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Abstract

This paper presents a solution to the Social Media benchmark, used
as live contest at the Transformation Tool Contest (TTC) 2018. We
demonstrate how the implicit incrementalization abilities of NMF can
be used to automatically obtain an incremental algorithm for the pre-
sented case. We evaluate the solution against the reference solution
and show that the incremental change propagation is faster than batch
recomputation by multiple orders of magnitude for large models.

1 Introduction

If the knowledge of a system is captured in a formal model, one often wants to analyze such models in order to
conclude properties of the underlying system. To be meaningful, the analysis results must be synchronized with
the model. However, in environments where changes happen frequently, it is often not viable to recalculate the
entire analysis in the presence of local changes. Rather, it is desirable to propagate these changes to the analysis
results incrementally, i.e. only recalculate those parts of the analysis results that are affected by a given change.

One environment where changes happen frequently are social networks, as used by the Social Media bench-
mark, used as live contest of the Transformation Tool Contest 2018 [1]. In this benchmark, solutions are asked
to analyze a model of a social network for two queries. While one query is rather simple in terms of the query
operators used in the reference solution, the second query is more complex as graph algorithms are used.

Graph algorithms are difficult from an incrementalization point of view, because they are typically described
in an imperative pseudo-code that usually utilizes state. Using a generic incrementalization system, this often
spans a state-space that is too large for an incrementalization to be efficient. To aid this situation, dynamic
algorithms are known for a number of graph problems that offer strategies to propagate graph changes efficiently,
often with a radically different approach than in the batch (or initial) scenario (cf. [2]).

In particular, the social media benchmark exercises the problem of finding strongly connected components in
a graph. The reference solution uses Tarjan’s algorithm [3] for this. Therefore, it is a major challenge of the
benchmark for solutions to specify how the strongly connected components should be computed incrementally
while preserving a concise notation, ideally as in the reference solution.

In this paper, we present a solution to the social media benchmark using NMF Expressions [2], [4], an
extensible incrementalization system part of the .NET Modeling Framework (NMF, [5], [6]). In particular, the
solution demonstrates the extensibility of NMF Expressions as we extend the incrementalization system with a
dynamic algorithm for finding strongly connected components.

The remainder of this paper is structured as follows: Section 2 gives a brief overview on NMF Expressions.
Section 3 describes our solution. Section 4 evaluates our solution with respect to the reference solution and other
initial solutions from the live contest. Section 5 gives a short conclusion.
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2 Incrementalization with NMF Expressions

The goal of NMF Expressions is to give developers an automated tool at hand providing them with advantages
of incremental evaluation for arbitrary expressions. [4], [7] Unlike many other approaches, our approach works
implicitly, so developers only have to specify their analyses and NMF Expressions takes care of how to turn this
into an algorithm that will evaluate the analysis in an incremental fashion. On the other hand, the traditional
batch mode specification is still available so that NMF Expressions yields a choice whether to run a given
expression incrementally or in batch mode.

In the incremental mode, the approach creates a dynamic dependency graph (DDG) from a given expression
and observes changes. These changes originate from elementary update notifications and are propagated through
the dependency graph.

The high abstraction level in the DDG is achieved by a manual incrementalization of analysis operators
yielding valid results as a consequence of the underlying formalization as a categorial functor. NMF Expressions
includes a library of such manually incrementalized operators, including most of the Standard Query Operators
(SQO)1, but developers are free to add new operators by simply annotating a method with an incremental
implementation.

3 Solution

We describe the solutions to the two queries individually in separate sections.

3.1 Query 1: Most controversial posts

Meanwhile NMF Expressions includes an incrementalization of most SQOs, the Takemethod used in the reference
solution for query 1 is not supported, same as any other query operators of the SQO that deal with indices.
The reason for this is that the current implementation of the SQOs is mostly ignorant to collection indices and
generally reports -1 as index of any change, meaning that clients would have to find out the index themselves,
if they need the index of a collection. The reason for this is that it is not trivial and it is costly to find out
the index of an element in a filtered list, given the index in the source collection. This always requires a linear
scan, meanwhile the SQO implementations generally try to propagate changes in constant or near constant time
(logarithmic effort for updating sorted lists). Therefore, the fact that Take is not supported is simply because it
cannot be implemented efficiently, at least not in the general case.

However, we identified analyses that sort elements for a given criteria and then report on a small number of
elements with the best scores as a rather common pattern. Therefore, we added dedicated support for this kind
of analysis operators into NMF. This operator is called TopX. It is essentially a combination of an incremental sort
(using balanced binary search trees) and a simple poll for the first x elements upon any change of the balanced
binary search tree, assuming that x is small (in comparison to the size of the search tree).

1 query = Observable.Expression(() =>
2 SocialNetwork.Posts.TopX(3, post => ValueTuple.Create(post.Descendants().OfType<Comment>().Sum(c => 10 + c.LikedBy.Count), post.

Timestamp))
3 );

Listing 1: Incremental NMF Solution for query 1

The solution to query 1 is shown in Listing 1. We simply calculate the topmost three posts where the score
of a post is calculated as a tuple of the score and the timestamp in order to break ties. The result of the lambda
expression in Line 2 is an array of tuples of the posts and their scores (actual score and timestamp).

Lines 1 and 3 surround this lambda expression with a call to NMF Expressions to obtain an incrementalization
of this analysis. With that call, we tell NMF Expressions to create a DDG for us. The return value of this function
is the root node of this DDG. This node implements a generic interface INotifyValue<> that provides the current
analysis result as well as an event to notify clients when the analysis result changes. In the benchmark solution,
we do not make use of this event but repeatedly query the current value of the DDG node. This call is fast,
because each node in the DDG always references its current value.

1http://msdn.microsoft.com/en-us/library/bb394939.aspx



3.2 Query 2: Most influential comment

The solution for query 2 is very similar to the solution of query 1, except for the fact that it involves finding
strongly connected components in a graph where there is no incremental implementation available that is built
into NMF.

From an algorithmic point of view, the incrementalization of the strongly connected components will be rather
simple: We cache the current set of strongly connected components. Whenever an edge is added to the graph
between two nodes that are already in the same strongly connected component or an edge is removed between
nodes that are in different strongly connected components, the change is not propagated because it does not
influence the strongly connected components. In all other cases, the cached set of strongly connected components
is discarded and recalculated entirely. To get notified of graph updates, we keep a DDG node for each incident
edges of a node as well as a DDG node for the set of all nodes. To simplify the problem a bit, we assume that
the references to these collections will be static2.

To implement an incremental version of the algorithm for strongly connected components, we need to im-
plement a class that describes this algorithm and implements the INotifyEnumerable interface. This interface
denotes a collection-valued node of the DDG. To implement this interface, we need to provide implementations
for three methods.

The first is a set of nodes Dependencies that the DDG node for the incremental computation of strongly
connected components depends upon. That is, changes of (the values of) these nodes will cause a recalculation
of the incremental strongly connected components. In our case, this is for each node in the graph the set of
incident edges and the base set of nodes in the graph.

The second is an iterator of the current values. In our case, these values are strongly connected components
and are thus collections themselves. To implement this, we simply keep a reference to the most up to date
strongly connected components and return those.

Third, we need to implement the actual change propagation in a method called Notify. This method receives
a list of changes in dependent DDG nodes as a parameter and returns a change notification of its own value, or a
singleton instance if nothing has changed. In this method, we check whether these dependent changes affect the
cached set of strongly connected components. If this is the case, we simply recompute all connected components.

The result is a class that is generically reusable for the calculation of strongly connected components in
incremental analyses. As such, it can be separated in an algorithmics library and reused whenever an analysis
requires the calculation of strongly connected components.

With this algorithmics class, we can solve query 2 as in Listing 2.

1 Func<IComment, Func<IUser, IEnumerableExpression<IUser>>> friendsBuilder = c => (u => u.Friends.Intersect(c.LikedBy));
2 query = Observable.Expression(() =>
3 SocialNetwork.Descendants().OfType<IComment>().TopX(3, comment => ValueTuple.Create(
4 ConnectedComponents<IUser>.Create(comment.LikedBy, friendsBuilder(comment))
5 .Sum(group => Squared(group.Count())),
6 comment.Timestamp
7 ))
8 );

Listing 2: Incremental NMF Solution for query 2

In Line 1, we create a function that given a comment, creates the incident edges for a user. Because we do
not care about changes of the incidents function, the function to get the connected users is used as compiled
code, using the Func class. This is slightly more efficient than the format of lambda expressions that NMF
Expressions can use for the incrementalization. However, NMF Expressions currently has some problems to
integrate compiled lambda expressions, so we need to specify this function separately, outside the scope of NMF
Expressions.

In Lines 2 and 8, we frame the actual analysis with NMF Expressions, allowing it to create the DDG for the
inner analysis that is in Lines 3-7. In particular, we first iterate all elements in the social network model and
filter for comments in Line 3. From these, we pick the topmost elements according to the tuple of scores and
timestamps, similar to the solution of query 1. To calculate the score of a post, we simply run the analysis of
connected components where the incident nodes of a given user are the subset of his friends that also liked that
comment (Line 4). Given these strongly connected components, we calculate the sum of the squared sizes (Line
5).

2Here we allow mutable collections. In the example, the incident edges of a user are always the set of his friends intersected with
the users who liked a specific comment. The contents of this collection may change, but the collection itself does not.



3.3 Transactions and Parallelism

NMF Expressions has some support for transactions and parallelism. The support for transactions means that
a DDG node is only processed if all of its dependencies have been processed. Because each transaction may
invalidate a different set of DDG nodes, this implies that changes in the DDG need to be processed in a two-pass
fashion: In the first pass, the set of potentially affected DDG nodes is calculated while in the second pass, the
changes are actually propagated. Because the transactional behavior guarantees that each DDG node is only
updated at most once in each transaction, the overhead of two passes may be saved. However, whether or not
this is the case largely depends on the analysis and the change sequence.

The beauty of the transactional support in NMF Expressions is that it is very easy for a developer to use
it: All that needs to be done is simply to put the changes inside a transaction. Because in the scope of the
benchmark, these changes come in a dedicated change sequence object, all we need to change for transactional
behavior is to wrap the application of such a change sequence in a transaction as done in Listing 3.

1 ExecutionEngine.Current.BeginTransaction();
2 changes.Apply();
3 ExecutionEngine.Current.CommitTransaction();

Listing 3: Wrapping the application of the change sequence in a transaction

Lastly, NMF Expressions also allows to propagate the changes within such a transaction in parallel, a feature
that is still under development. This is done by changing the static execution engine implementation. However,
the results show that the parallel execution had some problems with query 2 and the solution ran into exceptions.

4 Evaluation
The following measurements have been performed on an Intel i7-8550U clocked at 1.8GHz in a system with
8GB RAM running Windows 10. We only depicted the times to propagate changes as NMF Expressions clearly
targets the incremental case. The results for Query 1 are depicted in Figure 1. The results for Query 2 are
depicted in Figure 2. Both figures show the average time to propagate one of 20 change sequences in a model of
different sizes. Note that both the model size axis as well as the time axis are logarithmic.
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Figure 1: Incremental Evaluation of Query 1

For both queries, one can see that the difference whether or not changes are propagated in transactions is
negligible, the curves for the incremental NMF solutions with or without transactions mostly overlap. Second,
the slope of these two incremental NMF solutions is much flatter than the NMF reference solution. This indicates
that unlike the reference solution that always recalculates the entire analysis results from scratch, the DDGs
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Figure 2: Incremental evaluation of Query 2

in the incremental solutions really enable an incremental change propagation where the time for the change
propagation does not depend on the overall model size. For the largest model size depicted, this yields a speedup
of more than an order of magnitude compared to the NMF reference solution. For query 2, the incremental NMF
solutions are the fastest. For query 1, only the YAMTL solution is slightly faster.

5 Conclusions
Our solution shows the power of implicit incrementalization with NMF but also its pitfalls: We needed to slightly
modify the query implementations as we are limited to incrementalizable query operators, but using them, the
incremental solutions are very concise and understandable. For Query 2, we needed to implement a custom query
operator, but this could be reused for other applications. The performance results show that our solution is one
of the fastest ones, beating the reference solution by multiple orders of magnitude.
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