, the queries are not designed to handle database evolution. In this
paper, we introduce a graph-based model that uniformly captures relations, views,
constraints and queries. For several cases of database evolution we present rules so
that both syntactical and semantic correctness of queries are retained.

1. Introduction

In typical organizational Information Systems, the designer/administrator is
frequently faced with the necessity to predict the impact of a small change in the
overall configuration. For instance, assume that an attribute has to be deleted from the
underlying database. A small change like this might impact a large number of
applications and data stores around the system: queries and data entry forms can be
invalidated, application programs might crash (resulting in the overall failure of more
complex workflows), and several pages in the corporate Web server may become
invisible (i.e., they cannot be generated any more). Syntactic as well as semantic
adaptation of queries and views to changes occurring in the database schema is a
time-consuming task, treated in most of the cases manually by the administrators.

To deal with the aforementioned issues, our approach is to provide a mechanism
for performing what-if analysis for potential changes of database configurations. A
graph model that uniformly models queries, views, relations and their significant
properties (e.g., conditions) is introduced. Apart from the simple task of capturing the
semantics of a database system, the graph model allows us to predict the impact of a
change over the system. Furthermore, we provide a framework for annotating the
database graph with policies concerning the behavior in the presence of hypothetical
changes occurring in the database schema. Rules that dictate the proper actions, when
additions or deletions are performed to relations, attributes and conditions (all treated
as first-class citizens of the model) are provided. Specifically, assuming that a graph
construct is annotated with a policy for a particular event (e.g., a relation node is
tuned to deny deletions of its attributes), the proposed framework (a) performs the
identification of the affected part of the graph and, (b) if the policy is appropriate,

 1

automates the readjustment of the graph to fit the new semantics imposed by the
change.

This paper is organized as follows. In Section 2, the framework for adapting
queries and views to schema evolution changes is sketched and in Section 3 we
conclude our results and provide insights for future work. Due to strict space
limitations, we refer the reader to the long version of this paper [PaVV05] for an
extensive discussion of the issues raised in this paper.

2. Adapting queries and views to database evolution

The main mechanism towards handling schema evolution is the annotation of the
constructs of the database graph (i.e., nodes and edges) with operators that handle
schema evolution [PaVV05]. Therefore, we first introduce a graph modeling
technique that uniformly covers relational tables, views, database constraints and SQL
queries as first class citizens. The proposed technique provides an overall picture not
only for the actual database schema but also for the architecture of a database system
as a whole, since queries are incorporated in the model. Moreover, we distinguish the
following essential components, which are included in our model: relations,
conditions (covering both database constraints and query conditions), queries and
views. The proposed modeling technique represents all the aforementioned database
parts as a directed graph with the entities being represented as nodes and edges
covering different semantics of their interrelationships (e.g., part-of, value mapping
edges, etc).

We, then, formulate a set of rules that allow the identification of the impact of
changes to database relations, attributes and constraints and propose an automated
way to respond to these changes. The impact of the changes involves the software
built around the database, mainly queries, stored procedures, triggers etc., which are
affected in two ways: (a) syntactically, meaning that it is possible that the execution
of the code will produce a compilation/execution failure and (b) semantically,
meaning that a change in the database can affect the semantics of the software built
around it. We abstract software modules where SQL is embedded within a host
language and treat every such module as a set of SQL queries. The rules that we
propose are annotations of the graph that determine the policy to be followed in the
case of an event that modifies the graph. The combination of events and annotations
determines the action to be followed for the handling of the potential change, i.e., the
adaptation of the query to the change.

The space of potential events is quite simple and comprises the space of
hypothetical actions (addition/deletion) over specific database graph constructs
(relations, attributes and conditions). For each of the above events, the administrator
annotates the appropriate graph constructs (i.e., nodes and edges) with policies that
dictate the way they will regulate the change. Two kinds of policies are defined: (a)
propagate the change, meaning that the graph must be reshaped to adjust to the new
semantics incurred by the event and (b) block the change, meaning that we want to
retain the old semantics of the graph and the hypothetical event must be blocked or, at
least, constrained, through some rewriting that preserves the old semantics [NiLR98,
VeMP04].

 2

In order to give a flavor of our approach, we start with the simplest case of an SPJ
query, specifically the query SELECT * FROM EMP. Assume now that the designer
extends the relation EMP with a new attribute PHONE. When an attribute is added to a
relation of the underlying schema, we need to identify the queries to which the
addition must be reflected and propagated. Both the current database systems and the
state of the art in research do not react to this change, but rather, they let the
designer/administrator propagate the change to any queries he thinks they should be
modified to include the extra attribute. Eventually, the designer/administrator is
obliged to rewrite the queries, which are to be modified, by adding appropriately the
extra attribute to their syntax. This treatment is mainly due to the fact that (a) the
addition of an attribute does not syntactically affect the involved queries (i.e., the
existing queries can still be executed without any problem) and (b) up to now, we do
not have any mechanism to tell the system that once an attribute is added to a relation,
it must also be added to certain queries that access this particular relation.

Based on these remarks, in the presence of an addition of an attribute, an impact
prediction system must trace all queries and views that are potentially affected and
ask the designer/administrator to decide upon which of them must be modified to
incorporate the extra attribute. Extending the current modeling, for each element
potentially affected by the addition, we annotate its respective graph construct (i.e.,
nodes, edges) with the aforementioned policies. According to the policy defined on
each construct the respective action is taken to adjust the query to the change.
Therefore, for the event of attribute addition, the policies defined on the query and
actions taken according to each policy are:
• Propagate attribute addition. In this case, when an attribute is added to a relation

appearing in the FROM clause of the query, this addition must be reflected to the
SELECT clause of the query.

• Block attribute addition. In this case, the addition to the relation must be ignored
and the query is immune to the change. The SELECT * clause must be rewritten
to SELECT A1,…,An without the newly added attribute.

• Prompt. In this case (default, for reasons of backwards compatibility) the
designer/administrator must handle the impact of the change manually, as it
happens now in database systems.

from

map-select

S

Q

S SS

EMP

PhoneEmp# NameEmp#

NameS
map-select

...

On attribute addition
then propagate

Fig. 1: Propagating addition of attribute PHONE to the schema of the query

The graph of the query SELECT * FROM EMP is shown in Figure 1. The annotation
of the FROM edge as propagating addition indicates that the addition of PHONE node
will be propagated to the query and the new attribute is included in the SELECT

 3

clause of the query. If a FROM edge is not tagged with this additional information,
then a default case is assumed and the designer/administrator is prompted to decide.

Different policies capturing the same event can be defined on different elements of
the graph --e.g., a relation node is annotated for propagating a deletion of an attribute
to all queries accessing this attribute, whereas a specific query is annotated to block
this change. As these policies may not always align towards the same goal, a general
guideline for handling policy conflicts is proposed, which follows the rule: policies
defined on query graph structures are stronger than policies defined on view graph
structures which in turn prevail on policies defined on relation graph structures.
According to the prevailing policy the proper action is taken.

To alleviate the designer from the burden of manually annotating all graph
constructs, a graph representation tool [PKVV05] and a simple extension of SQL with
clauses concerning the evolution of important constructs is proposed.

3. Conclusions

In this paper, an automated mechanism that allows a designer to execute what-if
analysis scenarios and determine the impact of a potential change over a database
graph is proposed. The framework allows the insertion and deletion of relations,
attributes and query conditions and equips the designer with the possibility of
annotating the graph with policies that either accept, or block such potential events.
The impact and the possible reshaping of the graph are automatically determined in
the proposed framework, based on a set of rules provided by the administrator.

Research can be pursued in several directions. For example, transactions of events
can be thought of as combinations of modifications to the database structure (e.g.,
combined modifications of primary and foreign keys). Also, visualization techniques
can be discussed to further automate the evolution of the database.

References

[NiLR98] A. Nica, A. J. Lee, E. A. Rundensteiner. The CSV algorithm for view
synchronization in evolvable large-scale information systems. In Proc. of
International Conference on Extending Database Technology (EDBT ‘98).
Lectures notes in computer science, Springer, p.359-373. Valencia, Spain, Mar
1998.

[PaVV05] G. Papastefanatos, P. Vassiliadis, Y. Vassiliou. Adaptive Query Formulation To
Handle Database Evolution (Extended Version). Working Draft November
2005, www.dbnet.ece.ntua.gr/~gpapas/Publications/AdaptiveQueryEvolution-
Extended.pdf

[PKVV05] G. Papastefanatos, K. Kyzirakos, P. Vassiliadis, Y. Vassiliou. Hecataeus: A
Framework for Representing SQL Constructs as Graphs. In Proceedings of 10th
International Workshop on Exploring Modeling Methods for Systems Analysis
and Design - EMMSAD '05 (in conjunction with CAISE'05)

[VeMP04] Y. Velegrakis, R.J. Miller, L. Popa. Preserving mapping consistency under
schema changes. VLDB J. 13(3), pp. 274-293, 2004.

 4

