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ABSTRACT
Query segmentation is the task of segmenting a Web query into 
adjacent phrases, typically keywords that form noun phrases or con-
cepts that are relevant to the search task. In this paper, we describe a 
research study and some preliminary experiment results for query 
segmentation via a Recurrent Neural Network encoder-decoder 
framework on a public benchmark dataset (Webis-QSeC-10). The 
resulting segmented queries can be used for several downstream 
tasks such as improving the performance of relevance ranking in 
search, better understanding of the query intent, and suggesting 
queries for auto-completion.
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1 INTRODUCTION
Query segmentation aims to detect semantically consistent phrases 
that identify entities and concepts in Web search queries e.g., "[air 
conditioner][remote control]", "[compact][microwave oven]", 
and "[iphone 7][cover]". Such phrases are the semantic structural 
units of a search task and can be exploited by search engines as 
indivisible units in order to improve retrieval precision or reformu-
late phrase-level query. It is often the case that short text as in Web 
queries do not follow grammar rules hence traditional methods 
based on well-formed English are not applicable.

Query segmentation is one of the most important tasks toward 
query understanding, a key component of modern search engines 
for precisely inferring the users’ intent through queries since query 
segments can be further re�ned into named-entities and semantic 
relations linking head-phrases with modi�ers.

Both supervised and unsupervised learning techniques have 
been used to solve the query segmentation task in the past. In the 
supervised learning category, Support Vector Machines ranker [10] 
was used to learn a structured classi�er that makes a segmentation 
decision (yes or no) between each pair of continuous tokens [3]. 
Another well-known model that has been successfully applied to
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a variety of sequence labeling task is Conditional Random Fields
(CRFs) [14]. CRFs model the conditional probability distribution
over a label sequence given an input query where each token in the
query is assigned to a label from the possible values of a pre-de�ned
label sets [22]. However, such supervised methods require a huge
amount of human segmentation labels which are usually expensive
to obtain and, furthermore, careful feature engineering plays an
important role in achieving high segmentation accuracy.

On the other hand, in the unsupervised learning family, several
methods have been proposed to either automatically collect seg-
mented queries or train segmentation models from query log data.
For example, in the e-commerce domain, query terms are aligned
to product attribute terms via user’s click data and the ambiguities
are resolved using frequency and similarity statistics [12]. Statis-
tical methods based on point-wise mutual information (PMI) [13],
n-gram frequency [18], or Multi-Word Expression probability [16]
are also popular. One unsupervised approach using generative lan-
guage models and Wikipedia as external resource has been reported
to have competitive performance [21]. Another unsupervised proba-
bilistic model was proposed to exploit user click-throughs for query
segmentation and the model parameters were estimated by e�cient
expectation—maximization (EM) algorithm [15].

Recently, Deep Neural Networks (DNNs) models have shown its
powerful capability to achieve excellent performance on various
di�cult Natural Language Processing learning tasks. Especially
in end-to-end sequence learning tasks, the Encoder-Decoder net-
work [20] that makes minimal assumptions on the sequence struc-
ture is widely used in machine translation [1, 4, 5]. In this paper,
we propose to treat query segmentation as a machine translation
task and apply the Encoder-Decoder framework to generate query
segments. Preliminary results on the Webis-QSeC-10 1 dataset are
reported.

2 DATA
The Webis Query Segmentation Corpus (Webis-QSeC-10) [8] con-
sists of 53,437 web queries and each query has at least 10 seg-
mentations provided by 10 di�erent annotators crowdsourced via
Amazon's Mechanical Turk (AMT). A sample of 4,850 queries is pub-
lished as the training set and the remaining 48,587 queries serve as
the testing set, with a 1:9 train/test split ratio. The Webis-QSeC-10
is sampled from the subset of the AOL query log [19] which consists
of only queries with length from 3 to 10 words. Since 1-word queries
cannot be segmented anymore and 2-word queries are typically
handled well by proximity features, queries with just 1 or 2 word
are excluded. The sampling maintains the query length distribution
and the query frequency distribution of the entire AOL query log.

1https://www.uni-weimar.de/de/medien/professuren/medieninformatik/webis/
corpora/webis-qsec-10/

https://www.uni-weimar.de/de/medien/professuren/medieninformatik/webis/corpora/webis-qsec-10/
https://www.uni-weimar.de/de/medien/professuren/medieninformatik/webis/corpora/webis-qsec-10/
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An example query with its segmentations from the training set is
shown below, where 1004073900 is the unique query id followed
by a list of vote and segmentation pairs indicating the 10 di�erent
decisions the AMT workers made for that query.

• 1004073900
• (5, ’graffiti fonts|alphabet’),

(3, ’graffiti|fonts|alphabet’),
(2, ’graffiti fonts alphabet’)

Since each query is segmented by at least 10 annotators and not
all of them always agree with each other, to select the reference
annotation, we apply the break fusion strategy described in [7].
The underlying idea is that annotators should at least agree on
speci�c important segments even if there is no absolute majority
on the entire query segmentation. Break fusion simply follows the
majority of annotators at each single break position of a query. A
break is inserted in case of a tie vote. Considering the following
example annotation,

• 5 graffiti fonts|alphabet
• 3 graffiti|fonts|alphabet
• 2 graffiti fonts alphabet

at the �rst break position (between gra�ti and fonts), 7 (5+2) anno-
tators agree with no break. Similarly, 8 (5+3) annotators agree with
inserting a break at the second break position (between fonts and
alphabet). Therefore the �nal reference is

• graffiti fonts|alphabet

3 METHODS
In this section, we describe one baseline method [7] and two models,
Conditional Random Fields (CRFs) and Recurrent Neural Networks
encoder-decoder framework, which are used in this paper for the
query segmentation experiment.

3.1 Wikipedia Titles and Strict Noun Phrases
Baseline

This baseline method is simply treating only Wikipedia titles and
strict noun phrases as query segments. If the query contains more
than one overlapping Wikipedia title, the decision rule proposed
in [8] is used, which basically assigns each title a score based on
the frequencies in the Google n-gram corpus and multiplied by its
length. For strict noun phrases, similarly, the multiplication of their
Web frequencies and length is assigned as the score. Finally, the
segmentation with the highest score is chosen.

3.2 Conditional Random Fields
Conditional Random Fields have been widely used in NLP struc-
tured prediction tasks, especially sequence labeling such as part-
of-speech (POS) tagging and named-entity recognition (NER). For-
mally, let the input sequence x = x1,x2, ...,xn and label sequence
y = y1,y2, ...,yn , we want to model the conditional distribution
P (y|x) so that the optimal label sequence can be predicted by solv-
ing y∗ = argmax

y
P (y|x). The probabilistic model for sequence CRFs

de�nes a family of conditional probability P (y|x,λλλ) over all possible
label sequences y given x with the following form:

P (y|x,λλλ) =
exp
∑n
i=1
∑
j λj fj (yi−1,yi ,x, i )
Z (x)

Z (x) =
∑
y∈Y

n∑
i=1

∑
j
λj fj (yi−1,yi ,x, i )

where λλλ is the model parameters, fj is the feature function and the
numerator of P (y|x,λλλ) is composed of potential functions. λλλ can
be obtained by maximizing the logarithm of the likelihood of the
training data with L1 or L2 regularization terms,

L (λ) =
∑
i
loдP (y|x,λλλ)

In order to apply CRFs to the query segmentation task, we in-
troduce the standard Begin, Inside, Outside (BIO) tagging schema
to maps a segmented query to a sequence of tags. Table 1 shows
some example queries from Webis-QSeC-10 training set with their
corresponding BIO tags.

segmented query BIO tagging
gra�ti fonts | alphabet gra�ti (B) fonts (I) alphabet (B)

stainless steel | chest freezers stainless (B) steel (I) chest (B) freezers (I)
rutgers | online | graduate classes rutgers (B) online (B) graduate (B) classes (I)

review | on | breezes review (B) on (B) breezes (B)

Table 1: Example queries from Webis-QSeC-10 training set
and their corresponding BIO tags.

3.3 Recurrent Neural Networks
The fundamental idea of Recurrent Neural Networks is that the
network contains a feed-back connection as shown in the left part
of Figure 1, so that it can make use of sequential information. RNNs
perform the same task for every element in a sequence x, with the
output o being dependent on the computations from the previous
state s. This characteristic enables the networks to do sequence pro-
cessing and learn sequential structure information. Theoretically,
RNNs are capable of capturing arbitrarily long distance dependen-
cies, but in practice, they are limited to looking back only a few
steps, known as the gradient vanishing/exploding problem [2].

The right part of Figure 1 shows a typical RNN and its forward
computation structure after being unfolded into a full network
within the sequence window t − 1, t , and t + 1. Assume that the
input sequence x is a sentence consisting of n words, x1,x2, ...,xn .
xt is the input token at position t and it can be represented as a
typical one-hot vector or a word embedding of dimension d . st , the
corresponding hidden state or "memory", is calculated based on
the previous hidden state and the input at the current step. In this
case, we would like to predict the next word given x1,x2, ...,xt−1
so ot would be a vector of probabilities across the vocabulary. The
following equations explicitly explain the computation of RNNs.

st = f (Uxt +Wst−1)

ot = so f tmax (Vst )

where the function f is a nonlinearity mapping such as tanh or
ReLU. U , V and W are matrices (model parameters) and can be
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optimized through back propagation. Usually, s−1, which is required
to calculate the �rst hidden state, is initialized to a zero vector.
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Figure 1: A recurrent neural network and the unfolding in
time of the computation involved in its forward computa-
tion.

3.4 RNNs Encoder-Decoder Framework
Figure 2 shows a typical encoder decoder framework, a model con-
sisting of two separate RNNs called the encoder and the decoder.
The encoder reads an input sequence one item at a time, and out-
puts a vector at each step (ignored in Figure 2). The �nal output of
the encoder serves as the context vector and the decoder uses this
context vector to generate a sequence of outputs. In the context of
machine translation, the encoder �rst processes a variable-length
input word sequence from the source language and builds a �xed-
length vector representation (context vector). Conditioned on this
encoded representation, the decoder produces a variable-length
word sequence in the target language. In an ideal case, the context
vector can be considered as the meaning of the sequence in latent
semantic space, and this idea can be extended beyond sequences.
For example, in image captioning tasks, the encoder decoder frame-
work takes the image as input and produces a text description as
output. In the reverse direction, image generation tasks take a text
description as input and output a generated image.

To �t the query segmentation task into encoder decoder frame-
work, we treat the original query as an input sequence from one
language and the segmented query as an output sequence from the
other language. The vocabulary size is therefore the same for both
languages except that the target language has one additional break
token, i.e.,

Vocabtarдet = Vocabsource + {”|”}
In practice, the queries and their segmentations combined are

treated as a parallel corpus for training. In testing phase, the encoder
�rst calculates the context vector and then generates output tokens
one at a time from Vocabtarдet .

4 EXPERIMENTS
The Webis-QSeC-10 corpus [8] comprises 53,437 web queries and
each of them has at least 10 segmentations. The reference segmen-
tation is obtained as described in Section 2. There are 4,850 queries
in the training set and 48,587 queries in the testing set. To quantify
the segmentation result of di�erent algorithms, we adopt query

graffiti alphabetfonts

context

graffiti alphabetfonts
Encoder
RNN

Decoder
RNN

Figure 2: A RNN encoder decoder framework and its appli-
cation to query segmentation.

level and break level accuracy [7] as the evaluation matrices. At
query level, given a query q, its reference segmentation S and the
output segmentation S ′ from the model, the query accuracy is 1 if
S ′ = S and 0 otherwise. At break level, a decision whether a break
needs to be inserted is made for every two consecutive words in the
query. The break accuracy is de�ned as the ratio of correct decisions
over all break positions in q with respect to S ′. Theoretically, there
exists 2k−1 valid segmentations for each q, and (k2−k )

2 potential
segments that contain at least two keywords from q.

4.1 Model Parameters
In our experiment, we use CRFsuite 2 [17] for optimizing the CRF
model parameters and the following set of word uni-gram and
bi-gram features are utilized:

• uni-gram: x−2, x−1, x , x1, x2
• bi-gram: x−1x , xx1

For RNN encoder decoder, the following loss function, optimizer
and parameters are used:

• Word representation: 1-hot vector
• RNN hidden layer size: 1024
• RNN number of layers: 2
• RNN activation function: tanh
• Loss function: Negative log likelihood loss
• Optimizer: Adam optimizer
• Learning rate: 0.0001
• Dropout rate: 0.05
• Epochs: 50,000

4.2 RNNs Encoder-Decoder Loss
Parameters optimization is obtained by Adam optimizer with nega-
tive log likelihood as the loss function. Adam optimizer (Adaptive
Moment Estimation) [11] is an algorithm for �rst-order gradient-
based optimization of stochastic objective functions through com-
puting adaptive learning rates for each parameter. Adam keeps an
exponentially decaying average of both past gradients and squared
gradients. The loss function value on the training set is recorded ev-
ery 200 epochs and it shows that the training loss decreases steadily
with the number of epochs and eventually converges at the end
(Figure 3).

2http://www.chokkan.org/software/crfsuite/
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Figure 3: Negative log-likelihood loss for the RNN encoder-
decoder on the training set. The loss is recorded every 200
epochs.

4.3 Results
Table 2 shows query-level and break-level accuracy of Wikipedia
titles (WT), Wikipedia titles + strict noun phrases (WT+SNP), Con-
ditional Random Fields and RNN encoder-decoder. WT+SNP has
the best accuracy among the four methods at both levels. CRF per-
forms better than WT baseline in terms of query level and break
level accuracy. The RNN encoder-decoder framework, however, in
this case does not perform as expected as it does in other tasks such
as machine translation and image captioning.

query
accuracy

break
accuracy

WT [7] 0.431 0.769
WT+SNP [7] 0.585 0.837

CRF 0.465 0.814
RNN Encoder-Decoder 0.421 0.664

Table 2: Query level and break level accuracy on Webis-
QSeC-10 test set.

5 DISCUSSION
The �rst two methods (WT and WT+SNP) in Table 2 are unsuper-
vised but require external knowledge resource, e.g., Wikipedia titles,
Google n-gram frequencies and Web n-gram frequencies. On the
other hand, both CRFs and RNNs encoder-decoder are supervised
machine learning methods relying on human annotation. Since
the training set only consists of 4,850 annotated queries, which is
1/9 the size of testing set in Webis-QSeC-10, supervised methods
cannot bene�t from a large amount of training data. In addition
to the small size of training set, short-query length is also another
key factor that limits the power of RNNs encoder-decoder in query
segmentation. Web queries are typically short and less structured

compared to standard sentences in machine translation corpus.
Therefore, RNNs’ remarkable capacity of capturing long-distance
dependency is not that e�ective in this task. Although CRFs out-
performs RNNs encoder-decoder, one disadvantage of CRFs is that
it requires human-designed features as opposed to RNNs which
require no feature engineering.

6 CONCLUSION AND FUTUREWORK
Query segmentation is crucial for a search engine to better under-
stand query intent and return higher quality search results. This
paper provides a study on �tting query segmentation task into a
RNN encoder-decoder framework and describes preliminary exper-
imental results compared with other baselines. The RNNs does not
perform as expected due to the lack of training data and the short
nature of query length. However, three feasible future directions
might be helpful for improving RNNs encoder decoder framework
on query segmentation.

The �rst direction is to automatically collect a large amount of
segmented queries via user implicit feedback from query logs as
proposed in [12]. This will solve the challenge of little training
data mentioned in Section 5. Another direction is to replace the
RNN units in the encoder decoder framework with GRUs [6] or
LSTMs [9] and add an attention mechanism [1] at the encoder,
giving the decoder a way to "pay attention" to di�erent parts of
the input while decoding. Finally, substituting pre-trained word
embedding for the current one-hot word vector will both reduce
the input dimension and provide the network with richer word
representation.
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