
A JastAdd-based Solution to the TTC 2018 Social Media
Case

René Schöne, Johannes Mey

Software Technology Group, Technische Universität Dresden, Germany
{rene.schoene, johannes.mey}@tu-dresden.de

Abstract

The TTC 2018 live contest case describes a social media network and
two queries retrieving elements based on a calculated score. This so-
lution solves the case by employing Reference Attribute Grammars.
Thus, we first transform the given EMF model into syntax tree, and
secondly compute attributes defined on its grammar. Both grammar
and attributes are specified and evaluated using the JastAdd system.
Utilizing the same source code, we can generate an incrementally eval-
uated variant, and a non-incremental one.

1 Introduction
The TTC 2018 Social Media Case [3] describes a metamodel comprising users, posts, and comments. Further
it defines two queries retrieving the most controversial posts based on the number of comments and the most
influential comments based on groups of users all liking the comment. The case provides models in varying
sizes along with a set of changes to be applied to the initial model. This setting tends to favour tools providing
means for incremental evaluation. Our solution is based on Reference Attribute Grammars [2] and the JastAdd
system [1]. With the most recent version of JastAdd, it is possible to generate two variants from the same
specification, one working incrementally and the other requiring to flush all caches instead of only the relevant
ones. After a brief description of the used technologies in Section 2, our solution is described in Section 3 and
evaluated in Section 4. Section 5 concludes the paper.

2 Background
Attribute Grammars [4] enable the extension of a context free grammar with semantics. Attributes are compu-
tations defined for a nonterminal of the grammar, and can access both terminals and attributes of the subtree of
the nonterminal they are defined on. Reference Attribute Grammars (RAGs) [2] extend this paradigm such that
attributes are allowed to return other nodes of the abstract syntax tree (AST) as a result of their computation.
This enables the specification of a graph instead of the basic tree structure by computing the “overlay” edges.
An advantage of RAGs is their ability to compute attributes incrementally, i.e., if the AST was changed, then
only those attributes affected by the change are recomputed.

In our solution, we use two advanced features of RAGs: nonterminal attributes and circular attributes.
Nonterminal attributes [7] are, as suggested by their name, both nonterminals and attributes, in the sense,
that an attribute is used to dynamically compute a new subtree. This is useful, if a part of the AST is fully
determined by the rest of the AST and should therefore not be contained but computed. Circular attributes [5]
allow recursive definitions of attributes by specifying a fix point computation. This can be used, to find strongly
connected components, as needed for the second query.

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Garcia-Dominguez, G. Hinkel, F. Krikava (eds.): Proceedings of the Transformation Tool Contest 2018, Toulouse, France,
29-Jun-2018, published at http://ceur-ws.org

Listing 1: Grammar for a SocialNetwork.
abstract ModelElement ::= <Id:Long> ;
SocialNetwork : ModelElement ::= User* Post* ;
User : ModelElement ::= <Name:String> ;
abstract Submission : ModelElement ::= <Timestamp:Long> <Content:String> Comment* ;
Comment : Submission ::= /<Post:Post>/ ;
Post : Submission ::= ;
rel User.friends* -> User ;
rel User.submissions* -> Submission ;
rel User.likes* <-> Comment.likedBy*

We use the JastAdd RAG system [1] to specify both grammar and attributes for our solution. This system
is using aspect-weaving to generate plain Java code from the input specifications. A grammar describes the
production rules, which are given as EBNF with extra features such as inheritance and relations. For every
nonterminal, a Java class is generated comprising constructors and getters/setters matching their respective
production rules. Attributes are defined in aspects containing their definitions, i.e., a Java method to compute
an attribute value for a certain nonterminal.

3 Solution
This section describes the used grammar, the attributes to compute both queries, and to apply changes.

3.1 Grammar

Listing 1 shows the grammar used to represent the problem model. As in the given metamodel, there are
nonterminals for User, Submission, Comment, and Post. We use the abstract class ModelElement to make those
types identifiable using a numerical identifier, also including social network, to later insert new users or posts.
Further, the relation of a comment to its containing post was replaced by a nonterminal attribute, that is
recursively going up the containment hierarchy until a parent, which is a post, is found. All non-containment
relations are specified using a special syntax described in one of our previous works [6]. With this, the bidirectional
relation describing what comments a user likes can be described as an n-to-m relation like in last line of Listing 1.

3.2 Parsing the Initial Model

Because the initial model is given as an EMF model, we have to transform it into an AST. To achieve this,
we have followed two different approaches. The first one uses an off-the-shelf XML-parser, thus creating an
intermediate representation directly from the parsed XML. In a second step, every node is transformed into
its respective nonterminal of the grammar shown in Listing 1 while resolving found references. This approach
resulted in various challenges like resolving the different formats of references other nodes, or having forward
references to nodes in a Changeset which are not created yet. A second approach to get an AST was to use the
EMF parser, and transform the resulting EMF model with a simple transformation into our AST representation.
However, the EMF parser is slower than the manual implementation as shown in Section 4.

3.3 First Query: Most Controversial Posts

The first task was to find the top three of the most influential posts, where the score of a post is 10 times the
number of comments referring to this post plus the total likes for all of those comments. Our implementation splits
the query into two parts. First, all comments referring to a post are computed in the attribute commentsForPost.
With this, the score for a post can be computed by iterating over all those comments and according to the
definition in the task description [3]:

syn int Post.score() {
int result = 0;
for (Comment comment : commentsForPost()) {

result += 10 + comment.likedBy().size();
}
return result;

}

If a change affects any part of the AST accessed by the attributes involved in the computation of the query, a
recomputation is needed. Because of the demand-driven nature of JastAdd, the attributes are not recomputed
immediately, only their cache is marked as invalid, causing a computation if it is called the next time. This way,
all attributes are computed at most once for one change set. Possible changes for the first query include the
insertion of new posts or comments, or a new like. In this case, only the score of the affected post is recalculated.
However, the computation of the query itself is always recomputed if something relevant has changed, since then
at least one score is different.

3.4 Second Query: Most Influential Comments

The second task was to find the three most influential comments, where the score of a comment is determined
by groups of users, which are both friends with each other and like the comment. Again, this query is split into
two parts. First the group of friends is calculated with the circular attribute shown below. It starts with a result
set containing the starting user, continues to add friends liking the given comment, and recursively calls itself
for each of those friends. The attribute is guaranteed to terminate as the set can at most contain all users.

syn java.util.Set<User> User.getCommentLikerFriends(Comment comment) circular [new java.util.HashSet<User>()];
eq User.getCommentLikerFriends(Comment comment) {

java.util.Set<User> s = new java.util.HashSet<>();
s.add(this);
for (User f : friends()) {

for (Comment otherComment : f.likes()) {
if (otherComment == comment) {

s.add(f);
for (User commentLikerFriend : f.getCommentLikerFriends(comment)) {

s.add(commentLikerFriend);
}

}
}

}
return s;

}

To compute the score of a comment, for all users liking it, the set of users is calculated by the previous attribute
and stored in another set to avoid counting the same group of users twice. For all remaining sets of users, their
squared size is summed up:

syn int Comment.score() {
int score = 0;
java.util.Set<java.util.Set<User>> commentLikerGroups = new java.util.HashSet();
for (User user : likedBy()) {

commentLikerGroups.add(user.getCommentLikerFriends(this));
}
for (java.util.Set<User> userSet : commentLikerGroups) {

int usize = userSet.size();
score += usize * usize;

}
return score;

}

3.5 Application of Changes

To apply the changes to the initial model, we first have to transform them into an AST. The grammar used for a
change set mainly resembles the structure prescribed in the task description, but only the four types of elementary
changes that are actually used. It is shown in Listing B of the Appendix. All elements pointing to the model use
their most specific type, e.g., ModelElement in case of the element to be added in CompositionListInsertion.

One change in the grammar was needed in contrast to the original meta model: A list of pending new elements.
This is needed, because elements to be added can either be new AST nodes or existing ones. Therefore, they
can not be direct children of the change node as existing elements already have a parent. Thus, all new AST
nodes introduced by changes are added to this list, and are later be moved to the model.

public void AssociationCollectionInsertion.apply() {
if (getAffectedElement().isUser()) {

User user = getAffectedElement().asUser();
switch (getFeature()) {

case "submissions": user.addToSubmissions(getAddedElement().asSubmission()); return;
case "friends": user.addToFriends(getAddedElement().asUser()); return;
case "likes": user.addToLikes(getAddedElement().asComment()); return;

}
} else if (getFeature().equals("likedBy")) {

// AssociationCollectionInsertion for likedBy will be handled by attributes
}

}

To apply a change, the type of affected element and the feature stored as a String determine the action to
take as shown above in an example for AssociationCollection. Using switch for the feature is needed, as there
are no first-class relations in JastAdd as opposed to EMF. After applying a change, all affected attributes are
invalidated, thus ensuring correct re-evaluation of the query value.

1 2 4 8 16 32 64
1

10

100

1000

10000

ChangeSet

T
im

e
(m

s)

(a) Loading times

1 2 4 8 16 32 64
1

10

100

1000

10000

ChangeSet

T
im

e
(m

s)
Incremental (EMF)
Flushing (EMF)
Incremental
Flushing
Incremental (Relations)
Flushing (Relations)

1 2 4 8 16 32 64
1

10

100

1000

10000

ChangeSet

T
im

e
(m

s)

(b) Query 1 Initial

1 2 4 8 16 32 64
1

10

100

1000

10000

ChangeSet

T
im

e
(m

s)

(c) Query 1 Update

1 2 4 8 16 32 64
1

10

100

1000

10000

ChangeSet

T
im

e
(m

s)

(d) Query 2 Initial

1 2 4 8 16 32 64
1

10

100

1000

10000

ChangeSet

T
im

e
(m

s)

(e) Query 2 Update

Figure 1: Execution times of the variants of our solution.

4 Evaluation
To evaluate, we used the provided benchmark infrastructure to execute it on a Intel Xeon E5-2643 machine
with 3.3GHz, 16 cores and 64 gigabytes of memory using Debian 8 and Oracle Java version 1.8. Because of
the declarative specification of attributes, we are able to produce variants of our solution showing the impact of
features like incremental evaluation or bidirectional relations by using different build parameters.

Figure 1 shows the execution times of all different variants of our solution, where the times in case of Update
are the mean over all iterations. “Flushing” refers to the non-incremental variant, and “Relations” states, that
bidirectional relations are used. For the alternative EMF-based model loading mechanism, only loading times
are shown, because the queries are always computed using JastAdd. The price of reusing EMF modelling code is
a much slower loading speed compared to the hand-written model loader. Since the performance of the queries
is independent of the loading mechanism, the EMF variant is omitted in the query measurements.

For the initial query computation, two observations can be made for both queries. First, the approaches using
bidirectional relations are strictly better than their counterparts. Second, incremental evaluation needs more
time for this first computation, as the dependency graph has to be built up. When the model is updated, the
incremental evaluation pays off, since both incremental approaches are strictly faster than their counterparts.
Further, as for the initial case, using bidirectional relations results in shorter executions times. As shown in
previous work [6], the inverse relation is not computed, but instead it is set after each change application, thus
avoid unnecessary computation. Overall, all approaches show a linear growth after an update. This is worse
than the constant time, which an ideal incremental solution could achieve. The reason for not achieving it lies
mainly in the needed complete recomputation of the support attributes, especially the circular attribute.

5 Conclusion
We have shown an unconventional solution to the TTC 2018 live contest, most other solutions of which were
EMF-based. Our approach is based on Reference Attribute Grammars, enabling a declarative definition of
structure and computation, as well as incremental evaluation. However, an initial transformation from the given
EMF model into an AST is necessary. Our solution is implemented using the JastAdd system. We were able to
show, that our approach scales well with the problem size, but did not achieve an ideal constant update time.

Acknowledgements
This work has been funded by the German Research Foundation within the Collaborative Research Center 912
Highly Adaptive Energy-Efficient Computing and the research project “Rule-Based Invasive Software Composi-
tion with Strategic Port-Graph Rewriting” (RISCOS) and by the German Federal Ministry of Education and
Research within the project “OpenLicht”.

References
[1] G Hedin and E Magnusson. JastAdd—an aspect-oriented compiler construction system. Science of Computer

Programming, 2003.

[2] Görel Hedin. Reference attributed grammars. Informatica (Slovenia), 24(3), 2000.

[3] Georg Hinkel. The TTC 2018 Social Media Case. In Antonio Garcia-Dominguez, Georg Hinkel, and Filip
Krikava, editors, Proceedings of the 11th Transformation Tool Contest, a part of the Software Technologies:
Applications and Foundations (STAF 2018), CEUR Workshop Proceedings. CEUR-WS.org, June 2018.

[4] Donald E. Knuth. Semantics of context-free languages. Mathematical systems theory, 2(2), 1968.

[5] Eva Magnusson and Görel Hedin. Circular reference attributed grammars—their evaluation and applications.
Science of Computer Programming, 68(1), 2007.

[6] Johannes Mey, René Schöne, Görel Hedin, Emma Söderberg, Thomas Kühn, Niklas Fors, Jesper Öqvist,
and Uwe Aßmann. Continuous Model Validation Using Reference Attribute Grammars. In Proc. of the 11th

International Conference on Software Language Engineering, 2018.

[7] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute grammars. In PLDI ’89, New York,
NY, USA, 1989. ACM.

Appendix
Listing A shows all attributes to perform the actual computation of both queries. The algorithm to compute the
top three matches can be shared between both queries, because they operate on different types, thus depending
on the query to compute, the correct score and hasBetterScoreThan attributes are called. To compute the first
query, one needs to call

SocialNetwork socialNetwork = loadSocialNetwork();
String result = socialNetwork.query(1);

Analogously, to compute the second query, socialNetwork.query(2) has to be called.

Listing A: Attributes to compute both queries
aspect Queries {

syn String SocialNetwork.query(int queryId) {
Iterable<? extends Submission> l;
switch (queryId) {

case 1: l = getPostList(); break;
case 2: l = comments(); break;
default: return null;

}
Submission[] elements = new Submission[3];
for (Submission elem : l) {

if (elem.hasBetterScoreThan(elements[2])) { // at least better than #3
if (elem.hasBetterScoreThan(elements[1])) {

elements[2] = elements[1];
if (elem.hasBetterScoreThan(elements[0])) { // new highscore

elements[1] = elements[0];
elements[0] = elem;

} else { // better than second
elements[1] = elem;

}
} else {

elements[2] = elem;
}

}
}
return elements[0].getId() + "|" + elements[1].getId() + "|" + elements[2].getId();

}

syn int ModelElement.score() = 0;
eq Comment.score() {

int score = 0;
java.util.Set<java.util.Set<User>> commentLikerGroups = new java.util.HashSet();
for (User user : getLikedByList()) {

commentLikerGroups.add(user.getCommentLikerFriends(this));
}
for (java.util.Set<User> userSet : commentLikerGroups) {

int usize = userSet.size();
score += usize * usize;

}
return score;

}
eq Post.score() {

int result = 0;
for (Comment comment : commentsForPost()) {

result += 10 + comment.getLikedByList().size();
}
return result;

}

syn java.util.List<Comment> Post.commentsForPost() {
java.util.List<Comment> result = new java.util.ArrayList<>();
addToComments(result);
return result;

}

syn java.util.Set<User> User.getCommentLikerFriends(Comment comment) circular [new java.util.HashSet<User>()];
eq User.getCommentLikerFriends(Comment comment) {

java.util.Set<User> s = new java.util.HashSet<>();
s.add(this);
for (User f : getFriends()) {

for (Comment otherComment : f.getLikes()) {
if (otherComment == comment) {

s.add(f);
for (User commentLikerFriend : f.getCommentLikerFriends(comment)) {

s.add(commentLikerFriend);
}

}
}

}
return s;

}

syn boolean Submission.hasBetterScoreThan(Submission other) {
return other == null || this.score() > other.score() ||

(this.score() == other.score() this.getTimestamp() > other.getTimestamp());
}

}

Listing B shows the used grammar for the changes being applied to the model.

Listing B: Grammar for a ChangeSet
ModelChangeSet ::= ModelChange* PendingNewElement:ModelElement* <SocialNetwork:SocialNetwork> ;

abstract ModelChange ::= ;

ChangeTransaction:ModelChange ::= SourceChange:ModelChange NestedChange:ModelChange* ;

abstract ElementaryChange : ModelChange ::= <AffectedElement:ModelElement> <Feature:String> ;

abstract AssociationChange : ElementaryChange ::= ;
AssociationCollectionInsertion : AssociationChange ::= <AddedElement:ModelElement> ;
AssociationPropertyChange : AssociationChange ::= <NewValue:ASTNode> ;

abstract AttributeChange : ElementaryChange ::= ;
AttributionPropertyChange : AttributeChange ::= <NewValue:String> ;

abstract CompositionChange : ElementaryChange ::= ;
CompositionListInsertion:CompositionChange ::= <Index:int> <AddedElement:ModelElement> ;

	Introduction
	Background
	Solution
	Grammar
	Parsing the Initial Model
	First Query: Most Controversial Posts
	Second Query: Most Influential Comments
	Application of Changes

	Evaluation
	Conclusion

