
A JastAdd- and ILP-based Solution to the

Software-Selection and Hardware-Mapping-Problem at

the TTC 2018

Sebastian Götz, Johannes Mey, René Schöne and Uwe Aßmann
sebastian.goetz@acm.org, {first.last}@tu-dresden.de

Software Technology Group
Technische Universität Dresden

Abstract

The TTC 2018 case describes the computation of an optimal mapping
from software implementations to hardware components for a given set
of user requests as a model transformation problem. In this paper, we
show a detailed view on the reference solution which uses two main
approaches: 1) transformation using attribute grammars and higher-
order attributes into an integer linear programming (ILP) specification,
and 2) solving the ILP resulting in a valid and optimal mapping. We
further show evaluation results for the given scenarios.

1 Introduction

The TTC 2018 case “Quality-based Software-Selection and Hardware-Mapping as Model Transformation Prob-
lem” describes an extended resource allocation problem [GMSA18]. A system is described by its software com-
ponents with variants and component dependencies, typed hardware resources, and requests for certain software
components. The problem is now to a) select a variant for the requested software components and their required
components, and b) find a mapping of those components to suitable hardware resources. The overall solution to
the variant selection problem is in the form of a tree for each request, with pairs of component implementation
variants and assigned resources as nodes and component dependencies as edges. Each mapping has to obey the
constraints defined for each software variant, i.e., it has to fulfil its contract. Further, a mapping is optimal,
if the value of the specified objective function is optimal. The value of the objective function depends on the
selection of software variants, as well as on the resources they are deployed on. The complexity of the problem
arises from the fact that selection and mapping influence each other, thus can not be solved independently. The
solution is publicly available1.

2 Transformation into a Linear Program

The input model is given as a set of Java objects describing nodes in a tree, whose classes are generated by
the JastAdd framework [EH07] based on a given grammar. This solution uses reference attribute grammars
(RAGs) [Hed00] adding computations to nodes of the model. To solve the task, the given problem formulation
is transformed into an integer linear program utilizing an intermediate representation. The remainder of this
section describes the transformation problem in detail, first describing ILPs and the target model in Section 2.1,
then the transformation in Section 2.2, and finally giving a detailed example in Section 2.3.

1https://git-st.inf.tu-dresden.de/stgroup/ttc18 within the module jastadd-mquat-solver-ilp

Copyright held by the author(s).

In: A. Garcia-Dominguez, G. Hinkel and F. Krikava (eds.): Proceedings of the 11th Transformation Tool Contest, Toulouse, France,
29-06-2018, published at http://ceur-ws.org

https://git-st.inf.tu-dresden.de/stgroup/ttc18


1 ILP ::= IlpObjective IlpConstraint* IlpVariable* ;
2 TimedOutILP:ILP ::= <Reason:String> ;
3
4 IlpObjective ::= <Kind:IlpObjectiveKind> IlpLeftHandSide ; // IlpObjectiveKind is either MINIMIZE or MAXIMIZE
5 IlpConstraint ::= <Name:String> IlpLeftHandSide <ClauseComparator:ClauseComparator> <RightHandSide:double> ;
6 IlpLeftHandSide ::= IlpTerm* ;
7 IlpTerm ::= <Value:double> <Ref:IlpVariable> ;
8
9 abstract IlpVariable ::= <Name:String> <Request:Request> <Impl:Implementation> <Illegal:boolean> ;

10 IlpAllResourcesVariable:IlpVariable ;
11 IlpMappingVariable:IlpVariable ::= <Resource:Resource> ;

Listing 1: The target model describing an ILP.

1 for (Request request : this.getRequestList()) {
2 for (Implementation impl : comp.getImplementationList()) {
3 for (Clause rqClause : impl.requirementClauses()) {
4 if (rqClause.getDesignator().isSoftwareDesignator()) {
5 IlpLeftHandSide reqLhs = new IlpLeftHandSide();
6 for (Tuple<Implementation, Clause> tuple : rqClause.providingClauses()) {
7 Implementation prImpl = tuple.getKey(); Clause prClause = tuple.getValue();
8 for (Resource res : this.getHardwareModel().getResourceList())
9 reqLhs.addIlpTerm(new IlpTerm(prClause.evalUsing(request, res), getIlpVariable(request, prImpl, resource)));

10 }
11 // negate the term to move it to the right side
12 for (Resource res : this.getHardwareModel().getResourceList())
13 reqLhs.addIlpTerm(new IlpTerm(makeNegative(rqClause.evalUsing(request, res)), getIlpVariable(request, impl, res)));
14 result.addIlpConstraint(new IlpConstraint(reqLhs, rqClause.getClauseComparator(), 0));
15 }
16 }
17 }
18 }

Listing 2: Negotiation constraint computation.

2.1 Structure of the Linear Program

An ILP is described by a set of constraints over variables with integer values. Its canonical form is

minimize cTx subject to Ax ≤ b, x ≥ 0, and x ∈ Zn

where b and c are vectors, A is a coefficient matrix, and x is the solution vector of integer variables. The
intermediate model used in this solution is described by the grammar shown in Listing 1. It describes a restricted
set of linear programs required in this case: variables are assumed to be binary, so no bounds have to be specified.

The basic idea is to use binary variables for denoting the deployment of a software implementation on a
hardware resource for a request. The cross product of all variants, resources, and requests yields all possible
deployment variables. Additionally, there are binary implementation variables indicating the usage of a certain
implementation for a request independent of its deployment. The following constraints are created.

1. Structural Constraints ensure the correct structure and the functional properties of the solution.
(a) For every request, there is exactly one variant of the target component chosen.
(b) For every component and request pair, there is at most one variant chosen.
(c) If a component is selected, its required components must also be selected.
(d) On every resource, there can be at most one deployed component.

2. Contract Negotiation Constraints ensure non-functional requirements of requests and components.
(a) The non-functional properties of a request must be met.
(b) The non-functional requirements of required components must be met.

Listing 2 shows the computation of contract negotiation constraint 2b and Listing A shows an example ILP.

2.2 ILP Transformation using Higher Order Attributes

To transform the given problem model into the (intermediate) ILP model, we utilize the concept of attribute
grammars using the JastAdd tool. Given a grammar and a set of attribute definitions, JastAdd produces
executable Java code. Each nonterminal of the grammar is represented by a Java class, within which attributes
and model navigation code is generated as methods. JastAdd attributes are exposed and invoked like ordinary
Java methods, e.g., in line 6 of Listing 2. We defined attributes ranging from simple ones, such as navigation
inside the model or printing parts of the model, to more complex ones, like the evaluation of clauses or the



ILPSW HW ILPSW HW ILPSW HW

Problem AST
(cf. [GMSA18])

AST with
ILP Model

(cf. Listing 1)

ILP
File

(cf. Listing A)

ILP
Data Structure

ILP Solution
File

(cf. Listing 4)

ILP Solution
Data Structure

Solution
Model

(cf. Listing 5)

ILP Model
Synthesis

using
Higher-Order
Attributes

AST→Text

AST→Model

External

ILP Solver

Internal

ILP Solver

Parser

Model→AST

ú

K

ú

K

(a) Problem model → ILP (b) ILP solution → model solution

Figure 1: Models and transformations in the solving process.

transformation of the source model to the ILP model. The main motivation for using attributes is the ability
to cache their computed values. With that, clauses need only be evaluated once for a certain configuration.
The given problem model is transformed into the intermediate model shown in Listing 1 using higher-order
attributes [VSK89]: the ILP model is defined as a subtree of the problem model and is computed by an attribute.

Once the intermediate ILP model is generated, there are two possible ways to get a solution for the ILP. The
first, external way is to transform the model to a textual representation and invoke an external solver which in
turn outputs a solution file. Here, the overhead of reading and writing files arises, which can be significant for
larger models. We use GLPK2 as external solver, but the employment of a standardized ILP notation allows
the use of other solvers as well. The second, internal way exploits a JNI binding3 for GLPK, the solver we use.
Hence, no file needs to be written, but instead an API is used to construct the internal data structure from
the intermediate model, which is straightforward4 because the model already resembles this structure. For both
ways, the returned solution needs to be interpreted to construct the solution, i.e., the assignments. This is done
by only considering the deployment variables with the value 1 and creating an assignment for each of them. An
overview over the entire transformation process from the problem to the solution model is given in Figure 1.

2.3 Example Model and Solution

To illustrate the process, consider the model defined in Listing 3. There are three resources, one main component
targeted by the request and requiring two other components. All components have two implementations each.
The external ILP solver transforms this model to the ILP shown in Listing A. One might expect to see more
variables in the objective function (line 2). However, during the transformation, some illegal assignments with
respect to resource and quality requirements are already discarded, and, thus not show up in the ILP. Further,
the constraints can be seen in lines 4-36. Finally, the variables have to be declared as binary variables in the
Binaries section in lines 38-54. In this case, the solver finishes successfully, finding an optimal solution with an
objective value of 23284.15. Listing 4 shows an extract of the solver output. All variables with a value of 1 are
used to construct the solution as shown in Listing 5.

3 Evaluation

To investigate the feasibility of the approach, the implementation was tested with the scenarios provided in the
case description [GMSA18]. The measurements were performed on an Intel Xeon E5-2643 machine with 32G
of memory using Ubuntu 16.04 with GLPK 4.65 and Oracle Java 1.8.0 181. A maximum solving time of 15
minutes per run was allowed; each scenario was executed five times with both solver variants. Table 1 shows
the median results of the runs. The test results are only shown for the small, medium and large scenario sizes,
since on the given hardware, it was not possible to find valid solutions for the huge scenarios within the given
time. The table also shows whether a valid solution has been found and whether the ILP solver can guarantee its
optimality. Additionally, time measurements for the two solution steps are given. The generation time specifies
the duration of the generation of the ILP including the GLPK API calls in the direct case and the time to write
the serialized ILP to disk in the external case. The total solving time specifies the total time it took to generate

2GLPK is available at https://www.gnu.org/software/glpk/
3The Java-Binding for GLPK is available at http://glpk-java.sourceforge.net/
4The whole solve method (ILPDirectSolver.solve0) of the internal solver needs about 120 lines of code (excluding logging).

https://www.gnu.org/software/glpk/
http://glpk-java.sourceforge.net/
https://git-st.inf.tu-dresden.de/stgroup/ttc18/blob/master/jastadd-mquat-solver-ilp/src/main/java/de/tudresden/inf/st/mquat/solving/ilp/ILPDirectSolver.java


1 container resource type ComputeNode { /* type definitions */ }
2
3 resource res0:ComputeNode {
4 resource cpu0_0:CPU { frequency = 1034.0 /* ... */ }
5 resource ram0:RAM { total = 13409.0 /* ... */ }
6 resource disk0:DISK { total = 12256.0 /* ... */ }
7 resource network0:NETWORK { throughput = 54883.0 /* ... */ }
8 }
9 resource res1:ComputeNode { /* ... */ }

10 resource res2:ComputeNode { /* ... */ }
11
12 property total [MB]
13 property free [MB]
14 meta size
15 property energy [J]
16 property quality [%]
17 component component_0 {
18 contract impl_0i0 {
19 requires component the_component_0i0_0 of type component_0i0_0
20 requires component the_component_0i0_1 of type component_0i0_1
21 requires resource compute_resource_0 of type ComputeNode with {
22 cpu_0 of type CPU
23 ram_1 of type RAM
24 disk_1 of type DISK
25 network_1 of type NETWORK
26 }
27 requiring the_component_0i0_0.quality ≥ 1.0
28 requiring the_component_0i0_1.quality ≥ 8.0
29 requiring cpu_0.frequency ≥ 2245.0
30 requiring ram_1.total ≥ 14608.0
31 requiring disk_1.total ≥ 7308.0
32 requiring network_1.throughput ≥ 23804.0
33 providing quality = 16.0
34 providing energy = ((0.1*(sizeˆ2.0))+(0.82*cpu_0.frequency))
35
36 }
37 contract impl_0i1 { /* ... */ }
38 using property quality
39 using property energy
40 }
41 component component_0i0_0 { /* ... */ }
42 component component_0i0_1 { /* ... */ }
43 component component_0i1_0 { /* ... */ }
44 component component_0i1_1 { /* ... */ }
45
46 request rq0 for component_0 {
47 meta size = 147.0
48 requiring quality ≥ 18.0
49 }
50 minimize sum(energy)

Listing 3: Example input model (shortened).

1 Objective: obj = 23284.15 (MINimum)
2
3 Column name Activity
4 --------------------------- --------
5 rq0#impl_0i0_1i0#resource1 0
6 rq0#impl 0i1 0i0#resource1 1
7 rq0#impl_0i1_0i1#resource1 0
8 rq0#impl 0i1#resource0 1
9 rq0#impl 0i1 1i0#resource2 1

10 rq0#impl_0i1_1i0#resource0 0
11 rq0#impl_0i0_1i0 0
12 rq0#impl_0i0_1i1 0
13 rq0#impl 0i1 0i0 1
14 rq0#impl_0i1_0i1 0
15 rq0#impl_0i0 0
16 rq0#impl_0i0_0i0 0
17 rq0#impl_0i0_0i1 0
18 rq0#impl 0i1 1
19 rq0#impl 0i1 1i0 1
20 rq0#impl_0i1_1i1 0

Listing 4: ILP solution (extract).

1 solution {
2 rq0 -> impl_0i1 {
3 compute_resource_0 -> res0 {
4 cpu_0 -> cpu0_0
5 ram_1 -> ram0
6 disk_1 -> disk0
7 network_1 -> network0
8 }
9 the_component_0i1_0 -> impl_0i1_0i0 {

10 compute_resource_0 -> res1 {
11 cpu_0 -> cpu1_0
12 ram_1 -> ram1
13 disk_1 -> disk1
14 network_1 -> network1
15 }
16 }
17 the_component_0i1_1 -> impl_0i1_1i0 {
18 compute_resource_0 -> res2 {
19 cpu_0 -> cpu2_0
20 ram_1 -> ram2
21 disk_1 -> disk2
22 network_1 -> network2
23 }
24 }
25 }
26 }

Listing 5: Reconstructed solution.

and solve the ILP. If a step took longer than the given maximum time of 15 minutes, timeout is stated instead of
a duration. Table 1 shows that the approach is capable of finding optimal solutions for small problems quickly.
One the other hand, if the problem size and complexity increases, finding valid and optimal solutions is very
hard. However, in many cases the ILP solver is able to provide valid, but not (guaranteed) optimal solutions if
it is stopped prematurely by the time limit. The acquired measurements allow some further observations with
regard to the two presented variants:

• For larger problems, the generation time is significantly lower than the solving time. Thus, a better formu-
lation of the ILP or the selection of a better performing solver may lead to improved results.

• Comparing the internal solver which creates the ILP programmatically to the external one which writes the
ILP into a file and then calls the external solver, both generation variants perform similarly. However, the
latter variant requires additional time for reading the ILP from file.

4 Conclusion and Future Work

In this paper, we detailed the reference implementation of the TTC 2018 case. We used JastAdd to transform
the input model into an intermediate ILP model, which is used in two slightly different ways by GLPK, an
off-the-shelf ILP solver. Using this approach, we got valid solutions for eight of the 13 provided scenarios, six



Table 1: Solving time and solution quality (internal/external solver).

Scenario Valid? Optimal? Generation time (ms) Total solving time (ms)

0 trivial 3 3 16 / 8 19 / 20
1 small 3 3 30 / 24 33 / 40
2 small, much hardware 3 3 40 / 33 43 / 51
3 small, complex software 3 3 306 / 326 333 / 491
4 medium 3 3/7 2,033 / 2,168 83,742 / timeout
5 medium, much hardware 3 3/7 7,134 / 6,838 84,587 / timeout
6 medium, complex software 7 7 42,434 / 42,686 timeout / timeout
7 large 7/3 7 10,796 / 11,045 timeout / timeout
8 large, much hardware 3 7 37,242 / 36,661 timeout / timeout
9 large, complex software 7 7 538,530 / timeout timeout / timeout

of which are optimal. However, for many use cases, our achieved solving times may be too long. If an optimal
solution is not required, heuristic approaches may be more adequate for this case.

Finally, the presented solution offers some opportunities for improvement. A more advanced RAG-based anal-
ysis using partial contract evaluation or abstract contract interpretation could decrease both size and complexity
of the ILP. Additionally, using a better solver and a meta-optimization of its parameters could be beneficial.

Acknowledgements

This work has been funded by the German Research Foundation within the Collaborative Research Center
912 Highly Adaptive Energy-Efficient Computing, the research project “Rule-Based Invasive Software Compo-
sition with Strategic Port-Graph Rewriting” (RISCOS), and by the German Federal Ministry of Education and
Research within the project “OpenLicht”.

References

[EH07] Torbjörn Ekman and Görel Hedin. The JastAdd system—modular extensible compiler construction.
Science of Computer Programming, 69(1):14–26, 2007.

[GMSA18] Sebastian Götz, Johannes Mey, Rene Schöne, and Uwe Aßmann. Quality-based Software-Selection
and Hardware-Mapping as Model Transformation Problem. In Antonio Garcia-Dominguez, Georg
Hinkel, and Filip Krikava, editors, Proceedings of the 11th Transformation Tool Contest, a part of the
Software Technologies: Applications and Foundations (STAF 2018) federation of conferences, CEUR
Workshop Proceedings. CEUR-WS.org, June 2018.

[Hed00] Görel Hedin. Reference attributed grammars. Informatica (Slovenia), 24(3), 2000.

[VSK89] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute grammars. In Proceedings of
the ACM SIGPLAN 1989 Conference on Programming Language Design and Implementation, PLDI
’89, pages 131–145, New York, NY, USA, 1989. ACM.



Appendix

1 \ Integer Linear Program in the CPLEX LP Format
2 \ Format Description: https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/FileFormats/topics/LP.html
3
4
5 \ Specification of the Objective
6 Minimize
7 energy: +10961.72 rq0#impl_0i0_1i0#res1 +4138.75 rq0#impl_0i1_0i0#res1 +7011.62 rq0#impl_0i1_0i1#res1 +1296.54 rq0#impl_0i1#res0 +17848.86

rq0#impl_0i1_1i0#res2 +17969.64 rq0#impl_0i1_1i0#res0
8
9

10 \ Constraints
11 Subject To
12
13 \ Define implementation variables, specifying if an implementation is selected, i.e, if a resource is mapped to the implementation.
14 \ Resources violating a contract are omitted.
15 rq0_single_impl_0i0: - rq0#impl_0i0 = 0.0 \ if no resources are valid, the implementation variable is 0 (false)
16 rq0_single_impl_0i1: + rq0#impl_0i1#res0 - rq0#impl_0i1 = 0.0
17 rq0_single_impl_0i0_0i0: - rq0#impl_0i0_0i0 = 0.0
18 rq0_single_impl_0i0_0i1: - rq0#impl_0i0_0i1 = 0.0
19 rq0_single_impl_0i0_1i0: + rq0#impl_0i0_1i0#res1 - rq0#impl_0i0_1i0 = 0.0
20 rq0_single_impl_0i0_1i1: - rq0#impl_0i0_1i1 = 0.0
21 rq0_single_impl_0i1_0i0: + rq0#impl_0i1_0i0#res1 - rq0#impl_0i1_0i0 = 0.0
22 rq0_single_impl_0i1_0i1: + rq0#impl_0i1_0i1#res1 - rq0#impl_0i1_0i1 = 0.0
23 rq0_single_impl_0i1_1i0: + rq0#impl_0i1_1i0#res2 + rq0#impl_0i1_1i0#res0 - rq0#impl_0i1_1i0 = 0.0
24 rq0_single_impl_0i1_1i1: - rq0#impl_0i1_1i1 = 0.0
25
26 \ Structural Constraint 1a: ensure the request is fulfilled
27 rq0_target: + rq0#impl_0i0 + rq0#impl_0i1 = 1.0
28
29 \ Structural Constraint 1b: Choose at most one variant per component and request.
30 rq0_opc_component_0: + rq0#impl_0i0 + rq0#impl_0i1 ≤ 1.0
31 rq0_opc_component_0i0_0: + rq0#impl_0i0_0i0 + rq0#impl_0i0_0i1 ≤ 1.0
32 rq0_opc_component_0i0_1: + rq0#impl_0i0_1i0 + rq0#impl_0i0_1i1 ≤ 1.0
33 rq0_opc_component_0i1_0: + rq0#impl_0i1_0i0 + rq0#impl_0i1_0i1 ≤ 1.0
34 rq0_opc_component_0i1_1: + rq0#impl_0i1_1i0 + rq0#impl_0i1_1i1 ≤ 1.0
35
36 \ Structural Constraint 1c: ensure the required components of a selected component are also selected
37 rq0_impl_0i0_req_component_0i0_0: + rq0#impl_0i0_0i0 + rq0#impl_0i0_0i1 - rq0#impl_0i0 ≥ 0.0
38 rq0_impl_0i0_req_component_0i0_1: + rq0#impl_0i0_1i0 + rq0#impl_0i0_1i1 - rq0#impl_0i0 ≥ 0.0
39 rq0_impl_0i1_req_component_0i1_0: + rq0#impl_0i1_0i0 + rq0#impl_0i1_0i1 - rq0#impl_0i1 ≥ 0.0
40 rq0_impl_0i1_req_component_0i1_1: + rq0#impl_0i1_1i0 + rq0#impl_0i1_1i1 - rq0#impl_0i1 ≥ 0.0
41
42 \ Structural Constraint 1d: At most one component per resource.
43 one_on_res0: + rq0#impl_0i1#res0 + rq0#impl_0i1_1i0#res0 ≤ 1.0
44 one_on_res1: + rq0#impl_0i0_1i0#res1 + rq0#impl_0i1_0i0#res1 + rq0#impl_0i1_0i1#res1 ≤ 1.0
45 one_on_res2: + rq0#impl_0i1_1i0#res2 ≤ 1.0
46
47 \ Contract Negotiation Constraint 2a: Non-functional property of the request.
48 rq0_req_quality: +37.0 rq0#impl_0i1#res0 ≥ 18.0
49
50 \ Contract Negotiation Constraint 2b: Non-functional properties of required components
51 rq0_impl_0i0_reqs_quality_from_component_0i0_1: +14.0 rq0#impl_0i0_1i0#res1 ≥ 0.0
52 rq0_impl_0i1_reqs_quality_from_component_0i1_0: +99.0 rq0#impl_0i1_0i0#res1 +65.0 rq0#impl_0i1_0i1#res1 -65.0 rq0#impl_0i1#res0 ≥ 0.0
53 rq0_impl_0i1_reqs_quality_from_component_0i1_1: +94.0 rq0#impl_0i1_1i0#res2 +94.0 rq0#impl_0i1_1i0#res0 -94.0 rq0#impl_0i1#res0 ≥ 0.0
54
55
56 \ Variable Definitions
57 Binaries \ here, all variables are binary
58 rq0#impl_0i0 rq0#impl_0i0_0i0 rq0#impl_0i0_0i1 rq0#impl_0i0_1i0 rq0#impl_0i0_1i0#res1 rq0#impl_0i0_1i1 rq0#impl_0i1 rq0#impl_0i1#res0

rq0#impl_0i1_0i0 rq0#impl_0i1_0i0#res1 rq0#impl_0i1_0i1 rq0#impl_0i1_0i1#res1 rq0#impl_0i1_1i0 rq0#impl_0i1_1i0#res0
rq0#impl_0i1_1i0#res2 rq0#impl_0i1_1i1

59
60 End

Listing A: ILP for the example model (sorted and commented).


	Introduction
	Transformation into a Linear Program
	Structure of the Linear Program
	ILP Transformation using Higher Order Attributes
	Example Model and Solution

	Evaluation
	Conclusion and Future Work

